DragonRuby Game Toolkit Live Docs
The information contained here is all available via the DragonRuby Console. You can Open the DragonRuby Console by pressing [`] [~] [²] [^] [º] or [§] within your game.
To search docs you can type docs_search "SEARCH TERM"
or if you want to get fancy you can provide a lambda
to filter documentation:
docs_search { |entry| (entry.include? "Array") && (!entry.include? "Enumerable") }
Hello World
Welcome to DragonRuby Game Toolkit. Take the steps below to get started.
Join the Discord and Subscribe to the News Letter
Our Discord channel is http://discord.dragonruby.org.
The News Letter will keep you in the loop with regards to current DragonRuby Events: http://dragonrubydispatch.com.
Those who use DragonRuby are called Dragon Riders. This identity is incredibly important to us. When someone asks you:
What game engine do you use?
Reply with:
I am a Dragon Rider.
Intro Videos
Here are some videos to help you get the lay of the land.
Quick Api Tour
- Beginner Introduction to DragonRuby Game Toolkit: https://youtu.be/ixw7TJhU08E
If You Are Completely New to Ruby and Programming
- Intermediate Introduction to Ruby Syntax: https://youtu.be/HG-XRZ5Ppgc
- Intermediate Introduction to Arrays in Ruby: https://youtu.be/N72sEYFRqfo
- You may also want to try this free course provided at http://dragonruby.school.
If You Have Game Dev Experience
- Building Tetris - Part 1: https://youtu.be/xZMwRSbC4rY
- Building Tetris - Part 2: https://youtu.be/C3LLzDUDgz4
- Low Res Game Jam Tutorial: https://youtu.be/pCI90ukKCME
Getting Started Tutorial
This is a tutorial written by Ryan C Gordon (a Juggernaut in the industry who has contracted to Valve, Epic, Activision, and EA... check out his Wikipedia page: https://en.wikipedia.org/wiki/Ryan_C._Gordon).
Introduction
Welcome!
Here's just a little push to get you started if you're new to programming or game development.
If you want to write a game, it's no different than writing any other program for any other framework: there are a few simple rules that might be new to you, but more or less programming is programming no matter what you are building.
Did you not know that? Did you think you couldn't write a game because you're a "web guy" or you're writing Java at a desk job? Stop letting people tell you that you can't, because you already have everything you need.
Here, we're going to be programming in a language called "Ruby." In the interest of full disclosure, I (Ryan Gordon) wrote the C parts of this toolkit and Ruby looks a little strange to me (Amir Rajan wrote the Ruby parts, discounting the parts I mangled), but I'm going to walk you through the basics because we're all learning together, and if you mostly think of yourself as someone that writes C (or C++, C#, Objective-C), PHP, or Java, then you're only a step behind me right now.
Prerequisites
Here's the most important thing you should know: Ruby lets you do some complicated things really easily, and you can learn that stuff later. I'm going to show you one or two cool tricks, but that's all.
Do you know what an if statement is? A for-loop? An array? That's all you'll need to start.
The Game Loop
Ok, here are few rules with regards to game development with GTK:
- Your game is all going to happen under one function ...
- that runs 60 times a second ...
- and has to tell the computer what to draw each time.
That's an entire video game in one run-on sentence.
Here's that function. You're going to want to put this in mygame/app/main.rb, because that's where we'll look for it by default. Load it up in your favorite text editor.
def tick args
args.outputs.labels << [580, 400, 'Hello World!']
end
Now run dragonruby
...did you get a window with "Hello World!" written in it? Good, you're officially a game developer!
Breakdown Of The tick
Method
mygame/app/main.rb
, is where the Ruby source code is located. This looks a little strange, so I'll break it down line by line. In Ruby, a '#' character starts a single-line comment, so I'll talk about this inline.
# This "def"ines a function, named "tick," which takes a single argument
# named "args". DragonRuby looks for this function and calls it every
# frame, 60 times a second. "args" is a magic structure with lots of
# information in it. You can set variables in there for your own game state,
# and every frame it will updated if keys are pressed, joysticks moved,
# mice clicked, etc.
def tick args
# One of the things in "args" is the "outputs" object that your game uses
# to draw things. Afraid of rendering APIs? No problem. In DragonRuby,
# you use arrays to draw things and we figure out the details.
# If you want to draw text on the screen, you give it an array (the thing
# in the [ brackets ]), with an X and Y coordinate and the text to draw.
# The "<<" thing says "append this array onto the list of them at
# args.outputs.labels)
args.outputs.labels << [580, 400, 'Hello World!']
end
Once your tick
function finishes, we look at all the arrays you made and figure out how to draw it. You don't need to know about graphics APIs. You're just setting up some arrays! DragonRuby clears out these arrays every frame, so you just need to add what you need _right now_ each time.
Rendering A Sprite
Now let's spice this up a little.
We're going to add some graphics. Each 2D image in DragonRuby is called a "sprite," and to use them, you just make sure they exist in a reasonable file format (png, jpg, gif, bmp, etc) and specify them by filename. The first time you use one, DragonRuby will load it and keep it in video memory for fast access in the future. If you use a filename that doesn't exist, you get a fun checkerboard pattern!
There's a "dragonruby.png" file included, just to get you started. Let's have it draw every frame with our text:
def tick args
args.outputs.labels << [580, 400, 'Hello World!']
args.outputs.sprites << [576, 100, 128, 101, 'dragonruby.png']
end
(Pro Tip: you don't have to restart DragonRuby to test your changes; when you save main.rb, DragonRuby will notice and reload your program.)
That .sprites
line says "add a sprite to the list of sprites we're drawing, and draw it at position (576, 100) at a size of 128x101 pixels". You can find the image to draw at dragonruby.png.
Coordinate System and Virtual Canvas
Quick note about coordinates: (0, 0) is the bottom left corner of the screen, and positive numbers go up and to the right. This is more "geometrically correct," even if it's not how you remember doing 2D graphics, but we chose this for a simpler reason: when you're making Super Mario Brothers and you want Mario to jump, you should be able to add to Mario's y position as he goes up and subtract as he falls. It makes things easier to understand.
Also: your game screen is _always_ 1280x720 pixels. If you resize the window, we will scale and letterbox everything appropriately, so you never have to worry about different resolutions.
Ok, now we have an image on the screen, let's animate it:
def tick args
args.state.rotation ||= 0
args.outputs.labels << [580, 400, 'Hello World!' ]
args.outputs.sprites << [576, 100, 128, 101, 'dragonruby.png', args.state.rotation]
args.state.rotation -= 1
end
Now you can see that this function is getting called a lot!
Game State
Here's a fun Ruby thing: args.state.rotation ||= 0
is shorthand for "if args.state.rotation isn't initialized, set it to zero." It's a nice way to embed your initialization code right next to where you need the variable.
args.state
is a place you can hang your own data. It's an open data structure that allows you to define properties that are arbitrarily nested. You don't need to define any kind of class.
In this case, the current rotation of our sprite, which is happily spinning at 60 frames per second. If you don't specify rotation (or alpha, or color modulation, or a source rectangle, etc), DragonRuby picks a reasonable default, and the array is ordered by the most likely things you need to tell us: position, size, name.
There Is No Delta Time
One thing we decided to do in DragonRuby is not make you worry about delta time: your function runs at 60 frames per second (about 16 milliseconds) and that's that. Having to worry about framerate is something massive triple-AAA games do, but for fun little 2D games? You'd have to work really hard to not hit 60fps. All your drawing is happening on a GPU designed to run Fortnite quickly; it can definitely handle this.
Since we didn't make you worry about delta time, you can just move the rotation by 1 every time and it works without you having to keep track of time and math. Want it to move faster? Subtract 2.
Handling User Input
Now, let's move that image around.
def tick args
args.state.rotation ||= 0
args.state.x ||= 576
args.state.y ||= 100
if args.inputs.mouse.click
args.state.x = args.inputs.mouse.click.point.x - 64
args.state.y = args.inputs.mouse.click.point.y - 50
end
args.outputs.labels << [580, 400, 'Hello World!']
args.outputs.sprites << [args.state.x,
args.state.y,
128,
101,
'dragonruby.png',
args.state.rotation]
args.state.rotation -= 1
end
Everywhere you click your mouse, the image moves there. We set a default location for it with args.state.x ||= 576
, and then we change those variables when we see the mouse button in action. You can get at the keyboard and game controllers in similar ways.
Coding On A Raspberry Pi
We have only tested DragonRuby on a Raspberry Pi 3, Models B and B+, but we believe it _should_ work on any model with comparable specs.
If you're running DragonRuby Game Toolkit on a Raspberry Pi, or trying to run a game made with the Toolkit on a Raspberry Pi, and it's really really slow-- like one frame every few seconds--then there's likely a simple fix.
You're probably running a desktop environment: menus, apps, web browsers, etc. This is okay! Launch the terminal app and type:
do raspi-config
It'll ask you for your password (if you don't know, try "raspberry"), and then give you a menu of options. Find your way to "Advanced Options", then "GL Driver", and change this to "GL (Full KMS)" ... not "fake KMS," which is also listed there. Save and reboot. In theory, this should fix the problem.
If you're _still_ having problems and have a Raspberry Pi 2 or better, go back to raspi-config and head over to "Advanced Options", "Memory split," and give the GPU 256 megabytes. You might be able to avoid this for simple games, as this takes RAM away from the system and reserves it for graphics. You can also try 128 megabytes as a gentler option.
Note that you can also run DragonRuby without X11 at all: if you run it from a virtual terminal it will render fullscreen and won't need the "Full KMS" option. This might be attractive if you want to use it as a game console sort of thing, or develop over ssh, or launch it from RetroPie, etc.
Conclusion
There is a lot more you can do with DragonRuby, but now you've already got just about everything you need to make a simple game. After all, even the most fancy games are just creating objects and moving them around. Experiment a little. Add a few more things and have them interact in small ways. Want something to go away? Just don't add it to args.output
anymore.
Starting a New DragonRuby Project
The zip file is a complete, self contained project structure. To create a new project, unzip the zip file in its entirety and use that as a starting point for another game. This is the recommended approach to starting a new project.
Rationale
The DRGTK binary/package in its entirety is designed to be committed with your source code (it’s why we keep it small). It’s to protect “shelf life”. 3 years from now we might be on a vastly different version of the engine. But you know that the code you’ve written will definitely work with the version that was committed to source control. It's strongly recommended that you do **not** keep DragonRuby Game Tooklit in a shared location and instead unzip a clean copy for ever game. That being said, You can optionally pass a directory when starting up DragonRuby from the terminal: ./dragonruby ./non-defualt-game-directory
.
Deploying To Itch.io
Once you've built your game, you're all set to deploy! Good luck in your game dev journey and if you get stuck, come to the Discord channel!
Creating Your Game Landing Page
Log into Itch.io and go to https://itch.io/game/new.
- Title: Give your game a Title. This value represents your `gametitle`.
- Project URL: Set your project url. This value represents your `gameid`.
- Classification: Keep this as Game.
- Kind of Project: Select HTML from the drop down list. Don't worry, the HTML project type _also supports binary downloads_.
- Uploads: Skip this section for now.
You can fill out all the other options later.
Update Your Game's Metadata
Point your text editor at mygame/metadata/game_metadata.txt and make it look like this:
NOTE: Remove the #
at the beginning of each line.
devid=bob
devtitle=Bob The Game Developer
gameid=mygame
gametitle=My Game
version=0.1
The devid
property is the username you use to log into Itch.io. The devtitle
is your name or company name (it can contain spaces). The gameid
is the Project URL value. The gametitle
is the name of your game (it can contain spaces). The version
can be any major.minor
number format.
Building Your Game For Distribution
Open up the terminal and run this from the command line:
./dragonruby-publish --only-package mygame
(if you're on Windows, don't put the "./" on the front. That's a Mac and Linux thing.)
A directory called ./build
will be created that contains your binaries. You can upload this to Itch.io manually.
For the HTML version of your game after you upload it. Check the checkbox labeled "This file will be played in the browser".
For subsequent updates you can use an automated deployment to Itch.io:
./dragonruby-publish mygame
DragonRuby will package _and publish_ your game to itch.io! Tell your friends to go to your game's very own webpage and buy it!
If you make changes to your game, just re-run dragonruby-publish and it'll update the downloads for you.
Deploying To Mobile Devices
If you have a Pro subscription, you also have the capability to deploy to mobile devices.
To deploy to iOS, you need to have a Mac running MacOS Catalina, an iOS device, and an active/paid Developer Account with Apple. From the Console type: $wizards.ios.start
and you will be guided through the deployment process.
To deploy to Android, you need to have an Android emulator/device, and an environment that is able to run Android SDK. dragonruby-publish
will create an APK for you. From there, you can sign the APK and install it to your device. The signing and installation procedure varies from OS to OS. Here's an example of what the command might look like:
> adb logcat -e mygame # you'll want to run this in a separate terminal
> keytool -genkey -v -keystore mygame.keystore -alias mygame -keyalg RSA -keysize 2048 -validity 10000
> apksigner sign --ks mygame.keystore mygame-android.apk
> adb install mygame-android.apk
DragonRuby's Philosophy
The following tenants of DragonRuby are what set us apart from other game engines. Given that Game Toolkit is a relatively new engine, there are definitely features that are missing. So having a big check list of "all the cool things" is not this engine's forte. This is compensated with a strong commitment to the following principles.
Challenge The Status Quo
Game engines of today are in a local maximum and don't take into consideration the challenges of this day and age. Unity and GameMaker specifically rot your brain. It's not sufficient to say:
But that's how we've always done it.
It's a hard pill to swallow, but forget blindly accepted best practices and try to figure out the underlying motivation for a specific approach to game development. Collaborate with us.
Continuity of Design
There is a programming idiom in software called "The Pit of Success". The term normalizes upfront pain as a necessity/requirement in the hopes that the investment will yield dividends "when you become successful" or "when the code becomes more complicated". This approach to development is strongly discouraged by us. It leads to over-architected and unnecessary code; creates barriers to rapid prototyping and shipping a game; and overwhelms beginners who are new to the engine or programming in general.
DragonRuby's philosophy is to provide multiple options across the "make it fast" vs "make it right" spectrum, with incremental/intuitive transitions between the options provided. A concrete example of this philosophy would be render primitives: the spectrum of options allows renderable constructs that take the form of tuples/arrays (easy to pickup, simple, and fast to code/prototype with), hashes (a little more work, but gives you the ability to add additional properties), open and strict entities (more work than hashes, but yields cleaner apis), and finally - if you really need full power/flexibility in rendering - classes (which take the most amount of code and programming knowledge to create).
Release Early and Often
The biggest mistake game devs make is spending too much time in isolation building their game. Release something, however small, and release it soon.
Stop worrying about everything being pixel perfect. Don't wait until your game is 100% complete. Build your game publicly and iterate. Post in the #show-and-tell channel in the community Discord. You'll find a lot of support and encouragement there.
Real artists ship. Remember that.
Sustainable And Ethical Monetization
We all aspire to put food on the table doing what we love. Whether it is building games, writing tools to support game development, or anything in between.
Charge a fair amount of money for the things you create. It's expected and encouraged within the community. Give what you create away for free to those that can't afford it.
If you are gainfully employed, pay full price for the things you use. If you do end up getting something at a discount, pay the difference "forward" to someone else.
Sustainable And Ethical Open Source
This goes hand in hand with sustainable and ethical monetization. The current state of open source is not sustainable. There is an immense amount of contributor burnout. Users of open source expect everything to be free, and few give back. This is a problem we want to fix (we're still trying to figure out the best solution).
So, don't be "that guy" in the Discord that says "DragonRuby should be free and open source!" You will be personally flogged by Amir.
People Over Entities
We prioritize the endorsement of real people over faceless entities. This game engine, and other products we create, are not insignificant line items of a large company. And you aren't a generic "commodity" or "corporate resource". So be active in the community Discord and you'll reap the benefits as more devs use DragonRuby.
Building A Game Should Be Fun And Bring Happiness
We will prioritize the removal of pain. The aesthetics of Ruby make it such a joy to work with, and we want to capture that within the engine.
Real World Application Drives Features
We are bombarded by marketing speak day in and day out. We don't do that here. There are things that are really great in the engine, and things that need a lot of work. Collaborate with us so we can help you reach your goals. Ask for features you actually need as opposed to anything speculative.
We want DragonRuby to *actually* help you build the game you want to build (as opposed to sell you something piece of demoware that doesn't work).
Frequently Asked Questions, Comments, and Concerns
Here are questions, comments, and concerns that frequently come up.
Frequently Asked Questions
What is DragonRuby LLP?
DragonRuby LLP is a partnership of four devs who came together with the goal of bringing the aesthetics and joy of Ruby, everywhere possible.
Under DragonRuby LLP, we offer a number of products (with more on the way):
- Game Toolkit (GTK): A 2D game engine that is compatible with modern gaming platforms.
- RubyMotion (RM): A compiler toolchain that allows you to build native, cross-platform mobile apps. http://rubymotion.com
All of the products above leverage a shared core called DragonRuby.
NOTE: From an official branding standpoint each one of the products is suffixed with "A DragonRuby LLP Product" tagline. Also, DragonRuby is _one word, title cased_.
NOTE: We leave the "A DragonRuby LLP Product" off of this one because that just sounds really weird.
NOTE: Devs who use DragonRuby are "Dragon Riders/Riders of Dragons". That's a bad ass identifier huh?
What is DragonRuby?
The response to this question requires a few subparts. First we need to clarify some terms. Specifically _language specification_ vs _runtime_.
Okay... so what is the difference between a language specification and a runtime?
A runtime is an _implementation_ of a language specification. When people say "Ruby," they are usually referring to "the Ruby 3.0+ language specification implemented via the CRuby/MRI Runtime."
But, there are many Ruby Runtimes: CRuby/MRI, JRuby, Truffle, Rubinius, Artichoke, and (last but certainly not least) DragonRuby.
Okay... what language specification does DragonRuby use then?
DragonRuby's goal is to be compliant with the ISO/IEC 30170:2012 standard. It's syntax is Ruby 2.x compatible, but also contains semantic changes that help it natively interface with platform specific libraries.
So... why another runtime?
The elevator pitch is:
DragonRuby is a Multilevel Cross-platform Runtime. The "multiple levels" within the runtime allows us to target platforms no other Ruby can target: PC, Mac, Linux, Raspberry Pi, WASM, iOS, Android, Nintendo Switch, PS4, Xbox, and Stadia.
What does Multilevel Cross-platform mean?
There are complexities associated with targeting all the platforms we support. Because of this, the runtime had to be architected in such a way that new platforms could be easily added (which lead to us partitioning the runtime internally):
- Level 1 we leverage a good portion of mRuby.
- Level 2 consists of optimizations to mRuby we've made given that our target platforms are well known.
- Level 3 consists of portable C libraries and their Ruby C-Extensions.
Levels 1 through 3 are fairly commonplace in many runtime implementations (with level 1 being the most portable, and level 3 being the fastest). But the DragonRuby Runtime has taken things a bit further:
- Level 4 consists of shared abstractions around hardware I/O and operating system resources. This level leverages open source and proprietary components within Simple DirectMedia Layer (a low level multimedia component library that has been in active development for 22 years and counting).
- Level 5 is a code generation layer which creates metadata that allows for native interoperability with host runtime libraries. It also includes OS specific message pump orchestrations.
- Level 6 is a Ahead of Time/Just in Time Ruby compiler built with LLVM. This compiler outputs _very_ fast platform specific bitcode, but only supports a subset of the Ruby language specification.
These levels allow us to stay up to date with open source implementations of Ruby; provide fast, native code execution on proprietary platforms; ensure good separation between these two worlds; and provides a means to add new platforms without going insane.
Cool cool. So given that I understand everything to this point, can we answer the original question? What is DragonRuby?
DragonRuby is a Ruby runtime implementation that takes all the lessons we've learned from MRI/CRuby, and merges it with the latest and greatest compiler and OSS technologies.
How is DragonRuby different than MRI?
DragonRuby supports a subset of MRI apis. Our target is to support all of mRuby's standard lib. There are challenges to this given the number of platforms we are trying to support (specifically console).
Does DragonRuby support Gems?
DragonRuby does not support gems because that requires the installation of MRI Ruby on the developer's machine (which is a non-starter given that we want DragonRuby to be a zero dependency runtime). While this seems easy for Mac and Linux, it is much harder on Windows and Raspberry Pi. mRuby has taken the approach of having a git repository for compatible gems and we will most likely follow suite: https://github.com/mruby/mgem-list.
Does DragonRuby have a REPL/IRB?
You can use DragonRuby's Console within the game to inspect object and execute small pieces of code. For more complex pieces of code create a file called repl.rb
and put it in mygame/app/repl.rb
:
- Any code you write in there will be executed when you change the file. You can organize different pieces of code using the
repl
method:
repl do
puts "hello world"
puts 1 + 1
end
- If you use the `repl` method, the code will be executed and the DragonRuby Console will automatically open so you can see the results (on Mac and Linux, the results will also be printed to the terminal).
- All
puts
statements will also be saved tologs/puts.txt
. So if you want to stay in your editor and not look at the terminal, or the DragonRuby Console, you cantail
this file.
4. To ignore code in repl.rb
, instead of commenting it out, prefix repl
with the letter x
and it'll be ignored.
xrepl do # <------- line is prefixed with an "x"
puts "hello world"
puts 1 + 1
end
# This code will be executed when you save the file.
repl do
puts "Hello"
end
repl do
puts "This code will also be executed."
end
# use xrepl to "comment out" code
xrepl do
puts "This code will not be executed because of the x in front of repl".
end
Does DragonRuby support pry
or have any other debugging facilities?
pry
is a gem that assumes you are using the MRI Runtime (which is incompatible with DragonRuby). Eventually DragonRuby will have a pry based experience that is compatible with a debugging infrastructure called LLDB. Take the time to read about LLDB as it shows the challenges in creating something that is compatible.
You can use DragonRuby's replay capabilities to troubleshoot:
- DragonRuby is hot loaded which gives you a very fast feedback loop (if the game throws an exception, it's because of the code you just added).
- Use
./dragonruby mygame --record
to create a game play recording that you can use to find the exception (you can replay a recording by executing./dragonruby mygame --replay last_replay.txt
or through the DragonRuby Console using$gtk.recording.start_replay "last_replay.txt"
. - DragonRuby also ships with a unit testing facility. You can invoke the following command to run a test:
./dragonruby . --eval some_ruby_file.rb --no-tick
. - Get into the habit of adding debugging facilities within the game itself. You can add drawing primitives to
args.outputs.debug
that will render on top of your game but will be ignored in a production release. - Debugging something that runs at 60fps is (imo) not that helpful. The exception you are seeing could have been because of a change that occurred many frames ago.
Frequent Comments About Ruby as a Language Choice
But Ruby is dead.
Let's check the official source for the answer to this question: isrubydead.com: https://isrubydead.com/.
On a more serious note, Ruby's _quantity_ levels aren't what they used to be. And that's totally fine. Everyone chases the new and shiny.
What really matters is _quality/maturity_. Here's a StackOverflow Survey sorted by highest paid developers: https://insights.stackoverflow.com/survey/2021#section-top-paying-technologies-top-paying-technologies.
Let's stop making this comment shall we?
But Ruby is slow.
That doesn't make any sense. A language specification can't be slow... it's a language spec. Sure, an _implementation/runtime_ can be slow though, but then we'd have to talk about which runtime.
Here's a some quick demonstrations of how well DragonRuby Game Toolkit Performs:
Dynamic languages are slow.
They are certainly slower than statically compiled languages. With the processing power and compiler optimizations we have today, dynamic languages like Ruby are _fast enough_.
Unless you are writing in some form of intermediate representation by hand, your language of choice also suffers this same fallacy of slow. Like, nothing is faster than a low level assembly-like language. So unless you're writing in that, let's stop making this comment.
NOTE: If you _are_ hand writing LLVM IR, we are always open to bringing on new partners with such a skill set. Email us ^_^.
Frequent Concerns
DragonRuby is not open source. That's not right.
The current state of open source is unsustainable. Contributors work for free, most all open source repositories are severely under-staffed, and burnout from core members is rampant.
We believe in open source very strongly. Parts of DragonRuby are in fact, open source. Just not all of it (for legal reasons, and because the IP we've created has value). And we promise that we are looking for (or creating) ways to _sustainably_ open source everything we do.
If you have ideas on how we can do this, email us!
If the reason above isn't sufficient, then definitely use something else.
All this being said, we do have parts of the engine open sourced on GitHub: https://github.com/dragonruby/dragonruby-game-toolkit-contrib/
DragonRuby is for pay. You should offer a free version.
If you can afford to pay for DragonRuby, you should (and will). We don't go around telling writers that they should give us their books for free, and only require payment if we read the entire thing. It's time we stop asking that of software products.
That being said, we will _never_ put someone out financially. We have income assistance for anyone that can't afford a license to any one of our products.
You qualify for a free, unrestricted license to DragonRuby products if any of the following items pertain to you:
- Your income is below $2,000.00 (USD) per month.
- You are under 18 years of age.
- You are a student of any type: traditional public school, home schooling, college, bootcamp, or online.
- You are a teacher, mentor, or parent who wants to teach a kid how to code.
- You work/worked in public service or at a charitable organization: for example public office, army, or any 501(c)(3) organization.
Just contact Amir at amir.rajan@dragonruby.org with a short explanation of your current situation and he'll set you up. No questions asked.
But still, you should offer a free version. So I can try it out and see if I like it.
You can try our web-based sandbox environment at http://fiddle.dragonruby.org. But it won't do the runtime justice. Or just come to our Discord Channel at http://discord.dragonruby.org and ask questions. We'd be happy to have a one on one video chat with you and show off all the cool stuff we're doing.
Seriously just buy it. Get a refund if you don't like it. We make it stupid easy to do so.
I still think you should do a free version. Think of all people who would give it a shot.
Free isn't a sustainable financial model. We don't want to spam your email. We don't want to collect usage data off of you either. We just want to provide quality toolchains to quality developers (as opposed to a large quantity of developers).
The people that pay for DragonRuby and make an effort to understand it are the ones we want to build a community around, partner with, and collaborate with. So having that small monetary wall deters entitled individuals that don't value the same things we do.
What if I build something with DragonRuby, but DragonRuby LLP becomes insolvent.
That won't happen if the development world stop asking for free stuff and non-trivially compensate open source developers. Look, we want to be able to work on the stuff we love, every day of our lives. And we'll go to great lengths to make that happen.
But, in the event that sad day comes, our partnership bylaws state that _all_ DragonRuby IP that can be legally open sourced, will be released under a permissive license.
RECIPIES:
How To Determine What Frame You Are On
There is a property on state
called tick_count
that is incremented by DragonRuby every time the tick
method is called. The following code renders a label that displays the current tick_count
.
def tick args
args.outputs.labels << [10, 670, "#{args.state.tick_count}"]
end
How To Get Current Framerate
Current framerate is a top level property on the Game Toolkit Runtime and is accessible via args.gtk.current_framerate
.
def tick args
args.outputs.labels << [10, 710, "framerate: #{args.gtk.current_framerate.round}"]
end
How To Render A Sprite Using An Array
All file paths should use the forward slash /
*not* backslash . Game Toolkit includes a number of sprites in the
sprites
folder (everything about your game is located in the mygame
directory).
The following code renders a sprite with a width
and height
of 100
in the center of the screen.
args.outputs.sprites
is used to render a sprite.
def tick args
args.outputs.sprites << [
640 - 50, # X
360 - 50, # Y
100, # W
100, # H
'sprites/square-blue.png' # PATH
]
end
More Sprite Properties As An Array
Here are all the properties you can set on a sprite.
def tick args
args.outputs.sprites << [
100, # X
100, # Y
32, # W
64, # H
'sprites/square-blue.png', # PATH
0, # ANGLE
255, # ALPHA
0, # RED_SATURATION
255, # GREEN_SATURATION
0 # BLUE_SATURATION
]
end
Different Sprite Representations
Using ordinal positioning can get a little unruly given so many properties you have control over.
You can represent a sprite as a Hash
:
def tick args
args.outputs.sprites << {
x: 640 - 50,
y: 360 - 50,
w: 100,
h: 100,
path: 'sprites/square-blue.png',
angle: 0,
a: 255,
r: 255,
g: 255,
b: 255,
source_x: 0,
source_y: 0,
source_w: -1,
source_h: -1,
flip_vertically: false,
flip_horizontally: false,
angle_anchor_x: 0.5,
angle_anchor_y: 1.0,
blendmode_enum: 1
}
end
The blendmode_enum
value can be set to 0
(no blending), 1
(alpha blending), 2
(additive blending), 3
(modulo blending), 4
(multiply blending).
You can represent a sprite as an object
:
# Create type with ALL sprite properties AND primitive_marker
class Sprite
attr_accessor :x, :y, :w, :h, :path, :angle, :a, :r, :g, :b,
:source_x, :source_y, :source_w, :source_h,
:tile_x, :tile_y, :tile_w, :tile_h,
:flip_horizontally, :flip_vertically,
:angle_anchor_x, :angle_anchor_y, :blendmode_enum
def primitive_marker
:sprite
end
end
class BlueSquare < Sprite
def initialize opts
@x = opts[:x]
@y = opts[:y]
@w = opts[:w]
@h = opts[:h]
@path = 'sprites/square-blue.png'
end
end
def tick args
args.outputs.sprites << (BlueSquare.new x: 640 - 50,
y: 360 - 50,
w: 50,
h: 50)
end
How To Render A Label
args.outputs.labels
is used to render labels.
Labels are how you display text. This code will go directly inside of the def tick args
method.
Here is the minimum code:
def tick args
# X Y TEXT
args.outputs.labels << [640, 360, "I am a black label."]
end
A Colored Label
def tick args
# A colored label
# X Y TEXT, RED GREEN BLUE ALPHA
args.outputs.labels << [640, 360, "I am a redish label.", 255, 128, 128, 255]
end
Extended Label Properties
def tick args
# A colored label
# X Y TEXT SIZE ALIGNMENT RED GREEN BLUE ALPHA FONT FILE
args.outputs.labels << [
640, # X
360, # Y
"Hello world", # TEXT
0, # SIZE_ENUM
1, # ALIGNMENT_ENUM
0, # RED
0, # GREEN
0, # BLUE
255, # ALPHA
"fonts/coolfont.ttf" # FONT
]
end
A SIZE_ENUM
of 0
represents "default size". A negative
value will decrease the label size. A positive
value will increase the label's size.
An ALIGNMENT_ENUM
of 0
represents "left aligned". 1
represents "center aligned". 2
represents "right aligned".
Rendering A Label As A Hash
You can add additional metadata about your game within a label, which requires you to use a `Hash` instead.
def tick args
args.outputs.labels << {
x: 200,
y: 550,
text: "dragonruby",
size_enum: 2,
alignment_enum: 1,
r: 155,
g: 50,
b: 50,
a: 255,
font: "fonts/manaspc.ttf",
vertical_alignment_enum: 0, # 0 is bottom, 1 is middle, 2 is top
# You can add any properties you like (this will be ignored/won't cause errors)
game_data_one: "Something",
game_data_two: {
value_1: "value",
value_2: "value two",
a_number: 15
}
}
end
Getting The Size Of A Piece Of Text
You can get the render size of any string using args.gtk.calcstringbox
.
def tick args
# TEXT SIZE_ENUM FONT
w, h = args.gtk.calcstringbox("some string", 0, "font.ttf")
# NOTE: The SIZE_ENUM and FONT are optional arguments.
# Render a label showing the w and h of the text:
args.outputs.labels << [
10,
710,
# This string uses Ruby's string interpolation literal: #{}
"'some string' has width: #{w}, and height: #{h}."
]
end
Rendering Labels With New Line Characters And Wrapping
You can use a strategy like the following to create multiple labels from a String.
def tick args
long_string = "Lorem ipsum dolor sit amet, consectetur adipiscing elitteger dolor velit, ultricies vitae libero vel, aliquam imperdiet enim."
max_character_length = 30
long_strings_split = args.string.wrapped_lines long_string, max_character_length
args.outputs.labels << long_strings_split.map_with_index do |s, i|
{ x: 10, y: 600 - (i * 20), text: s }
end
end
How To Play A Sound
Sounds that end .wav
will play once:
def tick args
# Play a sound every second
if (args.state.tick_count % 60) == 0
args.outputs.sounds << 'something.wav'
end
end
Sounds that end .ogg
is considered background music and will loop:
def tick args
# Start a sound loop at the beginning of the game
if args.state.tick_count == 0
args.outputs.sounds << 'background_music.ogg'
end
end
If you want to play a .ogg
once as if it were a sound effect, you can do:
def tick args
# Play a sound every second
if (args.state.tick_count % 60) == 0
args.gtk.queue_sound 'some-ogg.ogg'
end
end
Using args.state
To Store Your Game State
args.state
is a open data structure that allows you to define properties that are arbitrarily nested. You don't need to define any kind of class
.
To initialize your game state, use the ||=
operator. Any value on the right side of ||=
will only be assigned _once_.
To assign a value every frame, just use the =
operator, but _make sure_ you've initialized a default value.
def tick args
# initialize your game state ONCE
args.state.player.x ||= 0
args.state.player.y ||= 0
args.state.player.hp ||= 100
# increment the x position of the character by one every frame
args.state.player.x += 1
# Render a sprite with a label above the sprite
args.outputs.sprites << [
args.state.player.x,
args.state.player.y,
32, 32,
"player.png"
]
args.outputs.labels << [
args.state.player.x,
args.state.player.y - 50,
args.state.player.hp
]
end
Accessing files
DragonRuby uses a sandboxed filesystem which will automatically read from and write to a location appropriate for your platform so you don't have to worry about theses details in your code. You can just use gtk.read_file
, gtk.write_file
, and gtk.append_file
with a relative path and the engine will take care of the rest.
The data directories that will be written to in a production build are:
- Windows:
C:\Users\[username]\AppData\Roaming\[devtitle]\[gametitle]
- MacOS:
$HOME/Library/Application Support/[gametitle]
- Linux:
$HOME/.local/share/[gametitle]
- HTML5: The data will be written to the browser's IndexedDB.
The values in square brackets are the values you set in your app/metadata/game_metadata.txt
file.
When reading files, the engine will first look in the game's data directory and then in the game directory itself. This means that if you write a file to the data directory that already exists in your game directory, the file in the data directory will be used instead of the one that is in your game.
When running a development build you will directly write to your game directory (and thus overwrite existing files). This can be useful for built-in development tools like level editors.
For more details on the implementation of the sandboxed filesystem, see Ryan C. Gordon's PhysicsFS documentation: https://icculus.org/physfs/
Troubleshoot Performance
- If you're using
Array
s for your primitives (args.outputs.sprites << []
), useHash
instead (args.outputs.sprites << { x: ... }
). - If you're using
Entity
for your primitives (args.outputs.sprites << args.state.new_entity
), useStrictEntity
instead (args.outputs.sprites << args.state.new_entity_strict
). - Use
.each
instead of.map
if you don't care about the return value. - When concatenating primitives to outputs, do them in bulk. Instead of:
args.state.bullets.each do |bullet|
args.outputs.sprites << bullet.sprite
end
do
args.outputs.sprites << args.state.bullets.map do |b|
b.sprite
end
5. Use args.outputs.static_
variant for things that don't change often (take a look at the Basic Gorillas sample app and Dueling Starships sample app to see how static_
is leveraged.
6. Consider using a render_target
if you're doing some form of a camera that moves a lot of primitives (take a look at the Render Target sample apps for more info).
DOCS: GTK::Runtime
The GTK::Runtime class is the core of DragonRuby. It is globally accessible via $gtk
.
args.gtk
This represents the DragonRuby Game Toolkit's Runtime Environment and can be accessed via args.gtk.METHOD
.
args.gtk.argv
Returns a String
that represents the parameters passed into the ./dragonruby
binary.
args.gtk.cli_arguments
Returns a Hash
that contains parsed CLI arguments that have the format --ARGUMENT VALUE
.
args.gtk.platform
Returns a String
representing the operating system the game is running on.
args.gtk.request_quit
Request that the runtime quit the game.
args.gtk.write_file path, contents
Writes/overwrites a file within the game directory + path.
args.gtk.write_file_root
Writes/overwrites a file within the root dragonruby binary directory + path.
args.gtk.append_file path, contents
Append content to a file located at the game directory + path.
args.gtk.append_file_root path, contents
Append content to a file located at the root dragonruby binary directory + path.
args.gtk.read_file path
Reads a file from the sandboxed file system.
args.gtk.parse_xml string, parse_xml_file path
Returns a Hash
for a String
that represents XML.
args.gtk.parse_json string, parse_json_file path
Returns a Hash
for a String
that represents JSON.
args.gtk.http_get url, extra_headers = {}
Creates an async task to perform an HTTP GET.
args.gtk.http_post url, form_fields = {}, extra_headers = {}
Creates an async task to perform an HTTP POST.
args.gtk.reset
Resets the game by deleting all data in args.state
and setting args.state.tick_count
back to 0
.
args.gtk.stop_music
Stops all background music.
args.gtk.calcstringbox str, size_enum, font
Returns a tuple with width and height of a string being rendered.
args.gtk.calcspritebox path
Returns a tuple with width and height of a sprite.
args.gtk.reset_sprite path
Invalidates the cache of a sprite that as already been rendered.
args.gtk.slowmo! factor
Slows the game down by the factor provided. args.gtk.slowmo! 60
would mean that tick
will be called once per second (fps = factor / 60)
.
args.gtk.notify! string
Renders a toast message at the bottom of the screen.
args.gtk.system
Invokes a shell command and prints the result to the console.
args.gtk.exec
Invokes a shell command and returns a String
that represents the result.
args.gtk.save_state
Saves the game state to game_state.txt
.
args.gtk.load_state
Load args.state
from game_state.txt
.
args.gtk.serialize_state file, state
Saves entity state to a file. If only one parameter is provided a string is returned for state instead of writing to a file.
args.gtk.deserialize_state file
Returns entity state from a file or serialization data represented as a String
.
args.gtk.reset_sprite path
Invalids the texture cache of a sprite.
args.gtk.show_cursor
Shows the mouse cursor.
args.gtk.hide_cursor
Hides the mouse cursor.
args.gtk.set_cursor path, dx, dy
Sets the system cursor to a sprite path
with an offset of dx
and dy
.
args.gtk.cursor_shown?
Returns true
if the mouse cursor is shown.
args.gtk.set_window_fullscreen enabled
Sets the game to either fullscreen (enabled=true
) or windowed (enabled=false)
.
args.gtk.openurl url
Opens a url using the Operating System's default browser.
args.gtk.get_base_dir
Returns the full path of the DragonRuby binary directory.
args.gtk.get_game_dir
Returns the full path of the game directory in its sandboxed environment.
args.state
Store your game state inside of this state
. Properties with arbitrary nesting is allowed and a backing Entity will be created on your behalf.
def tick args
args.state.player.x ||= 0
args.state.player.y ||= 0
end
args.state.*.entity_id
Entities automatically receive an entity_id
of type Fixnum
.
args.state.*.entity_type
Entities can have an entity_type
which is represented as a Symbol
.
args.state.*.created_at
Entities have created_at
set to args.state.tick_count
when they are created.
args.state.*.created_at_elapsed
Returns the elapsed number of ticks since creation.
args.state.*.global_created_at
Entities have global_created_at
set to Kernel.global_tick_count
when they are created.
args.state.*.global_created_at_elapsed
Returns the elapsed number of global ticks since creation.
args.state.*.as_hash
Entity cast to a Hash
so you can update values as if you were updating a Hash
.
args.state.new_entity
Creates a new Entity with a type
, and initial properties. An option block can be passed to change the newly created entity:
def tick args
args.state.player ||= args.state.new_entity :player, x: 0, y: 0 do |e|
e.max_hp = 100
e.hp = e.max_hp * rand
end
end
args.state.new_entity_strict
Creates a new Strict Entity. While Entities created via args.state.new_entity
can have new properties added later on, Entities created using args.state.new_entity
must define all properties that are allowed during its initialization. Attempting to add new properties after initialization will result in an exception.
args.state.tick_count
Returns the current tick of the game. args.state.tick_count
is 0
when the game is first started or if the game is reset via $gtk.reset
.
args.inputs
Access using input using args.inputs
.
args.inputs.up
Returns true
if: the up
arrow or w
key is pressed or held on the keyboard
; or if up
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted upwards.
args.inputs.down
Returns true
if: the down
arrow or s
key is pressed or held on the keyboard
; or if down
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted downwards.
args.inputs.left
Returns true
if: the left
arrow or a
key is pressed or held on the keyboard
; or if left
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted to the left.
args.inputs.right
Returns true
if: the right
arrow or d
key is pressed or held on the keyboard
; or if right
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted to the right.
args.inputs.left_right
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.left
and args.inputs.right
.
args.state.player[:x] += args.inputs.left_right * args.state.speed
args.inputs.up_down
Returns -1
(down), 0
(neutral), or +1
(up) depending on results of args.inputs.down
and args.inputs.up
.
args.state.player[:y] += args.inputs.up_down * args.state.speed
args.inputs.text
OR args.inputs.history
Returns a string that represents the last key that was pressed on the keyboard.
args.inputs.mouse
Represents the user's mouse.
args.inputs.mouse.has_focus
Return's true if the game has mouse focus.
args.inputs.mouse.x
Returns the current x
location of the mouse.
args.inputs.mouse.y
Returns the current y
location of the mouse.
args.inputs.mouse.inside_rect? rect
Return. args.inputs.mouse.inside_rect?
takes in any primitive that responds to x, y, w, h
:
args.inputs.mouse.inside_circle? center_point, radius
Returns true
if the mouse is inside of a specified circle. args.inputs.mouse.inside_circle?
takes in any primitive that responds to x, y
(which represents the circle's center), and takes in a radius
:
args.inputs.mouse.moved
Returns true
if the mouse has moved on the current frame.
args.inputs.mouse.button_left
Returns true
if the left mouse button is down.
args.inputs.mouse.button_middle
Returns true
if the middle mouse button is down.
args.inputs.mouse.button_right
Returns true
if the right mouse button is down.
args.inputs.mouse.button_bits
Returns a bitmask for all buttons on the mouse: 1
for a button in the down
state, 0
for a button in the up
state.
args.inputs.mouse.wheel
Represents the mouse wheel. Returns nil
if no mouse wheel actions occurred.
args.inputs.mouse.wheel.x
Returns the negative or positive number if the mouse wheel has changed in the x
axis.
args.inputs.mouse.wheel.y
Returns the negative or positive number if the mouse wheel has changed in the y
axis.
args.inputs.mouse.click
OR .down
, .previous_click
, .up
The properties args.inputs.mouse.(click|down|previous_click|up)
each return nil
if the mouse button event didn't occur. And return an Entity that has an x
, y
properties along with helper functions to determine collision: inside_rect?
, inside_circle
.
args.inputs.controller_one
, .controller_two
Represents controllers connected to the usb ports.
args.inputs.controller_(one|two|three|four).up
Returns true
if up
is pressed or held on the directional or left analog.
args.inputs.controller_(one|two|three|four).down
Returns true
if down
is pressed or held on the directional or left analog.
args.inputs.controller_(one|two|three|four).left
Returns true
if left
is pressed or held on the directional or left analog.
args.inputs.controller_(one|two|three|four).right
Returns true
if right
is pressed or held on the directional or left analog.
args.inputs.controller_(one|two|three|four).left_right
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.controller_(one|two|three|four).left
and args.inputs.controller_(one|two|three|four).right
.
args.inputs.controller_(one|two|three|four).up_down
Returns -1
(down), 0
(neutral), or +1
(up) depending on results of args.inputs.controller_(one|two|three|four).up
and args.inputs.controller_(one|two|three|four).down
.
args.inputs.controller_(one|two|three|four).(left_analog_x_raw|right_analog_x_raw)
Returns the raw integer value for the analog's horizontal movement (-32,000 to +32,000
).
args.inputs.controller_(one|two|three|four).left_analog_y_raw|right_analog_y_raw)
Returns the raw integer value for the analog's vertical movement (-32,000 to +32,000
).
args.inputs.controller_(one|two|three|four).left_analog_x_perc|right_analog_x_perc)
Returns a number between -1
and 1
which represents the percentage the analog is moved horizontally as a ratio of the maximum horizontal movement.
args.inputs.controller_(one|two|three|four).left_analog_y_perc|right_analog_y_perc)
Returns a number between -1
and 1
which represents the percentage the analog is moved vertically as a ratio of the maximum vertical movement.
args.inputs.controller_(one|two|three|four).directional_up
Returns true
if up
is pressed or held on the directional.
args.inputs.controller_(one|two|three|four).directional_down
Returns true
if down
is pressed or held on the directional.
args.inputs.controller_(one|two|three|four).directional_left
Returns true
if left
is pressed or held on the directional.
args.inputs.controller_(one|two|three|four).directional_right
Returns true
if right
is pressed or held on the directional.
args.inputs.controller_(one|two|three|four).(a|b|x|y|l1|r1|l2|r2|l3|r3|start|select)
Returns true
if the specific button is pressed or held.
args.inputs.controller_(one|two|three|four).truthy_keys
Returns a collection of Symbol
s that represent all keys that are in the pressed or held state.
args.inputs.controller_(one|two|three|four).key_down
Returns true
if the specific button was pressed on this frame. args.inputs.controller_(one|two|three|four).key_down.BUTTON
will only be true on the frame it was pressed.
args.inputs.controller_(one|two|three|four).key_held
Returns true
if the specific button is being held. args.inputs.controller_(one|two|three|four).key_held.BUTTON
will be true for all frames after key_down
(until released).
args.inputs.controller_(one|two|three|four).key_up
Returns true
if the specific button was released. args.inputs.controller_(one|two|three|four).key_up.BUTTON
will be true only on the frame the button was released.
args.inputs.keyboard
Represents the user's keyboard
args.inputs.keyboard.has_focus
Returns true
if the game has keyboard focus.
args.inputs.keyboard.up
Returns true
if up
or w
is pressed or held on the keyboard.
args.inputs.keyboard.down
Returns true
if down
or s
is pressed or held on the keyboard.
args.inputs.keyboard.left
Returns true
if left
or a
is pressed or held on the keyboard.
args.inputs.keyboard.right
Returns true
if right
or d
is pressed or held on the keyboard.
args.inputs.keyboard.left_right
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.keyboard.left
and args.inputs.keyboard.right
.
args.inputs.keyboard.up_down
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.keyboard.up
and args.inputs.keyboard.up
.
keyboard properties
The following properties represent keys on the keyboard and are available on args.inputs.keyboard.KEY
, args.inputs.keyboard.key_down.KEY
, args.inputs.keyboard.key_held.KEY
, and args.inputs.keyboard.key_up.KEY
:
alt
meta
control
shift
ctrl_KEY
(dynamic method, egargs.inputs.keyboard.ctrl_a
)exclamation_point
zero
-nine
backspace
delete
escape
enter
tab
(open|close)_round_brace
(open|close)_curly_brace
(open|close)_square_brace
colon
semicolon
equal_sign
hyphen
space
dollar_sign
double_quotation_mark
single_quotation_mark
backtick
tilde
period
comma
pipe
underscore
a
-z
shift
control
alt
meta
left
right
up
down
pageup
pagedown
char
plus
at
forward_slash
back_slash
asterisk
less_than
greater_than
carat
ampersand
superscript_two
circumflex
question_mark
section_sign
ordinal_indicator
raw_key
left_right
up_down
directional_vector
truthy_keys
inputs.keyboard.keys
Returns a Hash
with all keys on the keyboard in their respective state. The Hash
contains the following keys
:down
:held
:down_or_held
:up
args.inputs.touch
Returns a Hash
representing all touch points on a touch device. This api is only available in Indie, and Pro versions.
args.inputs.finger_left
Returns a Hash
with x
and y
denoting a touch point that is on the left side of the screen. This api is only available in Indie, and Pro versions.
args.inputs.finger_right
Returns a Hash
with x
and y
denoting a touch point that is on the right side of the screen. This api is only available in Indie, and Pro versions.
args.outputs
Outputs is how you render primitives to the screen. The minimal setup for rendering something to the screen is via a tick
method defined in mygame/app/main.rb
def tick args
args.outputs.solids << [0, 0, 100, 100]
args.outputs.sprites << [100, 100, 100, 100, "sprites/square/blue.png"]
args.outputs.labels << [200, 200, "Hello World"]
args.outputs.lines << [300, 300, 400, 400]
end
Primitives are rendered first-in, first-out. The rendering order (sorted by bottom-most to top-most):
solids
sprites
primitives
: Accepts all render primitives. Useful when you want to bypass the default rendering orders for rendering (eg. rendering solids on top of sprites).labels
lines
borders
debug
: Accepts all render primitives. Use this to render primitives for debugging (production builds of your game will not render this layer).
args.outputs.background_color
Set args.outputs.background_color
to an Array
with RGB
values (eg. [255, 255, 255]
for the color white).
args.outputs.sounds
Send a file path to this collection to play a sound. The sound file must be under the mygame
directory.
args.outputs.sounds << "sounds/jump.wav"
args.outputs.solids
Send a Primitive to this collection to render a filled in rectangle to the screen. This collection is cleared at the end of every frame.
args.outputs.static_solids
Send a Primitive to this collection to render a filled in rectangle to the screen. This collection is not cleared at the end of every frame. And objects can be mutated by reference.
args.outputs.sprites
, .static_sprites
Send a Primitive to this collection to render a sprite to the screen.
args.outputs.primitives
, .static_primitives
Send a Primitive of any type and it'll be rendered. The Primitive must have a primitive_marker
that returns :solid
, :sprite
, :label
, :line
, :border
.
args.outputs.labels
, .static_labels
Send a Primitive to this collection to render text to the screen.
args.outputs.lines
, .static_lines
Send a Primitive to this collection to render a line to the screen.
args.outputs.borders
, .static_borders
Send a Primitive to this collection to render an unfilled rectangle to the screen.
args.outputs.debug
, .static_debug
Send any Primitive to this collection which represents things you render to the screen for debugging purposes. Primitives in this collection will not be rendered in a production release of your game.
args.geometry
This property contains geometric functions. Functions can be invoked via args.geometry.FUNCTION
.
Here are some general notes with regards to the arguments these geometric functions accept.
-
Rectangles
can be represented as anArray
with four (or more) values[x, y, w, h]
, as aHash
{ x:, y:, w:, h: }
or an object that responds tox
,y
,w
, andh
. -
Points
can be represent as anArray
with two (or more) values[x, y]
, as aHash
{ x:, y:}
or an object that responds tox
, andy
. -
Lines
can be represented as anArray
with four (or more) values[x, y, x2, y2]
, as aHash
{ x:, y:, x2:, y2: }
or an object that responds tox
,y
,x2
, andy2
. -
Angles
are represented as degrees (not radians).
args.geometry.inside_rect? rect_1, rect_2
Returns true
if rect_1
is inside rect_2
.
args.geometry.intersect_rect? rect_1, rect_2
Returns true
if rect_1
intersects rect_2
.
args.geometry.scale_rect rect, x_percentage, y_percentage
Returns a new rectangle that is scaled by the percentages provided.
args.geometry.angle_to start_point, end_point
Returns the angle in degrees between two points start_point
to end_point
.
args.geometry.angle_from start_point, end_point
Returns the angle in degrees between two points start_point
from end_point
.
args.geometry.point_inside_circle? point, circle_center_point, radius
Returns true
if a point is inside a circle defined by its center and radius.
args.geometry.center_inside_rect rect, other_rect
Returns a new rectangle based of off rect
that is centered inside of other_rect
.
args.geometry.center_inside_rect_x rect, other_rect
Returns a new rectangle based of off rect
that is centered horizontally inside of other_rect
.
args.geometry.center_inside_rect_y rect, other_rect
Returns a new rectangle based of off rect
that is centered vertically inside of other_rect
.
args.geometry.anchor_rect rect, anchor_x, anchor_y
Returns a new rectangle based of off rect
that has been repositioned based on the percentages passed into anchor_x, and anchor_y.
args.geometry.shift_line line, x, y
Returns a line that is offset by x
, and y
.
args.geometry.line_y_intercept line
Given a line, the b
value is determined for the point slope form equation: y = mx + b
.
args.geometry.angle_between_lines line_one, line_two, replace_infinity:
Returns the angle between two lines as if they were infinitely long. A numeric value can be passed in for the last parameter which would represent lines that do not intersect.
args.geometry.line_slope line, replace_infinity:
Given a line, the m
value is determined for the point slope form equation: y = mx + b
.
args.geometry.line_rise_run
Given a line, a Hash
is returned that returns the slope as x
and y
properties with normalized values (the number is between -1 and 1).
args.geometry.ray_test point, line
Given a point and a line, :on
, :left
, or :right
which represents the location of the point relative to the line.
args.geometry.line_rect line
Returns the bounding rectangle for a line.
args.geometry.line_intersect line_one, line_two
Returns a point that represents the intersection of the lines.
args.geometry.distance point_one, point_two
Returns the distance between two points.
args.geometry.cubic_bezier t, a, b, c, d
Returns the cubic bezier function for tick_count t
with anchors a
, b
, c
, and d
.
args.easing
A set of functions that allow you to determine the current progression of an easing function.
args.easing.ease start_tick, current_tick, duration, easing_functions
Given a start, current, duration, and easing function names, ease
returns a number between 0 and 1 that represents the progress of an easing function.
The built in easing definitions you have access to are :identity
, :flip
, :quad
, :cube
, :quart
, and :quint
.
This example will move a box at a linear speed from 0 to 1280.
def tick args
start_time = 10
duration = 60
current_progress = args.easing.ease start_time,
args.state.tick_count,
duration,
:identity
args.outputs.solids << { x: 1280 * current_progress, y: 360, w: 10, h: 10 }
end
args.easing.ease_spline start_tick, current_tick, duration, spline
Given a start, current, duration, and a multiple bezier values, this function returns a number between 0 and 1 that represents the progress of an easing function.
This example will move a box at a linear speed from 0 to 1280 and then back to 0 using two bezier definitions (represented as an array with four values).
def tick args
start_time = 10
duration = 60
spline = [
[ 0, 0.25, 0.75, 1.0],
[1.0, 0.75, 0.25, 0]
]
current_progress = args.easing.ease_spline start_time,
args.state.tick_count,
duration,
spline
args.outputs.solids << { x: 1280 * current_progress, y: 360, w: 10, h: 10 }
end
args.string
Useful string functions not included in Ruby core libraries.
args.string.wrapped_lines string, max_character_length
This function will return a collection of strings given an input string
and max_character_length
. The collection of strings returned will split the input string into strings of length <= max_character_length
.
The following example takes a string with new lines and creates a label for each one. Labels (args.outputs.labels
) ignore newline characters \n
.
def tick args
long_string = "Lorem ipsum dolor sit amet, consectetur adipiscing elit.
teger dolor velit, ultricies vitae libero vel, aliquam imperdiet enim."
max_character_length = 30
long_strings_split = args.string.wrapped_lines long_string, max_character_length
args.outputs.labels << long_strings_split.map_with_index do |s, i|
{ x: 10, y: 600 - (i * 20), text: s }
end
end
args.grid
Returns the virtual grid for the game.
args.grid.name
Returns either :origin_bottom_left
or :origin_center
.
args.grid.bottom
Returns the y
value that represents the bottom of the grid.
args.grid.top
Returns the y
value that represents the top of the grid.
args.grid.left
Returns the x
value that represents the left of the grid.
args.grid.right
Returns the x
value that represents the right of the grid.
args.grid.rect
Returns a rectangle Primitive that represents the grid.
args.grid.origin_bottom_left!
Change the grids coordinate system to 0, 0 at the bottom left corner.
args.grid.origin_center!
Change the grids coordinate system to 0, 0 at the center of the screen.
args.grid.w
Returns the grid's width (always 1280).
args.grid.h
Returns the grid's height (always 720).
DOCS: GTK::Runtime#platform?
You can ask DragonRuby which platform your game is currently being run on. This can be useful if you want to perform different pieces of logic based on where the game is running.
The raw platform string value is available via args.gtk.platform
which takes in a symbol
representing the platform's categorization/mapping.
You can see all available platform categorizations via the args.gtk.platform_mappings
function.
Here's an example of how to use args.gtk.platform? category_symbol
:
def tick args
if args.gtk.platform? :macos
args.outputs.labels << { x: 640, y: 360, text: "I am running on MacOS.", alignment_enum: 1 }
elsif args.gtk.platform? :win
args.outputs.labels << { x: 640, y: 360, text: "I am running on Windows.", alignment_enum: 1 }
elsif args.gtk.platform? :linux
args.outputs.labels << { x: 640, y: 360, text: "I am running on Linux.", alignment_enum: 1 }
elsif args.gtk.platform? :web
args.outputs.labels << { x: 640, y: 360, text: "I am running on a web page.", alignment_enum: 1 }
elsif args.gtk.platform? :android
args.outputs.labels << { x: 640, y: 360, text: "I am running on Android.", alignment_enum: 1 }
elsif args.gtk.platform? :ios
args.outputs.labels << { x: 640, y: 360, text: "I am running on iOS.", alignment_enum: 1 }
end
end
These are the current platform categorizations (args.gtk.platform_mappings
):
{
"Mac OS X" => [:desktop, :macos, :osx, :mac, :macosx],
"Windows" => [:desktop, :windows, :win],
"Linux" => [:desktop, :linux, :nix],
"Emscripten" => [:web, :wasm, :html, :emscripten],
"iOS" => [:mobile, :ios, ],
"Android" => [:mobile, :android],
}
Given the mappings above, args.gtk.platform? :desktop
would return true
if the game is running on a player's computer irrespective of OS (MacOS, Linux, and Windows are all categorized as :desktop
platforms).
DOCS: GTK::Runtime#calcstringbox
This function returns the width and height of a string.
def tick args
args.state.string_size ||= args.gtk.calcstringbox "Hello World"
args.state.string_size_font_size ||= args.gtk.calcstringbox "Hello World"
end
DOCS: GTK::Runtime#state_file
This function takes in one parameter. The parameter is the file path and assumes the the game directory is the root. The method returns nil
if the file doesn't exist otherwise it returns a Hash
with the following information:
# {
# path: String,
# file_size: Int,
# mod_time: Int,
# create_time: Int,
# access_time: Int,
# readonly: Boolean,
# file_type: Symbol (:regular, :directory, :symlink, :other),
# }
def tick args
if args.inputs.mouse.click
args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}."
end
file_info = args.gtk.stat_file "last-mouse-click.txt"
if file_info
args.outputs.labels << {
x: 30,
y: 30.from_top,
text: file_info.to_s,
size_enum: -3
}
else
args.outputs.labels << {
x: 30,
y: 30.from_top,
text: "file does not exist, click to create file",
size_enum: -3
}
end
end
DOCS: GTK::Runtime#list_files
This function takes in one parameter. The parameter is the directory path and assumes the the game directory is the root. The method returns an Array
of String
representing all files within the directory. Use GTK::Runtime#stat_file
to determine whether a specific path is a file or a directory.
DOCS: GTK::Runtime#write_file
This function takes in two parameters. The first parameter is the file path and assumes the the game directory is the root. The second parameter is the string that will be written. The method **overwrites** whatever is currently in the file. Use GTK::Runtime#append_file
to append to the file as opposed to overwriting.
def tick args
if args.inputs.mouse.click
args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}."
end
end
DOCS: GTK::Runtime#append_file
This function takes in two parameters. The first parameter is the file path and assumes the the game directory is the root. The second parameter is the string that will be written. The method appends to whatever is currently in the file (a new file is created if one does not alread exist). Use GTK::Runtime#write_file
to overwrite the file's contents as opposed to appending.
def tick args
if args.inputs.mouse.click
args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}."
end
end
DOCS: GTK::Runtime#delete_file
This function takes in a single parameters. The parameter is the file path that should be deleted. This function will raise an exception if the path requesting to be deleted does not exist.
Notes:
- Use
GTK::Runtime#delete_if_exist
to only delete the file if it exists. - Use
GTK::Runtime#stat_file
to determine if a path exists. - Use
GTK::Runtime#list_files
to determine if a directory is empty. - You cannot delete files outside of your sandboxed game environment.
Here is a list of reasons an exception could be raised:
- If the path is not found. - If the path is still open (for reading or writing). - If the path is not a file or directory. - If the path is a circular symlink. - If you do not have permissions to delete the path. - If the directory attempting to be deleted is not empty.
def tick args
if args.inputs.mouse.click
args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}."
end
end
DOCS: GTK::Runtime#benchmark
You can use this function to compare the relative performance of methods.
def tick args
# press r to run benchmark
if args.inputs.keyboard.key_down.r
args.gtk.console.show
args.gtk.benchmark iterations: 1000, # number of iterations
# label for experiment
using_numeric_map: -> () {
# experiment body
v = 100.map_with_index do |i|
i * 100
end
},
# label for experiment
using_numeric_times: -> () {
# experiment body
v = []
100.times do |i|
v << i * 100
end
}
end
end
DOCS: Array
The Array class has been extend to provide methods that will help in common game development tasks. Array is one of the most powerful classes in Ruby and a very fundamental component of Game Toolkit.
DOCS: Array#map
The function given a block returns a new Enumerable
of values.
Example of using Array#map
in conjunction with args.state
and args.outputs.sprites
to render sprites to the screen.
def tick args
# define the colors of the rainbow in ~args.state~
# as an ~Array~ of ~Hash~es with :order and :name.
# :order will be used to determine render location
# and :name will be used to determine sprite path.
args.state.rainbow_colors ||= [
{ order: 0, name: :red },
{ order: 1, name: :orange },
{ order: 2, name: :yellow },
{ order: 3, name: :green },
{ order: 4, name: :blue },
{ order: 5, name: :indigo },
{ order: 6, name: :violet },
]
# render sprites diagonally to the screen
# with a width and height of 50.
args.outputs
.sprites << args.state
.rainbow_colors
.map do |color| # <-- ~Array#map~ usage
[
color[:order] * 50,
color[:order] * 50,
50,
50,
"sprites/square-#{color[:name]}.png"
]
end
end
DOCS: Array#each
The function, given a block, invokes the block for each item in the Array
. Array#each
is synonymous to foreach constructs in other languages.
Example of using Array#each
in conjunction with args.state
and args.outputs.sprites
to render sprites to the screen:
def tick args
# define the colors of the rainbow in ~args.state~
# as an ~Array~ of ~Hash~es with :order and :name.
# :order will be used to determine render location
# and :name will be used to determine sprite path.
args.state.rainbow_colors ||= [
{ order: 0, name: :red },
{ order: 1, name: :orange },
{ order: 2, name: :yellow },
{ order: 3, name: :green },
{ order: 4, name: :blue },
{ order: 5, name: :indigo },
{ order: 6, name: :violet },
]
# render sprites diagonally to the screen
# with a width and height of 50.
args.state
.rainbow_colors
.map do |color| # <-- ~Array#each~ usage
args.outputs.sprites << [
color[:order] * 50,
color[:order] * 50,
50,
50,
"sprites/square-#{color[:name]}.png"
]
end
end
DOCS: Array#reject_nil
Returns an Enumerable
rejecting items that are nil
, this is an alias for Array#compact
:
repl do
a = [1, nil, 4, false, :a]
puts a.reject_nil
# => [1, 4, false, :a]
puts a.compact
# => [1, 4, false, :a]
end
DOCS: Array#reject_false
Returns an `Enumerable` rejecting items that are `nil` or `false`.
repl do
a = [1, nil, 4, false, :a]
puts a.reject_false
# => [1, 4, :a]
end
DOCS: Array#product
Returns all combinations of values between two arrays.
Here are some examples of using product
. Paste the following code at the bottom of main.rb and save the file to see the results:
repl do
a = [0, 1]
puts a.product
# => [[0, 0], [0, 1], [1, 0], [1, 1]]
end
repl do
a = [ 0, 1]
b = [:a, :b]
puts a.product b
# => [[0, :a], [0, :b], [1, :a], [1, :b]]
end
DOCS: Array#map_2d
Assuming the array is an array of arrays, Given a block, each 2D array index invoked against the block. A 2D array is a common way to store data/layout for a stage.
repl do
stage = [
[:enemy, :empty, :player],
[:empty, :empty, :empty],
[:enemy, :empty, :enemy],
]
occupied_tiles = stage.map_2d do |row, col, tile|
if tile == :empty
nil
else
[row, col, tile]
end
end.reject_nil
puts "Stage:"
puts stage
puts "Occupied Tiles"
puts occupied_tiles
end
DOCS: Array#include_any?
Given a collection of items, the function will return true
if any of self
's items exists in the collection of items passed in:
DOCS: Array#any_intersect_rect?
Assuming the array contains objects that respond to left
, right
, top
, bottom
, this method returns true
if any of the elements within the array intersect the object being passed in. You are given an optional parameter called tolerance
which informs how close to the other rectangles the elements need to be for it to be considered intersecting.
The default tolerance is set to 0.1
, which means that the primitives are not considered intersecting unless they are overlapping by more than 0.1
.
repl do
# Here is a player class that has position and implement
# the ~attr_rect~ contract.
class Player
attr_rect
attr_accessor :x, :y, :w, :h
def initialize x, y, w, h
@x = x
@y = y
@w = w
@h = h
end
def serialize
{ x: @x, y: @y, w: @w, h: @h }
end
def inspect
"#{serialize}"
end
def to_s
"#{serialize}"
end
end
# Here is a definition of two walls.
walls = [
[10, 10, 10, 10],
{ x: 20, y: 20, w: 10, h: 10 },
]
# Display the walls.
puts "Walls."
puts walls
puts ""
# Check any_intersect_rect? on player
player = Player.new 30, 20, 10, 10
puts "Is Player #{player} touching wall?"
puts (walls.any_intersect_rect? player)
# => false
# The value is false because of the default tolerance is 0.1.
# The overlap of the player rect and any of the wall rects is
# less than 0.1 (for those that intersect).
puts ""
player = Player.new 9, 10, 10, 10
puts "Is Player #{player} touching wall?"
puts (walls.any_intersect_rect? player)
# => true
puts ""
end
DOCS: GTK::Args#audio
Hash that contains audio sources that are playing. If you want to add a new sound add a hash with keys/values as in the following example:
def tick args
# The values below (except for input of course) are the default values that apply if you don't
# specify the value in the hash.
args.audio[:my_audio] = {
input: 'sound/boom.wav', # Filename
x: 0.0, y: 0.0, z: 0.0, # Relative position to the listener, x, y, z from -1.0 to 1.0
gain: 1.0, # Volume (0.0 to 1.0)
pitch: 1.0, # Pitch of the sound (1.0 = original pitch)
paused: false, # Set to true to pause the sound at the current playback position
looping: false, # Set to true to loop the sound/music until you stop it
}
end
Sounds that don't specify looping: true
will be removed automatically from the hash after the playback ends. Looping sounds or sounds that should stop early must be removed manually.
Audio synthesis (Pro only)
Instead of a path to an audio file you can specify an array [channels, sample_rate, sound_source]
for input
to procedurally generate sound. You do this by providing an array of float values between -1.0 and 1.0 that describe the waveform you want to play.
channels
is the number of channels: 1 = mono, 2 = stereosample_rate
is the number of values per seconds you will provide to describe the audio wavesound_source
The source of your sound. See below
Sound source
A sound source can be one of two things:
- A
Proc
object that is called on demand to generate the next samples to play. Every call should generate enough samples for at least 0.1 to 0.5 seconds to get continuous playback without audio skips. The audio will continue playing endlessly until removed, so thelooping
option will have no effect. - An array of sample values that will be played back once. This is useful for procedurally generated one-off SFX.
looping
will work as expected
When you specify 2 for channels
, then the generated sample array will be played back in an interleaved manner. The first element is the first sample for the left channel, the second element is the first sample for the right channel, the third element is the second sample for the left channel etc.
Example:
def tick args
sample_rate = 48000
generate_sine_wave = lambda do
frequency = 440.0 # A5
samples_per_period = (sample_rate / frequency).ceil
one_period = samples_per_period.map_with_index { |i|
Math.sin((2 * Math::PI) * (i / samples_per_period))
}
one_period * frequency # Generate 1 second worth of sound
end
args.audio[:my_audio] ||= {
input: [1, sample_rate, generate_sine_wave]
}
end
DOCS: GTK::Args#easing
This function will give you a float value between 0
and 1
that represents a percentage. You need to give the funcation a start_tick
, current_tick
, duration, and easing definitions
.
This YouTube video is a fantastic introduction to easing functions: https://www.youtube.com/watch?v=mr5xkf6zSzk
Example
This example shows how to fade in a label at frame 60 over two seconds (120 ticks). The :identity
definition implies a linear fade: f(x) -> x
.
def tick args
fade_in_at = 60
current_tick = args.state.tick_count
duration = 120
percentage = args.easing.ease fade_in_at,
current_tick,
duration,
:identity
alpha = 255 * percentage
args.outputs.labels << { x: 640,
y: 320, text: "#{percentage.to_sf}",
alignment_enum: 1,
a: alpha }
end
Easing Definitions
There are a number of easing definitions availble to you:
:identity
The easing definition for :identity
is f(x) = x
. For example, if start_tick
is 0
, current_tick
is 50
, and duration
is 100
, then args.easing.ease 0, 50, 100, :identity
will return 0.5
(since tick 50
is half way between 0
and 100
).
:flip
The easing definition for :flip
is f(x) = 1 - x
. For example, if start_tick
is 0
, current_tick
is 10
, and duration
is 100
, then args.easing.ease 0, 10, 100, :flip
will return 0.9
(since tick 10
means 100% - 10%).
:quad
, :cube
, :quart
, :qunit
These are the power easing definitions. :quad
is f(x) = x * x
(x
squared), :cube
is f(x) = x * x * x
(x
cubed), etc.
The power easing definitions represent Smooth Start easing (the percentage changes slow at first and speeds up at the end).
Example
Here is an example of Smooth Start (the percentage changes slow at first and speeds up at the end).
def tick args
start_tick = 60
current_tick = args.state.tick_count
duration = 120
percentage = args.easing.ease start_tick,
current_tick,
duration,
:quad
start_x = 100
end_x = 1180
distance_x = end_x - start_x
final_x = start_x + (distance_x * percentage)
start_y = 100
end_y = 620
distance_y = end_y - start_y
final_y = start_y + (distance_y * percentage)
args.outputs.labels << { x: final_x,
y: final_y,
text: "#{percentage.to_sf}",
alignment_enum: 1 }
end
Combining Easing Definitions
The base easing definitions can be combined to create common easing functions.
Example
Here is an example of Smooth Stop (the percentage changes fast at first and slows down at the end).
def tick args
start_tick = 60
current_tick = args.state.tick_count
duration = 120
# :flip, :quad, :flip is Smooth Stop
percentage = args.easing.ease start_tick,
current_tick,
duration,
:flip, :quad, :flip
start_x = 100
end_x = 1180
distance_x = end_x - start_x
final_x = start_x + (distance_x * percentage)
start_y = 100
end_y = 620
distance_y = end_y - start_y
final_y = start_y + (distance_y * percentage)
args.outputs.labels << { x: final_x,
y: final_y,
text: "#{percentage.to_sf}",
alignment_enum: 1 }
end
Custom Easing Functions
You can define your own easing functions by passing in a lambda
as a definition
or extending the Easing
module.
Example - Using Lambdas
This easing function goes from 0
to 1
for the first half of the ease, then 1
to 0
for the second half of the ease.
def tick args
fade_in_at = 60
current_tick = args.state.tick_count
duration = 600
easing_lambda = lambda do |percentage, start_tick, duration|
fx = percentage
if fx < 0.5
fx = percentage * 2
else
fx = 1 - (percentage - 0.5) * 2
end
fx
end
percentage = args.easing.ease fade_in_at,
current_tick,
duration,
easing_lambda
alpha = 255 * percentage
args.outputs.labels << { x: 640,
y: 320,
a: alpha,
text: "#{percentage.to_sf}",
alignment_enum: 1 }
end
Example - Extending Easing Definitions
If you don't want to create a lambda, you can register an easing definition like so:
# 1. Extend the Easing module
module Easing
def self.saw_tooth x
if x < 0.5
x * 2
else
1 - (x - 0.5) * 2
end
end
end
def tick args
fade_in_at = 60
current_tick = args.state.tick_count
duration = 600
# 2. Reference easing definition by name
percentage = args.easing.ease fade_in_at,
current_tick,
duration,
:saw_tooth
alpha = 255 * percentage
args.outputs.labels << { x: 640,
y: 320,
a: alpha,
text: "#{percentage.to_sf}",
alignment_enum: 1 }
end
DOCS: GTK::Outputs
Outputs is how you render primitives to the screen. The minimal setup for rendering something to the screen is via a tick
method defined in mygame/app/main.rb
def tick args
args.outputs.solids << [0, 0, 100, 100]
args.outputs.sprites << [100, 100, 100, 100, "sprites/square/blue.png"]
args.outputs.labels << [200, 200, "Hello World"]
args.outputs.lines << [300, 300, 400, 400]
end
Primitives are rendered first-in, first-out. The rendering order (sorted by bottom-most to top-most):
solids
sprites
primitives
: Accepts all render primitives. Useful when you want to bypass the default rendering orders for rendering (eg. rendering solids on top of sprites).labels
lines
borders
debug
: Accepts all render primitives. Use this to render primitives for debugging (production builds of your game will not render this layer).
DOCS: GTK::Outputs#solids
Add primitives to this collection to render a solid to the screen.
Rendering a solid using an Array
Creates a solid black rectangle located at 100, 100. 160 pixels wide and 90 pixels tall.
def tick args
# X Y WIDTH HEIGHT
args.outputs.solids << [100, 100, 160, 90]
end
Rendering a solid using an Array with colors and alpha
The value for the color and alpha is a number between 0
and 255
. The alpha property is optional and will be set to 255
if not specified.
Creates a green solid rectangle with an opacity of 50%.
def tick args
# X Y WIDTH HEIGHT RED GREEN BLUE ALPHA
args.outputs.solids << [100, 100, 160, 90, 0, 255, 0, 128]
end
Rendering a solid using a Hash
If you want a more readable invocation. You can use the following hash to create a solid. Any parameters that are not specified will be given a default value. The keys of the hash can be provided in any order.
def tick args
args.outputs.solids << {
x: 0,
y: 0,
w: 100,
h: 100,
r: 0,
g: 255,
b: 0,
a: 255
}
end
Rendering a solid using a Class
You can also create a class with solid/border properties and render it as a primitive. ALL properties must be on the class. *Additionally*, a method called primitive_marker
must be defined on the class.
Here is an example:
# Create type with ALL solid properties AND primitive_marker
class Solid
attr_accessor :x, :y, :w, :h, :r, :g, :b, :a
def primitive_marker
:solid
end
end
# Inherit from type
class Square < Solid
# constructor
def initialize x, y, size
self.x = x
self.y = y
self.w = size
self.h = size
end
end
def tick args
# render solid/border
args.outputs.solids << Square.new(10, 10, 32)
end
DOCS: GTK::Outputs#borders
Add primitives to this collection to render an unfilled solid to the screen. Take a look at the documentation for Outputs#solids.
The only difference between the two primitives is where they are added.
Instead of using args.outputs.solids
:
def tick args
# X Y WIDTH HEIGHT
args.outputs.solids << [100, 100, 160, 90]
end
You have to use args.outputs.borders
:
def tick args
# X Y WIDTH HEIGHT
args.outputs.borders << [100, 100, 160, 90]
end
DOCS: GTK::Outputs#sprites
Add primitives to this collection to render a sprite to the screen.
Rendering a sprite using an Array
Creates a sprite of a white circle located at 100, 100. 160 pixels wide and 90 pixels tall.
def tick args
# X Y WIDTH HEIGHT PATH
args.outputs.sprites << [100, 100, 160, 90, "sprites/circle/white.png]
end
Rendering a sprite using an Array with colors and alpha
The value for the color and alpha is a number between 0
and 255
. The alpha property is optional and will be set to 255
if not specified.
Creates a green circle sprite with an opacity of 50%.
def tick args
# X Y WIDTH HEIGHT PATH ANGLE ALPHA RED GREEN BLUE
args.outputs.sprites << [100, 100, 160, 90, "sprites/circle/white.png", 0, 128, 0, 255, 0]
end
Rendering a sprite using a Hash
If you want a more readable invocation. You can use the following hash to create a sprite. Any parameters that are not specified will be given a default value. The keys of the hash can be provided in any order.
def tick args
args.outputs.sprites << {
x: 0,
y: 0,
w: 100,
h: 100,
path: "sprites/circle/white.png",
angle: 0,
a: 255,
r: 0,
g: 255,
b: 0
}
end
Rendering a solid using a Class
You can also create a class with solid/border properties and render it as a primitive. ALL properties must be on the class. *Additionally*, a method called primitive_marker
must be defined on the class.
Here is an example:
# Create type with ALL sprite properties AND primitive_marker
class Sprite
attr_accessor :x, :y, :w, :h, :path, :angle, :angle_anchor_x, :angle_anchor_y, :tile_x, :tile_y, :tile_w, :tile_h, :source_x, :source_y, :source_w, :source_h, :flip_horizontally, :flip_vertically, :a, :r, :g, :b
def primitive_marker
:sprite
end
end
# Inherit from type
class Circle < Sprite
# constructor
def initialize x, y, size, path
self.x = x
self.y = y
self.w = size
self.h = size
self.path = path
end
def serlialize
{x:self.x, y:self.y, w:self.w, h:self.h, path:self.path}
end
def inspect
serlialize.to_s
end
def to_s
serlialize.to_s
end
end
def tick args
# render circle sprite
args.outputs.sprites << Circle.new(10, 10, 32,"sprites/circle/white.png")
end
DOCS: GTK::Outputs#screenshots
Add a hash to this collection to take a screenshot and save as png file. The keys of the hash can be provided in any order.
def tick args
args.outputs.screenshots << {
x: 0, y: 0, w: 100, h: 100, # Which portion of the screen should be captured
path: 'screenshot.png', # Output path of PNG file (inside game directory)
r: 255, g: 255, b: 255, a: 0 # Optional chroma key
}
end
Chroma key (Making a color transparent)
By specifying the r, g, b and a keys of the hash you change the transparency of a color in the resulting PNG file. This can be useful if you want to create files with transparent background like spritesheets. The transparency of the color specified by r
, g
, b
will be set to the transparency specified by a
.
The example above sets the color white (255, 255, 255) as transparent.
DOCS: GTK::Mouse
The mouse is accessible via args.inputs.mouse
:
def tick args
# Rendering a label that shows the mouse's x and y position (via args.inputs.mouse).
args.outputs.labels << [
10,
710,
"The mouse's position is: #{args.inputs.mouse.x} #{args.inputs.mouse.y}."
]
end
The mouse has the following properties.
args.inputs.mouse.x
: Returns the x position of the mouse.args.inputs.mouse.y
: Returns the y position of the mouse.args.inputs.mouse.moved
: Returns true if the mouse moved during the tick.args.inputs.mouse.moved_at
: Returns the tick_count (args.state.tick_count
) that the mouse was moved at. This property will benil
if the mouse didn't move.args.inputs.mouse.global_moved_at
: Returns the global tick_count (Kernel.global_tick_count
) that the mouse was moved at. This property will benil
if the mouse didn't move.args.inputs.mouse.click
: Returns aGTK::MousePoint
for that specific frame (args.state.tick_count
) if the mouse button was pressed.args.inputs.mouse.previous_click
: Returns aGTK::MousePoint
for the previous frame (args.state.tick_count - 1
) if the mouse button was pressed.args.inputs.mouse.up
: Returns true if for that specific frame (args.state.tick_count
) if the mouse button was released.args.inputs.mouse.point
|args.inputs.mouse.position
: Returns anArray
which contains thex
andy
position of the mouse.args.inputs.mouse.has_focus
: Returns true if the game window has the mouse's focus.args.inputs.mouse.wheel
: Returns anGTK::OpenEntity
that contains anx
andy
property which represents how much the wheel has moved. If the wheel has not moved within the tick, this property will benil
.args.inputs.mouse.button_left
: Returns true if the left mouse button is down.args.inputs.mouse.button_right
: Returns true if the right mouse button is down.args.inputs.mouse.button_middle
: Returns true if the middle mouse button is down.args.inputs.mouse.button_bits
: Gives the bits for each mouse button and its current state.
DOCS: GTK::MousePoint
The GTK::MousePoint
has the following properties.
x
: Integer representing the mouse's x.y
: Integer representing the mouse's y.point
: Array with thex
andy
values.w
: Width of the point that always returns0
(included so that it can seamlessly work withGTK::Geometry
functions).h
: Height of the point that always returns0
(included so that it can seamlessly work withGTK::Geometry
functions).left
: This value is the same asx
(included so that it can seamlessly work withGTK::Geometry
functions).right
: This value is the same asx
(included so that it can seamlessly work withGTK::Geometry
functions).top
: This value is the same asy
(included so that it can seamlessly work withGTK::Geometry
functions).bottom
: This value is the same asy
(included so that it can seamlessly work withGTK::Geometry
functions).created_at
: The tick (args.state.tick_count
) that this structure was created.global_created_at
: The global tick (Kernel.global_tick_count
) that this structure was created.
DOCS: GTK::OpenEntity
GTK::OpenEntity
is accessible within the DragonRuby's top level tick
function via the args.state
property.
def tick args
args.state.x ||= 100
args.outputs.labels << [10, 710, "value of x is: #{args.state.x}."]
end
The primary benefit of using args.state
as opposed to instance variables is that GTK::OpenEntity
allows for arbitrary nesting of properties without the need to create intermediate objects.
For example:
def tick args
# intermediate player object does not need to be created
args.state.player.x ||= 100
args.state.player.y ||= 100
args.outputs.labels << [
10,
710,
"player x, y is:#{args.state.player.x}, #{args.state.player.y}."
]
end
DOCS: GTK::OpenEntity#as_hash
Returns a reference to the GTK::OpenEntity
as a Hash
. This property is useful when you want to treat args.state
as a Hash
and invoke methods such as Hash#each
.
Example:
def tick args
args.state.x ||= 100
args.state.y ||= 100
values = args.state
.as_hash
.map { |k, v| "#{k} #{v}" }
args.outputs.labels << values.map.with_index do |v, i|
[
10,
710 - (30 * i),
v
]
end
end
DOCS: Numeric#frame_index
This function is helpful for determining the index of frame-by-frame sprite animation. The numeric value self
represents the moment the animation started.
frame_index
takes three additional parameters:
- How many frames exist in the sprite animation.
- How long to hold each animation for.
- Whether the animation should repeat.
frame_index
will return nil
if the time for the animation is out of bounds of the parameter specification.
Example using variables:
def tick args
start_looping_at = 0
number_of_sprites = 6
number_of_frames_to_show_each_sprite = 4
does_sprite_loop = true
sprite_index =
start_looping_at.frame_index number_of_sprites,
number_of_frames_to_show_each_sprite,
does_sprite_loop
sprite_index ||= 0
args.outputs.sprites << [
640 - 50,
360 - 50,
100,
100,
"sprites/dragon-#{sprite_index}.png"
]
end
Example using named parameters:
def tick args
start_looping_at = 0
sprite_index =
start_looping_at.frame_index count: 6,
hold_for: 4,
repeat: true,
tick_count_override: args.state.tick_count
sprite_index ||= 0
args.outputs.sprites << [
640 - 50,
360 - 50,
100,
100,
"sprites/dragon-#{sprite_index}.png"
]
end
DOCS: Numeric#elapsed_time
For a given number, the elapsed frames since that number is returned. `Kernel.tick_count` is used to determine how many frames have elapsed. An optional numeric argument can be passed in which will be used instead of `Kernel.tick_count`.
Here is an example of how elapsed_time can be used.
def tick args
args.state.last_click_at ||= 0
# record when a mouse click occurs
if args.inputs.mouse.click
args.state.last_click_at = args.state.tick_count
end
# Use Numeric#elapsed_time to determine how long it's been
if args.state.last_click_at.elapsed_time > 120
args.outputs.labels << [10, 710, "It has been over 2 seconds since the mouse was clicked."]
end
end
And here is an example where the override parameter is passed in:
def tick args
args.state.last_click_at ||= 0
# create a state variable that tracks time at half the speed of args.state.tick_count
args.state.simulation_tick = args.state.tick_count.idiv 2
# record when a mouse click occurs
if args.inputs.mouse.click
args.state.last_click_at = args.state.simulation_tick
end
# Use Numeric#elapsed_time to determine how long it's been
if (args.state.last_click_at.elapsed_time args.state.simulation_tick) > 120
args.outputs.labels << [10, 710, "It has been over 4 seconds since the mouse was clicked."]
end
end
DOCS: Numeric#elapsed?
Returns true if Numeric#elapsed_time
is greater than the number. An optional parameter can be passed into elapsed?
which is added to the number before evaluating whether elapsed?
is true.
Example usage (no optional parameter):
def tick args
args.state.box_queue ||= []
if args.state.box_queue.empty?
args.state.box_queue << { name: :red,
destroy_at: args.state.tick_count + 60 }
args.state.box_queue << { name: :green,
destroy_at: args.state.tick_count + 60 }
args.state.box_queue << { name: :blue,
destroy_at: args.state.tick_count + 120 }
end
boxes_to_destroy = args.state
.box_queue
.find_all { |b| b[:destroy_at].elapsed? }
if !boxes_to_destroy.empty?
puts "boxes to destroy count: #{boxes_to_destroy.length}"
end
boxes_to_destroy.each { |b| puts "box #{b} was elapsed? on #{args.state.tick_count}." }
args.state.box_queue -= boxes_to_destroy
end
Example usage (with optional parameter):
def tick args
args.state.box_queue ||= []
if args.state.box_queue.empty?
args.state.box_queue << { name: :red,
create_at: args.state.tick_count + 120,
lifespan: 60 }
args.state.box_queue << { name: :green,
create_at: args.state.tick_count + 120,
lifespan: 60 }
args.state.box_queue << { name: :blue,
create_at: args.state.tick_count + 120,
lifespan: 120 }
end
# lifespan is passed in as a parameter to ~elapsed?~
boxes_to_destroy = args.state
.box_queue
.find_all { |b| b[:create_at].elapsed? b[:lifespan] }
if !boxes_to_destroy.empty?
puts "boxes to destroy count: #{boxes_to_destroy.length}"
end
boxes_to_destroy.each { |b| puts "box #{b} was elapsed? on #{args.state.tick_count}." }
args.state.box_queue -= boxes_to_destroy
end
DOCS: Numeric#created?
Returns true if Numeric#elapsed_time == 0
. Essentially communicating that number is equal to the current frame.
Example usage:
def tick args
args.state.box_queue ||= []
if args.state.box_queue.empty?
args.state.box_queue << { name: :red,
create_at: args.state.tick_count + 60 }
end
boxes_to_spawn_this_frame = args.state
.box_queue
.find_all { |b| b[:create_at].new? }
boxes_to_spawn_this_frame.each { |b| puts "box #{b} was new? on #{args.state.tick_count}." }
args.state.box_queue -= boxes_to_spawn_this_frame
end
DOCS: Kernel
Kernel in the DragonRuby Runtime has patches for how standard out is handled and also contains a unit of time in games called a tick.
DOCS: Kernel::tick_count
Returns the current tick of the game. This value is reset if you call $gtk.reset.
DOCS: Kernel::global_tick_count
Returns the current tick of the application from the point it was started. This value is never reset.
DOCS: Geometry
The Geometry module contains methods for calculations that are frequently used in game development.
DOCS: GTK::Geometry#scale_rect
Given an array with 4 elements representing a rect [x, y, w, h], this function returns a scaled rect. It accepts three arguments:
ratio
: the ratio by which to scale the rect. A ratio of 2 will double the dimensions of the rect while a ratio of 0.5 will halve its dimensions.
anchor_x
and anchor_y
specify the point within the rect from which to resize it. Setting both to 0 will affect the width and height of the rect, leaving x and y unchanged. Setting both to 0.5 will scale all sides of the rect proportionally from the center.
The scale_rect
method can be applied directly to a sprite or other primitives. See CHEATSHEET: How to Scale a Sprite.
def tick args
# x, y, w, h
my_rect = [100, 100, 200, 200]
# halve the dimensions of the rect:
# ratio, anchor_x, anchor_y
new_rect = my_rect.scale_rect(0.5, 0.5, 0.5)
puts new_rect # => [150.0, 150.0, 100.0, 100.0]
end
Source Code
Follows is a source code listing for all files that have been open sourced. This code can be found in the ./samples
directory.
Samples
Learn Ruby Optional - Beginner Ruby Primer - automation.rb
# ./samples/00_learn_ruby_optional/00_beginner_ruby_primer/app/automation.rb
# ==========================================================================
# _ _ ________ __ _ _____ _____ _______ ______ _ _ _ _ _ _
# | | | | ____\ \ / / | | |_ _|/ ____|__ __| ____| \ | | | | | |
# | |__| | |__ \ \_/ / | | | | | (___ | | | |__ | \| | | | | |
# | __ | __| \ / | | | | \___ \ | | | __| | . ` | | | | |
# | | | | |____ | | | |____ _| |_ ____) | | | | |____| |\ |_|_|_|_|
# |_| |_|______| |_| |______|_____|_____/ |_| |______|_| \_(_|_|_|_)
#
#
# |
# |
# |
# |
# |
# |
# |
# |
# |
# |
# \ | /
# \ | /
# +
#
# If you are new to the programming language Ruby, then you may find the
# following code a bit overwhelming. Come back to this file when you have
# a better grasp of Ruby and Game Toolkit.
#
# What follows is an automations script # that can be run via terminal:
# ./samples/00_beginner_ruby_primer $ ../../dragonruby . --eval app/automation.rb
# ==========================================================================
$gtk.reset
$gtk.scheduled_callbacks.clear
$gtk.schedule_callback 10 do
$gtk.console.set_command 'puts "Hello DragonRuby!"'
end
$gtk.schedule_callback 20 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 30 do
$gtk.console.set_command 'outputs.solids << [910, 200, 100, 100, 255, 0, 0]'
end
$gtk.schedule_callback 40 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 50 do
$gtk.console.set_command 'outputs.solids << [1010, 200, 100, 100, 0, 0, 255]'
end
$gtk.schedule_callback 60 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 70 do
$gtk.console.set_command 'outputs.sprites << [1110, 200, 100, 100, "sprites/dragon_fly_0.png"]'
end
$gtk.schedule_callback 80 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 90 do
$gtk.console.set_command "outputs.labels << [1210, 200, state.tick_count, 0, 255, 0]"
end
$gtk.schedule_callback 100 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 110 do
$gtk.console.set_command "state.sprite_frame = state.tick_count.idiv(4).mod(6)"
end
$gtk.schedule_callback 120 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 130 do
$gtk.console.set_command "outputs.labels << [1210, 170, state.sprite_frame, 0, 255, 0]"
end
$gtk.schedule_callback 140 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 150 do
$gtk.console.set_command "state.sprite_path = \"sprites/dragon_fly_\#{state.sprite_frame}.png\""
end
$gtk.schedule_callback 160 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 170 do
$gtk.console.set_command "outputs.labels << [910, 330, \"path: \#{state.sprite_path}\", 0, 255, 0]"
end
$gtk.schedule_callback 180 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 190 do
$gtk.console.set_command "outputs.sprites << [910, 330, 370, 370, state.sprite_path]"
end
$gtk.schedule_callback 200 do
$gtk.console.eval_the_set_command
end
$gtk.schedule_callback 300 do
$gtk.console.set_command ":wq"
end
$gtk.schedule_callback 400 do
$gtk.console.eval_the_set_command
end
Learn Ruby Optional - Beginner Ruby Primer - main.rb
# ./samples/00_learn_ruby_optional/00_beginner_ruby_primer/app/main.rb
# ==========================================================================
# _ _ ________ __ _ _____ _____ _______ ______ _ _ _ _ _ _
# | | | | ____\ \ / / | | |_ _|/ ____|__ __| ____| \ | | | | | |
# | |__| | |__ \ \_/ / | | | | | (___ | | | |__ | \| | | | | |
# | __ | __| \ / | | | | \___ \ | | | __| | . ` | | | | |
# | | | | |____ | | | |____ _| |_ ____) | | | | |____| |\ |_|_|_|_|
# |_| |_|______| |_| |______|_____|_____/ |_| |______|_| \_(_|_|_|_)
#
#
# |
# |
# |
# |
# |
# |
# |
# |
# |
# |
# \ | /
# \ | /
# +
#
# If you are new to the programming language Ruby, then you may find the
# following code a bit overwhelming. This sample is only designed to be
# run interactively (as opposed to being manipulated via source code).
#
# Start up this sample and follow along by visiting:
# https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-primer.mp4
#
# It is STRONGLY recommended that you work through all the samples before
# looking at the code in this file.
# ==========================================================================
class TutorialOutputs
attr_accessor :solids, :sprites, :labels, :lines, :borders
def initialize
@solids = []
@sprites = []
@labels = []
@lines = []
@borders = []
end
def tick
@solids ||= []
@sprites ||= []
@labels ||= []
@lines ||= []
@borders ||= []
@solids.each { |p| $gtk.args.outputs.reserved << p.solid }
@sprites.each { |p| $gtk.args.outputs.reserved << p.sprite }
@labels.each { |p| $gtk.args.outputs.reserved << p.label }
@lines.each { |p| $gtk.args.outputs.reserved << p.line }
@borders.each { |p| $gtk.args.outputs.reserved << p.border }
end
def clear
@solids.clear
@sprites.clear
@labels.clear
@borders.clear
end
end
def defaults
state.reset_button ||=
state.new_entity(
:button,
label: [1190, 68, "RESTART", -2, 0, 0, 0, 0].label,
background: [1160, 38, 120, 50, 255, 255, 255].solid
)
$gtk.log_level = :off
end
def tick_reset_button
return unless state.hello_dragonruby_confirmed
$gtk.args.outputs.reserved << state.reset_button.background
$gtk.args.outputs.reserved << state.reset_button.label
if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.reset_button.background)
restart_tutorial
end
end
def seperator
@seperator = "=" * 80
end
def tick_intro
queue_message "Welcome to the DragonRuby GTK primer! Try typing the
code below and press ENTER:
puts \"Hello DragonRuby!\"
"
end
def tick_hello_dragonruby
return unless console_has? "Hello DragonRuby!", "puts "
$gtk.args.state.hello_dragonruby_confirmed = true
queue_message "Well HELLO to you too!
If you ever want to RESTART the tutorial, just click the \"RESTART\"
button in the bottom right-hand corner.
Let's continue shall we? Type the code below and press ENTER:
outputs.solids << [910, 200, 100, 100, 255, 0, 0]
"
end
def tick_explain_solid
return unless $tutorial_outputs.solids.any? {|s| s == [910, 200, 100, 100, 255, 0, 0]}
queue_message "Sweet!
The code: outputs.solids << [910, 200, 100, 100, 255, 0, 0]
Does the following:
1. GET the place where SOLIDS go: outputs.solids
2. Request that a new SOLID be ADDED: <<
3. The DEFINITION of a SOLID is the ARRAY:
[910, 200, 100, 100, 255, 0, 0]
GET ADD X Y WIDTH HEIGHT RED GREEN BLUE
| | | | | | | | |
| | | | | | | | |
outputs.solids << [910, 200, 100, 100, 255, 0, 0]
|_________________________________________|
|
|
ARRAY
Now let's create a blue SOLID. Type:
outputs.solids << [1010, 200, 100, 100, 0, 0, 255]
"
state.explain_solid_confirmed = true
end
def tick_explain_solid_blue
return unless state.explain_solid_confirmed
return unless $tutorial_outputs.solids.any? {|s| s == [1010, 200, 100, 100, 0, 0, 255]}
state.explain_solid_blue_confirmed = true
queue_message "And there is our blue SOLID!
The ARRAY is the MOST important thing in DragonRuby GTK.
Let's create a SPRITE using an ARRAY:
outputs.sprites << [1110, 200, 100, 100, 'sprites/dragon_fly_0.png']
"
end
def tick_explain_tick_count
return unless $tutorial_outputs.sprites.any? {|s| s == [1110, 200, 100, 100, 'sprites/dragon_fly_0.png']}
return if $tutorial_outputs.labels.any? {|l| l == [1210, 200, state.tick_count, 255, 255, 255]}
state.explain_tick_count_confirmed = true
queue_message "Look at the cute little dragon!
We can create a LABEL with ARRAYS too. Let's create a LABEL showing
THE PASSAGE OF TIME, which is called TICK_COUNT.
outputs.labels << [1210, 200, state.tick_count, 0, 255, 0]
"
end
def tick_explain_mod
return unless $tutorial_outputs.labels.any? {|l| l == [1210, 200, state.tick_count, 0, 255, 0]}
state.explain_mod_confirmed = true
queue_message "
The code: outputs.labels << [1210, 200, state.tick_count, 0, 255, 0]
Does the following:
1. GET the place where labels go: outputs.labels
2. Request that a new label be ADDED: <<
3. The DEFINITION of a LABEL is the ARRAY:
[1210, 200, state.tick_count, 0, 255, 0]
GET ADD X Y TEXT RED GREEN BLUE
| | | | | | | |
| | | | | | | |
outputs.labels << [1210, 200, state.tick_count, 0, 255, 0]
|______________________________________________|
|
|
ARRAY
Now let's do some MATH, save the result to STATE, and create a LABEL:
state.sprite_frame = state.tick_count.idiv(4).mod(6)
outputs.labels << [1210, 170, state.sprite_frame, 0, 255, 0]
Type the lines above (pressing ENTER after each line).
"
end
def tick_explain_string_interpolation
return unless state.explain_mod_confirmed
return unless state.sprite_frame == state.tick_count.idiv(4).mod(6)
return unless $tutorial_outputs.labels.any? {|l| l == [1210, 170, state.sprite_frame, 0, 255, 0]}
queue_message "Here is what the mathematical computation you just typed does:
1. Create an item of STATE named SPRITE_FRAME: state.sprite_frame =
2. Set this SPRITE_FRAME to the PASSAGE OF TIME (tick_count),
DIVIDED EVENLY (idiv) into 4,
and then compute the REMAINDER (mod) of 6.
STATE SPRITE_FRAME PASSAGE OF HOW LONG HOW MANY
| | TIME TO SHOW IMAGES
| | | AN IMAGE TO FLIP THROUGH
| | | | |
state.sprite_frame = state.tick_count.idiv(4).mod(6)
| |
| +- REMAINDER OF DIVIDE
DIVIDE EVENLY
(NO DECIMALS)
With the information above, we can animate a SPRITE
using STRING INTERPOLATION: \#{}
which creates a unique SPRITE_PATH:
state.sprite_path = \"sprites/dragon_fly_\#{state.sprite_frame}.png\"
outputs.labels << [910, 330, \"path: \#{state.sprite_path}\", 0, 255, 0]
outputs.sprites << [910, 330, 370, 370, state.sprite_path]
Type the lines above (pressing ENTER after each line).
"
end
def tick_reprint_on_error
return unless console.last_command_errored
puts $gtk.state.messages.last
puts "\nWhoops! Try again."
console.last_command_errored = false
end
def tick_evals
state.evals ||= []
if console.last_command && (console.last_command.start_with?("outputs.") || console.last_command.start_with?("state."))
state.evals << console.last_command
console.last_command = nil
end
state.evals.each do |l|
Kernel.eval l
end
rescue Exception => e
state.evals = state.evals[0..-2]
end
$tutorial_outputs ||= TutorialOutputs.new
def tick args
$gtk.log_level = :off
defaults
console.show
$tutorial_outputs.clear
$tutorial_outputs.solids << [900, 37, 480, 700, 0, 0, 0, 255]
$tutorial_outputs.borders << [900, 37, 380, 683, 255, 255, 255]
tick_evals
$tutorial_outputs.tick
tick_intro
tick_hello_dragonruby
tick_reset_button
tick_explain_solid
tick_explain_solid_blue
tick_reprint_on_error
tick_explain_tick_count
tick_explain_mod
tick_explain_string_interpolation
end
def console
$gtk.console
end
def queue_message message
$gtk.args.state.messages ||= []
return if $gtk.args.state.messages.include? message
$gtk.args.state.messages << message
last_three = [$gtk.console.log[-3], $gtk.console.log[-2], $gtk.console.log[-1]].reject_nil
$gtk.console.log.clear
puts seperator
$gtk.console.log += last_three
puts seperator
puts message
puts seperator
end
def console_has? message, not_message = nil
console.log
.map(&:upcase)
.reject { |s| not_message && s.include?(not_message.upcase) }
.any? { |s| s.include?("#{message.upcase}") }
end
def restart_tutorial
$tutorial_outputs.clear
$gtk.console.log.clear
$gtk.reset
puts "Starting the tutorial over!"
end
def state
$gtk.args.state
end
def inputs
$gtk.args.inputs
end
def outputs
$tutorial_outputs
end
Learn Ruby Optional - Intermediate Ruby Primer - printing.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/01_printing.txt
# ====================================================================================
# Commenting Code
# ====================================================================================
#
# Prefixing text with a pound sign (#) is how you comment code in Ruby. Example:
#
# I am commented code. And so are the lines above.
#
# I you want more than a quick primer on Ruby, check out https://poignant.guide/. It's
# an entertaining read. Otherwise, go to the next txt file.
#
# Follow along by visiting:
# https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-intermediate.mp4
# ====================================================================================
# Printing to the Console:
# ====================================================================================
#
# Every time you save repl.rb file, DragonRuby runs the code within it. Copy this text
# to repl.rb and save to see Hello World printed to the console.
repl do
puts '* RUBY PRIMER: Printing to the console using the ~puts~ function.'
puts '===='
puts '======'
puts '================================'
puts 'Hello World'
puts '================================'
puts '======'
puts '===='
end
Learn Ruby Optional - Intermediate Ruby Primer - strings.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/02_strings.txt
# ====================================================================================
# Strings
# ====================================================================================
#
# Here is how you work with strings in Ruby. Take the text
# in this file and paste it into repl.rb and save:
repl do
puts '* RUBY PRIMER: strings'
message = "Hello World"
puts "The value of message is: " + message
puts "Any value can be interpolated within a string using \#{}."
puts "Interpolated message: #{message}."
puts 'This #{message} is not interpolated because the string uses single quotes.'
end
Learn Ruby Optional - Intermediate Ruby Primer - numbers.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/03_numbers.txt
# ====================================================================================
# Numerics
# ====================================================================================
#
# Here is how you work with numbers in Ruby. Take the text
# in this file and paste it into repl.rb and save:
repl do
puts '* RUBY PRIMER: Fixnum and Floats'
a = 10
puts "The value of a is: #{a}"
puts "a + 1 is: #{a + 1}"
puts "a / 3 is: #{a / 3}"
puts ''
b = 10.12
puts "The value of b is: #{b}"
puts "b + 1 is: #{b + 1}"
puts "b as an integer is: #{b.to_i}"
puts ''
end
Learn Ruby Optional - Intermediate Ruby Primer - booleans.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/04_booleans.txt
# ====================================================================================
# Booleans
# ====================================================================================
#
# Here is how you work with numbers in Ruby. Take the text
# in this file and paste it into repl.rb and save:
repl do
puts '* RUBY PRIMER: TrueClass, FalseClass, NilClass (truthy / falsey values)'
puts "Anything that *isn't* false or nil is true."
c = 30
puts "The value of c is #{c}."
if c
puts "This if statement ran because c is truthy."
end
d = false
puts "The value if d is #{d}. The type for d is #{d.class}."
if !d
puts "This if statement ran because d is falsey, using the not operator (!)."
end
e = nil
puts "Nil is also considered falsey. The value of e is: #{e} (a blank string when printed). Which is of type #{e.class}."
if !e
puts "This if statement ran because e is nil and the if statement applied the NOT operator. !e yields a type of #{(!e).class}."
end
end
Learn Ruby Optional - Intermediate Ruby Primer - conditionals.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/05_conditionals.txt
# ====================================================================================
# Conditionals
# ====================================================================================
#
# Here is how you create conditionals in Ruby. Take the text
# in this file and paste it into repl.rb and save:
repl do
puts "* RUBY PRIMER: Conditionals"
end
# ====================================================================================
# if
# ====================================================================================
repl do
puts "** INFO: if statement"
i_am_one = 1
if i_am_one
puts "This was printed because i_am_one is truthy."
end
end
# ====================================================================================
# if/else
# ====================================================================================
repl do
puts "** INFO: if/else statement"
i_am_false = false
if i_am_false
puts "This will NOT get printed because i_am_false is false."
else
puts "This was printed because i_am_false is false."
end
end
# ====================================================================================
# if/elsif/else
# ====================================================================================
repl do
puts "** INFO: if/elsif/else statement"
i_am_false = false
i_am_true = true
if i_am_false
puts "This will NOT get printed because i_am_false is false."
elsif i_am_true
puts "This was printed because i_am_true is true."
else
puts "This will NOT get printed i_am_true was true."
end
end
# ====================================================================================
# case
# ====================================================================================
repl do
puts "** INFO case statement"
i_am_one = 1 # change this value to see different results
case i_am_one
when 10
puts "the value of i_am_one is 10"
when 9
puts "the value of i_am_one is 9"
when 5
puts "the value of i_am_one is 5"
when 1
puts "the value of i_am_one is 1"
else
puts "Value wasn't cased."
end
end
# ====================================================================================
# comparison operators
# ====================================================================================
repl do
puts "** INFO: Different types of comparisons"
if 4 == 4
puts "4 equals 4 (==)"
end
if 4 != 3
puts "4 does not equal 3 (!=)"
end
if 3 < 4
puts "3 is less than 4 (<)"
end
if 4 > 3
puts "4 is greater than 3 (>)"
end
end
# ====================================================================================
# and/or conditionals
# ====================================================================================
repl do
puts "** INFO: AND, OR operator (&&, ||)"
if (4 > 3) || (3 < 4) || false
puts "print this if 4 is greater than 3 OR 3 is less than 4 OR false is true (||)"
end
if (4 > 3) && (3 < 4)
puts "print this if 4 is greater than 3 AND 3 is less than 4 (&&)"
end
end
Learn Ruby Optional - Intermediate Ruby Primer - looping.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/06_looping.txt
# ====================================================================================
# Looping
# ====================================================================================
#
# Looping looks a whole lot different than other languages.
# But it's pretty awesome when you get used to it.
repl do
puts "* RUBY PRIMER: Loops"
end
# ====================================================================================
# times
# ====================================================================================
repl do
puts "** INFO: ~Numeric#times~ (for loop)"
3.times do |i|
puts i
end
end
# ====================================================================================
# foreach
# ====================================================================================
repl do
puts "** INFO: ~Array#each~ (for each loop)"
array = ["a", "b", "c", "d"]
array.each do |char|
puts char
end
puts "** INFO: ~Array#each_with_index~ (for each loop)"
array = ["a", "b", "c", "d"]
array.each do |char, i|
puts "index #{i}: #{char}"
end
end
# ====================================================================================
# ranges
# ====================================================================================
repl do
puts "** INFO: range block exclusive (three dots)"
(0...3).each do |i|
puts i
end
puts "** INFO: range block inclusive (two dots)"
(0..3).each do |i|
puts i
end
end
Learn Ruby Optional - Intermediate Ruby Primer - functions.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/07_functions.txt
# ====================================================================================
# Functions
# ====================================================================================
# The last statement of a function is implictly returned. Parenthesis for functions
# are optional as long as the statement can be envaluated disambiguously.
repl do
puts "* RUBY PRIMER: Functions"
end
# ====================================================================================
# Functions single parameter
# ====================================================================================
repl do
puts "* INFO: Function with one parameter"
# function definition
def add_one_to n
n + 1
end
# Parenthesis are optional in Ruby as long as the
# parsing is disambiguous. Here are a couple of variations.
# Generally speaking, don't put parenthesis is you don't have to.
# Conventional Usage of Parenthesis.
puts add_one_to(3)
# DragonRuby's recommended use of parenthesis (inner function has parenthesis).
puts (add_one_to 3)
# Full parens.
puts(add_one_to(3))
# Outer function has parenthesis
puts(add_one_to 3)
end
# ====================================================================================
# Functions with default parameter values
# ====================================================================================
repl do
puts "* INFO: Function with default value"
def function_with_default_value v = 10
v * 10
end
puts "Passing the argument three yields: #{function_with_default_value 3}"
puts "Passing no argument yields: #{function_with_default_value}"
end
# ====================================================================================
# Nil default parameter value and ||= operator.
# ====================================================================================
repl do
puts "* INFO: Using the OR EQUAL operator (||=)"
def function_with_nil_default_with_local a = nil
result = a
result ||= "DEFAULT_VALUE_OF_A_IS_NIL_OR_FALSE"
"value is #{result}."
end
puts "Passing 'hi' as the argument yields: #{function_with_nil_default_with_local 'hi'}"
puts "Passing nil: #{function_with_nil_default_with_local}"
end
Learn Ruby Optional - Intermediate Ruby Primer - arrays.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/08_arrays.txt
# ====================================================================================
# Arrays
# ====================================================================================
# Arrays are incredibly powerful in Ruby. Learn to use them well.
repl do
puts "* RUBY PRIMER: ARRAYS"
end
# ====================================================================================
# Enumerable ranges and .to_a
# ====================================================================================
repl do
puts "** INFO: Create an array with the numbers 1 to 10."
one_to_ten = (1..10).to_a
puts one_to_ten
end
# ====================================================================================
# Finding elements
# ====================================================================================
repl do
puts "** INFO: Finding elements in an array using ~Array#find_all~."
puts "Create a new array that only contains even numbers from the previous array."
one_to_ten = (1..10).to_a
evens = one_to_ten.find_all do |number|
number % 2 == 0
end
puts evens
end
# ====================================================================================
# Rejecting elements
# ====================================================================================
repl do
puts "** INFO: Removing elements in an array using ~Array#reject~."
puts "Create a new array that rejects odd numbers."
one_to_ten = (1..10).to_a
also_even = one_to_ten.reject do |number|
number % 2 != 0
end
puts also_even
end
# ====================================================================================
# Array transform using the map function.
# ====================================================================================
repl do
puts "** INFO: Creating new derived values from an array using ~Array#map~."
puts "Create an array that doubles every number."
one_to_ten = (1..10).to_a
doubled = one_to_ten.map do |number|
number * 2
end
puts doubled
end
# ====================================================================================
# Combining array functions.
# ====================================================================================
repl do
puts "** INFO: Combining ~Array#find_all~ along with ~Array#map~."
puts "Create an array that selects only odd numbers and then multiply those by 10."
one_to_ten = (1..10).to_a
odd_doubled = one_to_ten.find_all do |number|
number % 2 != 0
end.map do |odd_number|
odd_number * 10
end
puts odd_doubled
end
# ====================================================================================
# Product function.
# ====================================================================================
repl do
puts "** INFO: Create all combinations of array values using ~Array#product~."
puts "All two-item pairs of numbers 1 to 10."
one_to_ten = (1..10).to_a
all_combinations = one_to_ten.product(one_to_ten)
puts all_combinations
end
# ====================================================================================
# Uniq and sort function.
# ====================================================================================
repl do
puts "** INFO: Providing uniq values using ~Array#uniq~ and ~Array#sort~."
puts "All uniq combinations of numbers regardless of order."
puts "For example: [1, 2] is the same as [2, 1]."
one_to_ten = (1..10).to_a
uniq_combinations =
one_to_ten.product(one_to_ten)
.map do |unsorted_number|
unsorted_number.sort
end.uniq
puts uniq_combinations
end
# ====================================================================================
# Example of an advanced array transform.
# ====================================================================================
repl do
puts "** INFO: Advanced chaining. Combining ~Array's ~map~, ~find_all~, ~sort~, and ~sort_by~."
puts "All unique Pythagorean Triples between 1 and 100 sorted by area of the triangle."
one_to_hundred = (1..100).to_a
triples =
one_to_hundred.product(one_to_hundred).map do |width, height|
[width, height, Math.sqrt(width ** 2 + height ** 2)]
end.find_all do |_, _, hypotenuse|
hypotenuse.to_i == hypotenuse
end.map do |triangle|
triangle.map(&:to_i)
end.uniq do |triangle|
triangle.sort
end.map do |width, height, hypotenuse|
[width, height, hypotenuse, (width * height) / 2]
end.sort_by do |_, _, _, area|
area
end
triples.each do |width, height, hypotenuse, _|
puts "(#{width}, #{height}, #{hypotenuse})"
end
end
# ====================================================================================
# Example of an sorting.
# ====================================================================================
repl do
puts "** INFO: Implementing a custom sort function that operates on the ~Hash~ datatype."
things_to_sort = [
{ type: :background, order: 1 },
{ type: :foreground, order: 1 },
{ type: :foreground, order: 2 }
]
puts "*** Original array."
puts things_to_sort
puts "*** Simple sort using key."
# For a simple sort, you can use sort_by
results = things_to_sort.sort_by do |hash|
hash[:order]
end
puts results
puts "*** Custom sort."
puts "**** Sorting process."
# for a more complicated sort, you can provide a block that returns
# -1, 0, 1 for a left and right operand
results = things_to_sort.sort do |l, r|
sort_result = 0
puts "here is l: #{l}"
puts "here is r: #{r || "nil"}"
# if either value is nil/false return 0
if !l || !r
sort_result = 0
# if the type of "left" is background and the
# type of "right" is foreground, then return
# -1 (which means "left" is less than "right"
elsif l[:type] == :background && r[:type] == :foreground
sort_result = -1
# if the type of "left" is foreground and the
# type of "right" is background, then return
# 1 (which means "left" is greater than "right"
elsif l[:type] == :foreground && r[:type] == :background
sort_result = 1
# if "left" and "right"'s type are the same, then
# use the order as the tie breaker
elsif l[:order] < r[:order]
sort_result = -1
elsif l[:order] > r[:order]
sort_result = 1
# returning 0 means both values are equal
else
sort_result = 0
end
sort_result
end.to_a
puts "**** Sort result."
puts results
end
# ====================================================================================
# Api documention for Array that is worth commiting to memory because arrays are so
# awesome in Ruby: https://docs.ruby-lang.org/en/2.0.0/Array.html
# ====================================================================================
Learn Ruby Optional - Intermediate Ruby Primer - main.rb
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/main.rb
def tick args
args.outputs.labels << [640, 380, "Open repl.rb in the text editor of your choice and follow the document.", 0, 1]
end
Learn Ruby Optional - Intermediate Ruby Primer - repl.rb
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/repl.rb
# Copy and paste the code inside of the txt files here.
Rendering Basics - Labels - main.rb
# ./samples/01_rendering_basics/01_labels/app/main.rb
=begin
APIs listing that haven't been encountered in a previous sample apps:
- args.outputs.labels: An array. Values in this array generate labels
the screen.
- args.grid.(left|right|top|bottom): Pixel value for the boundaries of the virtual
720 p screen (Dragon Ruby Game Toolkits's virtual resolution is always 1280x720).
- Numeric#shift_(left|right|up|down): Shifts the Numeric in the correct direction
by adding or subracting.
=end
# Labels are used to represent text elements in DragonRuby
# An example of creating a label is:
# args.outputs.labels << [320, 640, "Example", 3, 1, 255, 0, 0, 200, manaspace.ttf]
# The code above does the following:
# 1. GET the place where labels go: args.outputs.labels
# 2. Request a new LABEL be ADDED: <<
# 3. The DEFINITION of a SOLID is the ARRAY:
# [320, 640, "Example", 3, 1, 255, 0, 0, 200, manaspace.ttf]
# [ X , Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE]
# The tick method is called by DragonRuby every frame
# args contains all the information regarding the game.
def tick args
tick_instructions args, "Sample app shows different version of label sizes and alignments. And how to use hashes instead of arrays."
# Here are some examples of simple labels, with the minimum number of parameters
# Note that the default values for the other parameters are 0, except for Alpha which is 255 and Font Style which is the default font
args.outputs.labels << [400, 620, "Here is a label with just an x, y, and text"]
args.outputs.labels << [args.grid.left.shift_right(5), args.grid.top.shift_down(5), "This is a label located at the top left."]
args.outputs.labels << [args.grid.left.shift_right(5), args.grid.bottom.shift_up(30), "This is a label located at the bottom left."]
args.outputs.labels << [args.grid.right.shift_left(420), args.grid.top.shift_down(5), "This is a label located at the top right."]
args.outputs.labels << [args.grid.right.shift_left(440), args.grid.bottom.shift_up(30), "This is a label located at the bottom right."]
# Demonstration of the Size Parameter
args.outputs.labels << [175 + 150, 610 - 50, "Smaller label.", -2]
args.outputs.labels << [175 + 150, 580 - 50, "Small label.", -1]
args.outputs.labels << [175 + 150, 550 - 50, "Medium label.", 0]
args.outputs.labels << [175 + 150, 520 - 50, "Large label.", 1]
args.outputs.labels << [175 + 150, 490 - 50, "Larger label.", 2]
# Demonstration of the Align Parameter
args.outputs.labels << [260 + 150, 345 - 50, "Left aligned.", 0, 2]
args.outputs.labels << [260 + 150, 325 - 50, "Center aligned.", 0, 1]
args.outputs.labels << [260 + 150, 305 - 50, "Right aligned.", 0, 0]
# Demonstration of the RGBA parameters
args.outputs.labels << [600 + 150, 590 - 50, "Red Label.", 0, 0, 255, 0, 0]
args.outputs.labels << [600 + 150, 570 - 50, "Green Label.", 0, 0, 0, 255, 0]
args.outputs.labels << [600 + 150, 550 - 50, "Blue Label.", 0, 0, 0, 0, 255]
args.outputs.labels << [600 + 150, 530 - 50, "Faded Label.", 0, 0, 0, 0, 0, 128]
# Demonstration of the Font parameter
# In order to use a font of your choice, add its ttf file to the project folder, where the app folder is
args.outputs.labels << [690 + 150, 330 - 20, "Custom font (Array)", 0, 1, 125, 0, 200, 255, "manaspc.ttf" ]
args.outputs.primitives << { x: 690 + 150,
y: 330 - 50,
text: "Custom font (Hash)",
size_enum: 0,
alignment_enum: 1,
r: 125,
g: 0,
b: 200,
a: 255,
font: "manaspc.ttf" }.label!
# Primitives can hold anything, and can be given a label in the following forms
args.outputs.primitives << [690 + 150, 330 - 80, "Custom font (.primitives Array)", 0, 1, 125, 0, 200, 255, "manaspc.ttf" ].label
args.outputs.primitives << { x: 690 + 150,
y: 330 - 110,
text: "Custom font (.primitives Hash)",
size_enum: 0,
alignment_enum: 1,
r: 125,
g: 0,
b: 200,
a: 255,
font: "manaspc.ttf" }.label!
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Rendering Basics - Labels Text Wrapping - main.rb
# ./samples/01_rendering_basics/01_labels_text_wrapping/app/main.rb
def tick args
# create a really long string
args.state.really_long_string = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. In vulputate viverra metus et vehicula. Aenean quis accumsan dolor. Nulla tempus, ex et lacinia elementum, nisi felis ullamcorper sapien, sed sagittis sem justo eu lectus. Etiam ut vehicula lorem, nec placerat ligula. Duis varius ultrices magna non sagittis. Aliquam et sem vel risus viverra hendrerit. Maecenas dapibus congue lorem, a blandit mauris feugiat sit amet."
args.state.really_long_string += "\n"
args.state.really_long_string += "Sed quis metus lacinia mi dapibus fermentum nec id nunc. Donec tincidunt ante a sem bibendum, eget ultricies ex mollis. Quisque venenatis erat quis pretium bibendum. Pellentesque vel laoreet nibh. Cras gravida nisi nec elit pulvinar, in feugiat leo blandit. Quisque sodales quam sed congue consequat. Vivamus placerat risus vitae ex feugiat viverra. In lectus arcu, pellentesque vel ipsum ac, dictum finibus enim. Quisque consequat leo in urna dignissim, eu tristique ipsum accumsan. In eros sem, iaculis ac rhoncus eu, laoreet vitae ipsum. In sodales, ante eu tempus vehicula, mi nulla luctus turpis, eu egestas leo sapien et mi."
# length of characters on line
max_character_length = 80
# line height
line_height = 25
long_string = args.state.really_long_string
# API: args.string.wrapped_lines string, max_character_length
long_strings_split = args.string.wrapped_lines long_string, max_character_length
# render a label for each line and offset by the line_height
args.outputs.labels << long_strings_split.map_with_index do |s, i|
{
x: 60,
y: 60.from_top - (i * line_height),
text: s
}
end
end
Rendering Basics - Lines - main.rb
# ./samples/01_rendering_basics/02_lines/app/main.rb
=begin
APIs listing that haven't been encountered in a previous sample apps:
- args.outputs.lines: An array. Values in this array generate lines on
the screen.
- args.state.tick_count: This property contains an integer value that
represents the current frame. GTK renders at 60 FPS. A value of 0
for args.state.tick_count represents the initial load of the game.
=end
# The parameters required for lines are:
# 1. The initial point (x, y)
# 2. The end point (x2, y2)
# 3. The rgba values for the color and transparency (r, g, b, a)
# An example of creating a line would be:
# args.outputs.lines << [100, 100, 300, 300, 255, 0, 255, 255]
# This would create a line from (100, 100) to (300, 300)
# The RGB code (255, 0, 255) would determine its color, a purple
# It would have an Alpha value of 255, making it completely opaque
def tick args
tick_instructions args, "Sample app shows how to create lines."
args.outputs.labels << [480, 620, "Lines (x, y, x2, y2, r, g, b, a)"]
# Some simple lines
args.outputs.lines << [380, 450, 675, 450]
args.outputs.lines << [380, 410, 875, 410]
# These examples utilize args.state.tick_count to change the length of the lines over time
# args.state.tick_count is the ticks that have occurred in the game
# This is accomplished by making either the starting or ending point based on the args.state.tick_count
args.outputs.lines << [380, 370, 875, 370, args.state.tick_count % 255, 0, 0, 255]
args.outputs.lines << [380, 330 - args.state.tick_count % 25, 875, 330, 0, 0, 0, 255]
args.outputs.lines << [380 + args.state.tick_count % 400, 290, 875, 290, 0, 0, 0, 255]
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Rendering Basics - Solids Borders - main.rb
# ./samples/01_rendering_basics/03_solids_borders/app/main.rb
=begin
APIs listing that haven't been encountered in a previous sample apps:
- args.outputs.solids: An array. Values in this array generate
solid/filled rectangles on the screen.
=end
# Rects are outputted in DragonRuby as rectangles
# If filled in, they are solids
# If hollow, they are borders
# Solids are added to args.outputs.solids
# Borders are added to args.outputs.borders
# The parameters required for rects are:
# 1. The upper right corner (x, y)
# 2. The width (w)
# 3. The height (h)
# 4. The rgba values for the color and transparency (r, g, b, a)
# Here is an example of a rect definition:
# [100, 100, 400, 500, 0, 255, 0, 180]
# The example would create a rect from (100, 100)
# Extending 400 pixels across the x axis
# and 500 pixels across the y axis
# The rect would be green (0, 255, 0)
# and mostly opaque with some transparency (180)
# Whether the rect would be filled or not depends on if
# it is added to args.outputs.solids or args.outputs.borders
def tick args
tick_instructions args, "Sample app shows how to create solid squares."
args.outputs.labels << [460, 600, "Solids (x, y, w, h, r, g, b, a)"]
args.outputs.solids << [470, 520, 50, 50]
args.outputs.solids << [530, 520, 50, 50, 0, 0, 0]
args.outputs.solids << [590, 520, 50, 50, 255, 0, 0]
args.outputs.solids << [650, 520, 50, 50, 255, 0, 0, 128]
args.outputs.solids << [710, 520, 50, 50, 0, 0, 0, 128 + args.state.tick_count % 128]
args.outputs.labels << [460, 400, "Borders (x, y, w, h, r, g, b, a)"]
args.outputs.borders << [470, 320, 50, 50]
args.outputs.borders << [530, 320, 50, 50, 0, 0, 0]
args.outputs.borders << [590, 320, 50, 50, 255, 0, 0]
args.outputs.borders << [650, 320, 50, 50, 255, 0, 0, 128]
args.outputs.borders << [710, 320, 50, 50, 0, 0, 0, 128 + args.state.tick_count % 128]
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Rendering Basics - Sprites - main.rb
# ./samples/01_rendering_basics/04_sprites/app/main.rb
=begin
APIs listing that haven't been encountered in a previous sample apps:
- args.outputs.sprites: An array. Values in this array generate
sprites on the screen. The location of the sprite is assumed to
be under the mygame/ directory (the exception being dragonruby.png).
=end
# For all other display outputs, Sprites are your solution
# Sprites import images and display them with a certain rectangular area
# The image can be of any usual format and should be located within the folder,
# similar to additional fonts.
# Sprites have the following parameters
# Rectangular area (x, y, width, height)
# The image (path)
# Rotation (angle)
# Alpha (a)
def tick args
tick_instructions args, "Sample app shows how to render a sprite. Set its alpha, and rotate it."
args.outputs.labels << [460, 600, "Sprites (x, y, w, h, path, angle, a)"]
args.outputs.sprites << [460, 470, 128, 101, 'dragonruby.png']
args.outputs.sprites << [610, 470, 128, 101, 'dragonruby.png', args.state.tick_count % 360]
args.outputs.sprites << [760, 470, 128, 101, 'dragonruby.png', 0, args.state.tick_count % 255]
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Rendering Basics - Sounds - main.rb
# ./samples/01_rendering_basics/05_sounds/app/main.rb
=begin
APIs Listing that haven't been encountered in previous sample apps:
- sample: Chooses random element from array.
In this sample app, the target note is set by taking a sample from the collection
of available notes.
Reminders:
- String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
- args.outputs.labels: An array. The values generate a label.
The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.md.
=end
# This sample app allows users to test their musical skills by matching the piano sound that plays in each
# level to the correct note.
# Runs all the methods necessary for the game to function properly.
def tick args
args.outputs.labels << [640, 360, "Click anywhere to play a random sound.", 0, 1]
args.state.notes ||= [:C3, :D3, :E3, :F3, :G3, :A3, :B3, :C4]
if args.inputs.mouse.click
# Play a sound by adding a string to args.outputs.sounds
args.outputs.sounds << "sounds/#{args.state.notes.sample}.wav" # sound of target note is output
end
end
Input Basics - Keyboard - main.rb
# ./samples/02_input_basics/01_keyboard/app/main.rb
=begin
APIs listing that haven't been encountered in a previous sample apps:
- args.inputs.keyboard.key_up.KEY: The value of the properties will be set
to the frame that the key_up event occurred (the frame correlates
to args.state.tick_count). Otherwise the value will be nil. For a
full listing of keys, take a look at mygame/documentation/06-keyboard.md.
- args.state.PROPERTY: The state property on args is a dynamic
structure. You can define ANY property here with ANY type of
arbitrary nesting. Properties defined on args.state will be retained
across frames. If you attempt access a property that doesn't exist
on args.state, it will simply return nil (no exception will be thrown).
=end
# Along with outputs, inputs are also an essential part of video game development
# DragonRuby can take input from keyboards, mouse, and controllers.
# This sample app will cover keyboard input.
# args.inputs.keyboard.key_up.a will check to see if the a key has been pressed
# This will work with the other keys as well
def tick args
tick_instructions args, "Sample app shows how keyboard events are registered and accessed.", 360
# Notice how small_font accounts for all the remaining parameters
args.outputs.labels << { x: 460, y: row_to_px(args, 0), text: "Current game time: #{args.state.tick_count}", size_enum: -1 }
args.outputs.labels << { x: 460, y: row_to_px(args, 2), text: "Keyboard input: args.inputs.keyboard.key_up.h", size_enum: -1 }
args.outputs.labels << { x: 460, y: row_to_px(args, 3), text: "Press \"h\" on the keyboard.", size_enum: -1 }
# Input on a specifc key can be found through args.inputs.keyboard.key_up followed by the key
if args.inputs.keyboard.key_up.h
args.state.h_pressed_at = args.state.tick_count
end
# This code simplifies to if args.state.h_pressed_at has not been initialized, set it to false
args.state.h_pressed_at ||= false
if args.state.h_pressed_at
args.outputs.labels << { x: 460, y: row_to_px(args, 4), text: "\"h\" was pressed at time: #{args.state.h_pressed_at}", size_enum: -1 }
else
args.outputs.labels << { x: 460, y: row_to_px(args, 4), text: "\"h\" has never been pressed.", size_enum: -1 }
end
tick_help_text args
end
def row_to_px args, row_number, y_offset = 20
# This takes a row_number and converts it to pixels DragonRuby understands.
# Row 0 starts 5 units below the top of the grid
# Each row afterward is 20 units lower
args.grid.top - 5 - (y_offset * row_number)
end
# Don't worry about understanding the code within this method just yet.
# This method shows you the help text within the game.
def tick_help_text args
return unless args.state.h_pressed_at
args.state.key_value_history ||= {}
args.state.key_down_value_history ||= {}
args.state.key_held_value_history ||= {}
args.state.key_up_value_history ||= {}
if (args.inputs.keyboard.key_down.truthy_keys.length > 0 ||
args.inputs.keyboard.key_held.truthy_keys.length > 0 ||
args.inputs.keyboard.key_up.truthy_keys.length > 0)
args.state.help_available = true
args.state.no_activity_debounce = nil
else
args.state.no_activity_debounce ||= 5.seconds
args.state.no_activity_debounce -= 1
if args.state.no_activity_debounce <= 0
args.state.help_available = false
args.state.key_value_history = {}
args.state.key_down_value_history = {}
args.state.key_held_value_history = {}
args.state.key_up_value_history = {}
end
end
args.outputs.labels << { x: 10, y: row_to_px(args, 6), text: "This is the api for the keys you've pressed:", size_enum: -1, r: 180 }
if !args.state.help_available
args.outputs.labels << [10, row_to_px(args, 7), "Press a key and I'll show code to access the key and what value will be returned if you used the code.", small_font]
return
end
args.outputs.labels << { x: 10 , y: row_to_px(args, 7), text: "args.inputs.keyboard", size_enum: -2 }
args.outputs.labels << { x: 330, y: row_to_px(args, 7), text: "args.inputs.keyboard.key_down", size_enum: -2 }
args.outputs.labels << { x: 650, y: row_to_px(args, 7), text: "args.inputs.keyboard.key_held", size_enum: -2 }
args.outputs.labels << { x: 990, y: row_to_px(args, 7), text: "args.inputs.keyboard.key_up", size_enum: -2 }
fill_history args, :key_value_history, :down_or_held, nil
fill_history args, :key_down_value_history, :down, :key_down
fill_history args, :key_held_value_history, :held, :key_held
fill_history args, :key_up_value_history, :up, :key_up
render_help_labels args, :key_value_history, :down_or_held, nil, 10
render_help_labels args, :key_down_value_history, :down, :key_down, 330
render_help_labels args, :key_held_value_history, :held, :key_held, 650
render_help_labels args, :key_up_value_history, :up, :key_up, 990
end
def fill_history args, history_key, state_key, keyboard_method
fill_single_history args, history_key, state_key, keyboard_method, :raw_key
fill_single_history args, history_key, state_key, keyboard_method, :char
args.inputs.keyboard.keys[state_key].each do |key_name|
fill_single_history args, history_key, state_key, keyboard_method, key_name
end
end
def fill_single_history args, history_key, state_key, keyboard_method, key_name
current_value = args.inputs.keyboard.send(key_name)
if keyboard_method
current_value = args.inputs.keyboard.send(keyboard_method).send(key_name)
end
args.state.as_hash[history_key][key_name] ||= []
args.state.as_hash[history_key][key_name] << current_value
args.state.as_hash[history_key][key_name] = args.state.as_hash[history_key][key_name].reverse.uniq.take(3).reverse
end
def render_help_labels args, history_key, state_key, keyboard_method, x
idx = 8
args.outputs.labels << args.state
.as_hash[history_key]
.keys
.reverse
.map
.with_index do |k, i|
v = args.state.as_hash[history_key][k]
current_value = args.inputs.keyboard.send(k)
if keyboard_method
current_value = args.inputs.keyboard.send(keyboard_method).send(k)
end
idx += 2
[
{ x: x, y: row_to_px(args, idx + 0, 16), text: " .#{k} is #{current_value || "nil"}", size_enum: -2 },
{ x: x, y: row_to_px(args, idx + 1, 16), text: " was #{v}", size_enum: -2 }
]
end
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << { x: 0, y: y - 50, w: 1280, h: 60 }.solid!
args.outputs.debug << { x: 640, y: y, text: text,
size_enum: 1, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
args.outputs.debug << { x: 640, y: y - 25, text: "(click to dismiss instructions)",
size_enum: -2, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
end
Input Basics - Moving A Sprite - main.rb
# ./samples/02_input_basics/01_moving_a_sprite/app/main.rb
def tick args
# create a player and set default values
# for the player's x, y, w (width), and h (height)
args.state.player.x ||= 100
args.state.player.y ||= 100
args.state.player.w ||= 50
args.state.player.h ||= 50
# render the player to the screen
args.outputs.sprites << { x: args.state.player.x,
y: args.state.player.y,
w: args.state.player.w,
h: args.state.player.h,
path: 'sprites/square/green.png' }
# move the player around using the keyboard
if args.inputs.up
args.state.player.y += 10
elsif args.inputs.down
args.state.player.y -= 10
end
if args.inputs.left
args.state.player.x -= 10
elsif args.inputs.right
args.state.player.x += 10
end
end
$gtk.reset
Input Basics - Mouse - main.rb
# ./samples/02_input_basics/02_mouse/app/main.rb
=begin
APIs that haven't been encountered in a previous sample apps:
- args.inputs.mouse.click: This property will be set if the mouse was clicked.
- args.inputs.mouse.click.point.(x|y): The x and y location of the mouse.
- args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in.
- args.inputs.mouse.click.point.created_at_elapsed: How many frames have passed
since the click event.
Reminder:
- args.state.PROPERTY: The state property on args is a dynamic
structure. You can define ANY property here with ANY type of
arbitrary nesting. Properties defined on args.state will be retained
across frames. If you attempt access a property that doesn't exist
on args.state, it will simply return nil (no exception will be thrown).
=end
# This code demonstrates DragonRuby mouse input
# To see if the a mouse click occurred
# Use args.inputs.mouse.click
# Which returns a boolean
# To see where a mouse click occurred
# Use args.inputs.mouse.click.point.x AND
# args.inputs.mouse.click.point.y
# To see which frame the click occurred
# Use args.inputs.mouse.click.created_at
# To see how many frames its been since the click occurred
# Use args.inputs.mouse.click.created_at_elapsed
# Saving the click in args.state can be quite useful
def tick args
tick_instructions args, "Sample app shows how mouse events are registered and how to measure elapsed time."
x = 460
args.outputs.labels << small_label(args, x, 11, "Mouse input: args.inputs.mouse")
if args.inputs.mouse.click
args.state.last_mouse_click = args.inputs.mouse.click
end
if args.state.last_mouse_click
click = args.state.last_mouse_click
args.outputs.labels << small_label(args, x, 12, "Mouse click happened at: #{click.created_at}")
args.outputs.labels << small_label(args, x, 13, "Mouse clicked #{click.created_at_elapsed} ticks ago")
args.outputs.labels << small_label(args, x, 14, "Mouse click location: #{click.point.x}, #{click.point.y}")
else
args.outputs.labels << small_label(args, x, 12, "Mouse click has not occurred yet.")
args.outputs.labels << small_label(args, x, 13, "Please click mouse.")
end
end
def small_label args, x, row, message
# This method effectively combines the row_to_px and small_font methods
# It changes the given row value to a DragonRuby pixel value
# and adds the customization parameters
{ x: x, y: row_to_px(args, row), text: message, alignment_enum: -2 }
end
def row_to_px args, row_number
args.grid.top.shift_down(5).shift_down(20 * row_number)
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << { x: 0, y: y - 50, w: 1280, h: 60 }.solid!
args.outputs.debug << { x: 640, y: y, text: text, size_enum: 1, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
args.outputs.debug << { x: 640, y: y - 25, text: "(click to dismiss instructions)", size_enum: -2, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
end
Input Basics - Mouse Point To Rect - main.rb
# ./samples/02_input_basics/03_mouse_point_to_rect/app/main.rb
=begin
APIs that haven't been encountered in a previous sample apps:
- args.outputus.borders: An array. Values in this array will be rendered as
unfilled rectangles on the screen.
- ARRAY#inside_rect?: An array with at least two values is considered a point. An array
with at least four values is considered a rect. The inside_rect? function returns true
or false depending on if the point is inside the rect.
```
# Point: x: 100, y: 100
# Rect: x: 0, y: 0, w: 500, h: 500
# Result: true
[100, 100].inside_rect? [0, 0, 500, 500]
```
```
# Point: x: 100, y: 100
# Rect: x: 300, y: 300, w: 100, h: 100
# Result: false
[100, 100].inside_rect? [300, 300, 100, 100]
```
- args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in.
- args.inputs.mouse.click.point.created_at_elapsed: How many frames have passed
since the click event.
=end
# To determine whether a point is in a rect
# Use point.inside_rect? rect
# This is useful to determine if a click occurred in a rect
def tick args
tick_instructions args, "Sample app shows how to determing if a click happened inside a rectangle."
x = 460
args.outputs.labels << small_label(args, x, 15, "Click inside the blue box maybe ---->")
box = { x: 785, y: 370, w: 50, h: 50, r: 0, g: 0, b: 170 }
args.outputs.borders << box
# Saves the most recent click into args.state
# Unlike the other components of args,
# args.state does not reset every tick.
if args.inputs.mouse.click
args.state.last_mouse_click = args.inputs.mouse.click
end
if args.state.last_mouse_click
if args.state.last_mouse_click.point.inside_rect? box
args.outputs.labels << small_label(args, x, 16, "Mouse click happened *inside* the box.")
else
args.outputs.labels << small_label(args, x, 16, "Mouse click happened *outside* the box.")
end
else
args.outputs.labels << small_label(args, x, 16, "Mouse click has not occurred yet.")
end
end
def small_label args, x, row, message
{ x: x, y: row_to_px(args, row), text: message, size_enum: -2 }
end
def row_to_px args, row_number
args.grid.top.shift_down(5).shift_down(20 * row_number)
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << { x: 0, y: y - 50, w: 1280, h: 60 }.solid!
args.outputs.debug << { x: 640, y: y, text: text, size_enum: 1, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
args.outputs.debug << { x: 640, y: y - 25, text: "(click to dismiss instructions)", size_enum: -2, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
end
Input Basics - Mouse Rect To Rect - main.rb
# ./samples/02_input_basics/04_mouse_rect_to_rect/app/main.rb
=begin
APIs that haven't been encountered in a previous sample apps:
- args.outputs.borders: An array. Values in this array will be rendered as
unfilled rectangles on the screen.
- ARRAY#intersect_rect?: An array with at least four values is
considered a rect. The intersect_rect? function returns true
or false depending on if the two rectangles intersect.
```
# Rect One: x: 100, y: 100, w: 100, h: 100
# Rect Two: x: 0, y: 0, w: 500, h: 500
# Result: true
[100, 100, 100, 100].intersect_rect? [0, 0, 500, 500]
```
```
# Rect One: x: 100, y: 100, w: 10, h: 10
# Rect Two: x: 500, y: 500, w: 10, h: 10
# Result: false
[100, 100, 10, 10].intersect_rect? [500, 500, 10, 10]
```
=end
# Similarly, whether rects intersect can be found through
# rect1.intersect_rect? rect2
def tick args
tick_instructions args, "Sample app shows how to determine if two rectangles intersect."
x = 460
args.outputs.labels << small_label(args, x, 3, "Click anywhere on the screen")
# red_box = [460, 250, 355, 90, 170, 0, 0]
# args.outputs.borders << red_box
# args.state.box_collision_one and args.state.box_collision_two
# Are given values of a solid when they should be rendered
# They are stored in game so that they do not get reset every tick
if args.inputs.mouse.click
if !args.state.box_collision_one
args.state.box_collision_one = { x: args.inputs.mouse.click.point.x - 25,
y: args.inputs.mouse.click.point.y - 25,
w: 125, h: 125,
r: 180, g: 0, b: 0, a: 180 }
elsif !args.state.box_collision_two
args.state.box_collision_two = { x: args.inputs.mouse.click.point.x - 25,
y: args.inputs.mouse.click.point.y - 25,
w: 125, h: 125,
r: 0, g: 0, b: 180, a: 180 }
else
args.state.box_collision_one = nil
args.state.box_collision_two = nil
end
end
if args.state.box_collision_one
args.outputs.solids << args.state.box_collision_one
end
if args.state.box_collision_two
args.outputs.solids << args.state.box_collision_two
end
if args.state.box_collision_one && args.state.box_collision_two
if args.state.box_collision_one.intersect_rect? args.state.box_collision_two
args.outputs.labels << small_label(args, x, 4, 'The boxes intersect.')
else
args.outputs.labels << small_label(args, x, 4, 'The boxes do not intersect.')
end
else
args.outputs.labels << small_label(args, x, 4, '--')
end
end
def small_label args, x, row, message
{ x: x, y: row_to_px(args, row), text: message, size_enum: -2 }
end
def row_to_px args, row_number
args.grid.top - 5 - (20 * row_number)
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Input Basics - Controller - main.rb
# ./samples/02_input_basics/05_controller/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- args.current_controller.key_held.KEY: Will check to see if a specific key
is being held down on the controller.
If there is more than one controller being used, they can be differentiated by
using names like controller_one and controller_two.
For a full listing of buttons, take a look at mygame/documentation/08-controllers.md.
Reminder:
- args.state.PROPERTY: The state property on args is a dynamic
structure. You can define ANY property here with ANY type of
arbitrary nesting. Properties defined on args.state will be retained
across frames. If you attempt to access a property that doesn't exist
on args.state, it will simply return nil (no exception will be thrown).
In this sample app, args.state.BUTTONS is an array that stores the buttons of the controller.
The parameters of a button are:
1. the position (x, y)
2. the input key held on the controller
3. the text or name of the button
=end
# This sample app provides a visual demonstration of a standard controller, including
# the placement and function of all buttons.
class ControllerDemo
attr_accessor :inputs, :state, :outputs
# Calls the methods necessary for the app to run successfully.
def tick
process_inputs
render
end
# Starts with an empty collection of buttons.
# Adds buttons that are on the controller to the collection.
def process_inputs
state.target ||= :controller_one
state.buttons = []
if inputs.keyboard.key_down.tab
if state.target == :controller_one
state.target = :controller_two
elsif state.target == :controller_two
state.target = :controller_three
elsif state.target == :controller_three
state.target = :controller_four
elsif state.target == :controller_four
state.target = :controller_one
end
end
state.buttons << { x: 100, y: 500, active: current_controller.key_held.l1, text: "L1"}
state.buttons << { x: 100, y: 600, active: current_controller.key_held.l2, text: "L2"}
state.buttons << { x: 1100, y: 500, active: current_controller.key_held.r1, text: "R1"}
state.buttons << { x: 1100, y: 600, active: current_controller.key_held.r2, text: "R2"}
state.buttons << { x: 540, y: 450, active: current_controller.key_held.select, text: "Select"}
state.buttons << { x: 660, y: 450, active: current_controller.key_held.start, text: "Start"}
state.buttons << { x: 200, y: 300, active: current_controller.key_held.left, text: "Left"}
state.buttons << { x: 300, y: 400, active: current_controller.key_held.up, text: "Up"}
state.buttons << { x: 400, y: 300, active: current_controller.key_held.right, text: "Right"}
state.buttons << { x: 300, y: 200, active: current_controller.key_held.down, text: "Down"}
state.buttons << { x: 800, y: 300, active: current_controller.key_held.x, text: "X"}
state.buttons << { x: 900, y: 400, active: current_controller.key_held.y, text: "Y"}
state.buttons << { x: 1000, y: 300, active: current_controller.key_held.a, text: "A"}
state.buttons << { x: 900, y: 200, active: current_controller.key_held.b, text: "B"}
state.buttons << { x: 450 + current_controller.left_analog_x_perc * 100,
y: 100 + current_controller.left_analog_y_perc * 100,
active: current_controller.key_held.l3,
text: "L3" }
state.buttons << { x: 750 + current_controller.right_analog_x_perc * 100,
y: 100 + current_controller.right_analog_y_perc * 100,
active: current_controller.key_held.r3,
text: "R3" }
end
# Gives each button a square shape.
# If the button is being pressed or held (which means it is considered active),
# the square is filled in. Otherwise, the button simply has a border.
def render
state.buttons.each do |b|
rect = { x: b.x, y: b.y, w: 75, h: 75 }
if b.active # if button is pressed
outputs.solids << rect # rect is output as solid (filled in)
else
outputs.borders << rect # otherwise, output as border
end
# Outputs the text of each button using labels.
outputs.labels << { x: b.x, y: b.y + 95, text: b.text } # add 95 to place label above button
end
outputs.labels << { x: 10, y: 60, text: "Left Analog x: #{current_controller.left_analog_x_raw} (#{current_controller.left_analog_x_perc * 100}%)" }
outputs.labels << { x: 10, y: 30, text: "Left Analog y: #{current_controller.left_analog_y_raw} (#{current_controller.left_analog_y_perc * 100}%)" }
outputs.labels << { x: 1270, y: 60, text: "Right Analog x: #{current_controller.right_analog_x_raw} (#{current_controller.right_analog_x_perc * 100}%)", alignment_enum: 2 }
outputs.labels << { x: 1270, y: 30, text: "Right Analog y: #{current_controller.right_analog_y_raw} (#{current_controller.right_analog_y_perc * 100}%)" , alignment_enum: 2 }
outputs.labels << { x: 640, y: 60, text: "Target: #{state.target} (press tab to go to next controller)", alignment_enum: 1 }
outputs.labels << { x: 640, y: 30, text: "Connected: #{current_controller.connected}", alignment_enum: 1 }
end
def current_controller
if state.target == :controller_one
return inputs.controller_one
elsif state.target == :controller_two
return inputs.controller_two
elsif state.target == :controller_three
return inputs.controller_three
elsif state.target == :controller_four
return inputs.controller_four
end
end
end
$controller_demo = ControllerDemo.new
def tick args
tick_instructions args, "Sample app shows how controller input is handled. You'll need to connect a USB controller."
$controller_demo.inputs = args.inputs
$controller_demo.state = args.state
$controller_demo.outputs = args.outputs
$controller_demo.tick
end
# Resets the app.
def r
$gtk.reset
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Input Basics - Touch - main.rb
# ./samples/02_input_basics/06_touch/app/main.rb
def tick args
args.outputs.background_color = [ 0, 0, 0 ]
args.outputs.primitives << [640, 700, "Touch your screen.", 5, 1, 255, 255, 255].label
# If you don't want to get fancy, you can just look for finger_one
# (and _two, if you like), which are assigned in the order new touches hit
# the screen. If not nil, they are touching right now, and are just
# references to specific items in the args.input.touch hash.
# If finger_one lifts off, it will become nil, but finger_two, if it was
# touching, remains until it also lifts off. When all fingers lift off, the
# the next new touch will be finger_one again, but until then, new touches
# don't fill in earlier slots.
if !args.inputs.finger_one.nil?
args.outputs.primitives << { x: 640, y: 650, text: "Finger #1 is touching at (#{args.inputs.finger_one.x}, #{args.inputs.finger_one.y}).",
size_enum: 5, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
end
if !args.inputs.finger_two.nil?
args.outputs.primitives << { x: 640, y: 600, text: "Finger #2 is touching at (#{args.inputs.finger_two.x}, #{args.inputs.finger_two.y}).",
size_enum: 5, alignment_enum: 1, r: 255, g: 255, b: 255 }.label!
end
# Here's the more flexible interface: this will report as many simultaneous
# touches as the system can handle, but it's a little more effort to track
# them. Each item in the args.input.touch hash has a unique key (an
# incrementing integer) that exists until the finger lifts off. You can
# tell which order the touches happened globally by the key value, or
# by the touch[id].touch_order field, which resets to zero each time all
# touches have lifted.
args.state.colors ||= [
0xFF0000, 0x00FF00, 0x1010FF, 0xFFFF00, 0xFF00FF, 0x00FFFF, 0xFFFFFF
]
size = 100
args.inputs.touch.each { |k,v|
color = args.state.colors[v.touch_order % 7]
r = (color & 0xFF0000) >> 16
g = (color & 0x00FF00) >> 8
b = (color & 0x0000FF)
args.outputs.primitives << { x: v.x - (size / 2), y: v.y + (size / 2), w: size, h: size, r: r, g: g, b: b, a: 255 }.solid!
args.outputs.primitives << { x: v.x, y: v.y + size, text: k.to_s, alignment_enum: 1 }.label!
}
end
Input Basics - Managing Scenes - main.rb
# ./samples/02_input_basics/07_managing_scenes/app/main.rb
def tick args
# initialize the scene to scene 1
args.state.current_scene ||= :title_scene
# capture the current scene to verify it didn't change through
# the duration of tick
current_scene = args.state.current_scene
# tick whichever scene is current
case current_scene
when :title_scene
tick_title_scene args
when :game_scene
tick_game_scene args
when :game_over_scene
tick_game_over_scene args
end
# make sure that the current_scene flag wasn't set mid tick
if args.state.current_scene != current_scene
raise "Scene was changed incorrectly. Set args.state.next_scene to change scenes."
end
# if next scene was set/requested, then transition the current scene to the next scene
if args.state.next_scene
args.state.current_scene = args.state.next_scene
args.state.next_scene = nil
end
end
def tick_title_scene args
args.outputs.labels << { x: 640,
y: 360,
text: "Title Scene (click to go to game)",
alignment_enum: 1 }
if args.inputs.mouse.click
args.state.next_scene = :game_scene
end
end
def tick_game_scene args
args.outputs.labels << { x: 640,
y: 360,
text: "Game Scene (click to go to game over)",
alignment_enum: 1 }
if args.inputs.mouse.click
args.state.next_scene = :game_over_scene
end
end
def tick_game_over_scene args
args.outputs.labels << { x: 640,
y: 360,
text: "Game Over Scene (click to go to title)",
alignment_enum: 1 }
if args.inputs.mouse.click
args.state.next_scene = :title_scene
end
end
Rendering Sprites - Animation Using Separate Pngs - main.rb
# ./samples/03_rendering_sprites/01_animation_using_separate_pngs/app/main.rb
=begin
Reminders:
- String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
In this sample app, we're using string interpolation to iterate through images in the
sprites folder using their image path names.
- args.outputs.sprites: An array. Values in this array generate sprites on the screen.
The parameters are [X, Y, WIDTH, HEIGHT, IMAGE PATH]
For more information about sprites, go to mygame/documentation/05-sprites.md.
- args.outputs.labels: An array. Values in the array generate labels on the screen.
The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.md.
- args.inputs.keyboard.key_down.KEY: Determines if a key is in the down state, or pressed.
Stores the frame that key was pressed on.
For more information about the keyboard, go to mygame/documentation/06-keyboard.md.
=end
# This sample app demonstrates how sprite animations work.
# There are two sprites that animate forever and one sprite
# that *only* animates when you press the "f" key on the keyboard.
# This is the entry point to your game. The `tick` method
# executes at 60 frames per second. There are two methods
# in this tick "entry point": `looping_animation`, and the
# second method is `one_time_animation`.
def tick args
# uncomment the line below to see animation play out in slow motion
# args.gtk.slowmo! 6
looping_animation args
one_time_animation args
end
# This function shows how to animate a sprite that loops forever.
def looping_animation args
# Here we define a few local variables that will be sent
# into the magic function that gives us the correct sprite image
# over time. There are four things we need in order to figure
# out which sprite to show.
# 1. When to start the animation.
start_looping_at = 0
# 2. The number of pngs that represent the full animation.
number_of_sprites = 6
# 3. How long to show each png.
number_of_frames_to_show_each_sprite = 4
# 4. Whether the animation should loop once, or forever.
does_sprite_loop = true
# With the variables defined above, we can get a number
# which represents the sprite to show by calling the `frame_index` function.
# In this case the number will be between 0, and 5 (you can see the sprites
# in the ./sprites directory).
sprite_index = start_looping_at.frame_index number_of_sprites,
number_of_frames_to_show_each_sprite,
does_sprite_loop
# Now that we have `sprite_index, we can present the correct file.
args.outputs.sprites << { x: 100, y: 100, w: 100, h: 100, path: "sprites/dragon_fly_#{sprite_index}.png" }
# Try changing the numbers below to see how the animation changes:
args.outputs.sprites << { x: 100, y: 200, w: 100, h: 100, path: "sprites/dragon_fly_#{0.frame_index 6, 4, true}.png" }
end
# This function shows how to animate a sprite that executes
# only once when the "f" key is pressed.
def one_time_animation args
# This is just a label the shows instructions within the game.
args.outputs.labels << { x: 220, y: 350, text: "(press f to animate)" }
# If "f" is pressed on the keyboard...
if args.inputs.keyboard.key_down.f
# Print the frame that "f" was pressed on.
puts "Hello from main.rb! The \"f\" key was in the down state on frame: #{args.state.tick_count}"
# And MOST IMPORTANTLY set the point it time to start the animation,
# equal to "now" which is represented as args.state.tick_count.
# Also IMPORTANT, you'll notice that the value of when to start looping
# is stored in `args.state`. This construct's values are retained across
# executions of the `tick` method.
args.state.start_looping_at = args.state.tick_count
end
# These are the same local variables that were defined
# for the `looping_animation` function.
number_of_sprites = 6
number_of_frames_to_show_each_sprite = 4
# Except this sprite does not loop again. If the animation time has passed,
# then the frame_index function returns nil.
does_sprite_loop = false
sprite_index = args.state
.start_looping_at
.frame_index number_of_sprites,
number_of_frames_to_show_each_sprite,
does_sprite_loop
# This line sets the frame index to zero, if
# the animation duration has passed (frame_index returned nil).
# Remeber: we are not looping forever here.
sprite_index ||= 0
# Present the sprite.
args.outputs.sprites << { x: 100, y: 300, w: 100, h: 100, path: "sprites/dragon_fly_#{sprite_index}.png" }
tick_instructions args, "Sample app shows how to use Numeric#frame_index and string interpolation to animate a sprite over time."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Rendering Sprites - Animation Using Sprite Sheet - main.rb
# ./samples/03_rendering_sprites/02_animation_using_sprite_sheet/app/main.rb
def tick args
args.state.player.x ||= 100
args.state.player.y ||= 100
args.state.player.w ||= 64
args.state.player.h ||= 64
args.state.player.direction ||= 1
args.state.player.is_moving = false
# get the keyboard input and set player properties
if args.inputs.keyboard.right
args.state.player.x += 3
args.state.player.direction = 1
args.state.player.started_running_at ||= args.state.tick_count
elsif args.inputs.keyboard.left
args.state.player.x -= 3
args.state.player.direction = -1
args.state.player.started_running_at ||= args.state.tick_count
end
if args.inputs.keyboard.up
args.state.player.y += 1
args.state.player.started_running_at ||= args.state.tick_count
elsif args.inputs.keyboard.down
args.state.player.y -= 1
args.state.player.started_running_at ||= args.state.tick_count
end
# if no arrow keys are being pressed, set the player as not moving
if !args.inputs.keyboard.directional_vector
args.state.player.started_running_at = nil
end
# wrap player around the stage
if args.state.player.x > 1280
args.state.player.x = -64
args.state.player.started_running_at ||= args.state.tick_count
elsif args.state.player.x < -64
args.state.player.x = 1280
args.state.player.started_running_at ||= args.state.tick_count
end
if args.state.player.y > 720
args.state.player.y = -64
args.state.player.started_running_at ||= args.state.tick_count
elsif args.state.player.y < -64
args.state.player.y = 720
args.state.player.started_running_at ||= args.state.tick_count
end
# render player as standing or running
if args.state.player.started_running_at
args.outputs.sprites << running_sprite(args)
else
args.outputs.sprites << standing_sprite(args)
end
args.outputs.labels << [30, 700, "Use arrow keys to move around."]
end
def standing_sprite args
{
x: args.state.player.x,
y: args.state.player.y,
w: args.state.player.w,
h: args.state.player.h,
path: "sprites/horizontal-stand.png",
flip_horizontally: args.state.player.direction > 0
}
end
def running_sprite args
if !args.state.player.started_running_at
tile_index = 0
else
how_many_frames_in_sprite_sheet = 6
how_many_ticks_to_hold_each_frame = 3
should_the_index_repeat = true
tile_index = args.state
.player
.started_running_at
.frame_index(how_many_frames_in_sprite_sheet,
how_many_ticks_to_hold_each_frame,
should_the_index_repeat)
end
{
x: args.state.player.x,
y: args.state.player.y,
w: args.state.player.w,
h: args.state.player.h,
path: 'sprites/horizontal-run.png',
tile_x: 0 + (tile_index * args.state.player.w),
tile_y: 0,
tile_w: args.state.player.w,
tile_h: args.state.player.h,
flip_horizontally: args.state.player.direction > 0,
}
end
Rendering Sprites - Animation States - main.rb
# ./samples/03_rendering_sprites/03_animation_states/app/main.rb
class Game
attr_gtk
def defaults
state.show_debug_layer = true if state.tick_count == 0
player.tile_size = 64
player.speed = 3
player.slash_frames = 15
player.x ||= 50
player.y ||= 400
player.dir_x ||= 1
player.dir_y ||= -1
player.is_moving ||= false
state.watch_list ||= {}
state.enemies ||= []
end
def add_enemy
state.enemies << { x: 1200 * rand, y: 600 * rand, w: 64, h: 64 }
end
def sprite_horizontal_run
tile_index = 0.frame_index(6, 3, true)
tile_index = 0 if !player.is_moving
{
x: player.x,
y: player.y,
w: player.tile_size,
h: player.tile_size,
path: 'sprites/horizontal-run.png',
tile_x: 0 + (tile_index * player.tile_size),
tile_y: 0,
tile_w: player.tile_size,
tile_h: player.tile_size,
flip_horizontally: player.dir_x > 0,
# a: 40
}
end
def sprite_horizontal_stand
{
x: player.x,
y: player.y,
w: player.tile_size,
h: player.tile_size,
path: 'sprites/horizontal-stand.png',
flip_horizontally: player.dir_x > 0,
# a: 40
}
end
def sprite_horizontal_slash
tile_index = player.slash_at.frame_index(5, player.slash_frames.idiv(5), false) || 0
{
x: player.x - 41.25,
y: player.y - 41.25,
w: 165,
h: 165,
path: 'sprites/horizontal-slash.png',
tile_x: 0 + (tile_index * 128),
tile_y: 0,
tile_w: 128,
tile_h: 128,
flip_horizontally: player.dir_x > 0
}
end
def render_player
if player.slash_at
outputs.sprites << sprite_horizontal_slash
elsif player.is_moving
outputs.sprites << sprite_horizontal_run
else
outputs.sprites << sprite_horizontal_stand
end
end
def render_enemies
outputs.borders << state.enemies
end
def render_debug_layer
return if !state.show_debug_layer
outputs.labels << state.watch_list.map.with_index do |(k, v), i|
[30, 710 - i * 28, "#{k}: #{v || "(nil)"}"]
end
outputs.borders << player.slash_collision_rect
end
def slash_initiate?
# buffalo usb controller has a button and b button swapped lol
inputs.controller_one.key_down.a || inputs.keyboard.key_down.j
end
def input
# player movement
if slash_complete? && (vector = inputs.directional_vector)
player.x += vector.x * player.speed
player.y += vector.y * player.speed
end
player.slash_at = slash_initiate? if slash_initiate?
end
def calc_movement
# movement
if vector = inputs.directional_vector
state.debug_label = vector
player.dir_x = vector.x
player.dir_y = vector.y
player.is_moving = true
else
state.debug_label = vector
player.is_moving = false
end
end
def calc_slash
# re-calc the location of the swords collision box
if player.dir_x.positive?
player.slash_collision_rect = [player.x + player.tile_size,
player.y + player.tile_size.half - 10,
40, 20]
else
player.slash_collision_rect = [player.x - 32 - 8,
player.y + player.tile_size.half - 10,
40, 20]
end
# recalc sword's slash state
player.slash_at = nil if slash_complete?
# determine collision if the sword is at it's point of damaging
return unless slash_can_damage?
state.enemies.reject! { |e| e.intersect_rect? player.slash_collision_rect }
end
def slash_complete?
!player.slash_at || player.slash_at.elapsed?(player.slash_frames)
end
def slash_can_damage?
# damage occurs half way into the slash animation
return false if slash_complete?
return false if (player.slash_at + player.slash_frames.idiv(2)) != state.tick_count
return true
end
def calc
# generate an enemy if there aren't any on the screen
add_enemy if state.enemies.length == 0
calc_movement
calc_slash
end
# source is at http://github.com/amirrajan/dragonruby-link-to-the-past
def tick
defaults
render_enemies
render_player
outputs.labels << [30, 30, "Gamepad: D-Pad to move. B button to attack."]
outputs.labels << [30, 52, "Keyboard: WASD/Arrow keys to move. J to attack."]
render_debug_layer
input
calc
end
def player
state.player
end
end
$game = Game.new
def tick args
$game.args = args
$game.tick
end
$gtk.reset
Rendering Sprites - Animation States Advanced - main.rb
# ./samples/03_rendering_sprites/03_animation_states_advanced/app/main.rb
class Game
attr_gtk
def request_action name, at: nil
at ||= state.tick_count
state.player.requested_action = name
state.player.requested_action_at = at
end
def defaults
state.player.x ||= 64
state.player.y ||= 0
state.player.dx ||= 0
state.player.dy ||= 0
state.player.action ||= :standing
state.player.action_at ||= 0
state.player.next_action_queue ||= {}
state.player.facing ||= 1
state.player.jump_at ||= 0
state.player.jump_count ||= 0
state.player.max_speed ||= 1.0
state.sabre.x ||= state.player.x
state.sabre.y ||= state.player.y
state.actions_lookup ||= new_actions_lookup
end
def render
outputs.background_color = [32, 32, 32]
outputs[:scene].w = 128
outputs[:scene].h = 128
outputs[:scene].borders << { x: 0, y: 0, w: 128, h: 128, r: 255, g: 255, b: 255 }
render_player
render_sabre
args.outputs.sprites << { x: 320, y: 0, w: 640, h: 640, path: :scene }
args.outputs.labels << { x: 10, y: 100, text: "Controls:", r: 255, g: 255, b: 255, size_enum: -1 }
args.outputs.labels << { x: 10, y: 80, text: "Move: left/right", r: 255, g: 255, b: 255, size_enum: -1 }
args.outputs.labels << { x: 10, y: 60, text: "Jump: space | up | right click", r: 255, g: 255, b: 255, size_enum: -1 }
args.outputs.labels << { x: 10, y: 40, text: "Attack: f | j | left click", r: 255, g: 255, b: 255, size_enum: -1 }
end
def render_sabre
return if !state.sabre.is_active
sabre_index = 0.frame_index count: 4,
hold_for: 2,
repeat: true
offset = 0
offset = -8 if state.player.facing == -1
outputs[:scene].sprites << { x: state.sabre.x + offset,
y: state.sabre.y, w: 16, h: 16, path: "sprites/sabre-throw/#{sabre_index}.png" }
end
def new_actions_lookup
r = {
slash_0: {
frame_count: 6,
interrupt_count: 4,
path: "sprites/kenobi/slash-0/:index.png"
},
slash_1: {
frame_count: 6,
interrupt_count: 4,
path: "sprites/kenobi/slash-1/:index.png"
},
throw_0: {
frame_count: 8,
throw_frame: 2,
catch_frame: 6,
path: "sprites/kenobi/slash-2/:index.png"
},
throw_1: {
frame_count: 9,
throw_frame: 2,
catch_frame: 7,
path: "sprites/kenobi/slash-3/:index.png"
},
throw_2: {
frame_count: 9,
throw_frame: 2,
catch_frame: 7,
path: "sprites/kenobi/slash-4/:index.png"
},
slash_5: {
frame_count: 11,
path: "sprites/kenobi/slash-5/:index.png"
},
slash_6: {
frame_count: 8,
interrupt_count: 6,
path: "sprites/kenobi/slash-6/:index.png"
}
}
r.each.with_index do |(k, v), i|
v.name ||= k
v.index ||= i
v.hold_for ||= 5
v.duration ||= v.frame_count * v.hold_for
v.last_index ||= v.frame_count - 1
v.interrupt_count ||= v.frame_count
v.interrupt_duration ||= v.interrupt_count * v.hold_for
v.repeat ||= false
v.next_action ||= r[r.keys[i + 1]]
end
r
end
def render_player
flip_horizontally = if state.player.facing == -1
true
else
false
end
player_sprite = { x: state.player.x + 1 - 8,
y: state.player.y,
w: 16,
h: 16,
flip_horizontally: flip_horizontally }
if state.player.action == :standing
if state.player.y != 0
if state.player.jump_count <= 1
outputs[:scene].sprites << { **player_sprite, path: "sprites/kenobi/jumping.png" }
else
index = state.player.jump_at.frame_index count: 8, hold_for: 5, repeat: false
index ||= 7
outputs[:scene].sprites << { **player_sprite, path: "sprites/kenobi/second-jump/#{index}.png" }
end
elsif state.player.dx != 0
index = state.player.action_at.frame_index count: 4, hold_for: 5, repeat: true
outputs[:scene].sprites << { **player_sprite, path: "sprites/kenobi/run/#{index}.png" }
else
outputs[:scene].sprites << { **player_sprite, path: 'sprites/kenobi/standing.png'}
end
else
v = state.actions_lookup[state.player.action]
slash_frame_index = state.player.action_at.frame_index count: v.frame_count,
hold_for: v.hold_for,
repeat: v.repeat
slash_frame_index ||= v.last_index
slash_path = v.path.sub ":index", slash_frame_index.to_s
outputs[:scene].sprites << { **player_sprite, path: slash_path }
end
end
def calc_input
if state.player.next_action_queue.length > 2
raise "Code in calc assums that key length of state.player.next_action_queue will never be greater than 2."
end
if inputs.controller_one.key_down.a ||
inputs.mouse.button_left ||
inputs.keyboard.key_down.j ||
inputs.keyboard.key_down.f
request_action :attack
end
should_update_facing = false
if state.player.action == :standing
should_update_facing = true
else
key_0 = state.player.next_action_queue.keys[0]
key_1 = state.player.next_action_queue.keys[1]
if state.tick_count == key_0
should_update_facing = true
elsif state.tick_count == key_1
should_update_facing = true
elsif key_0 && key_1 && state.tick_count.between?(key_0, key_1)
should_update_facing = true
end
end
if should_update_facing && inputs.left_right.sign != state.player.facing.sign
state.player.dx = 0
if inputs.left
state.player.facing = -1
elsif inputs.right
state.player.facing = 1
end
state.player.dx += 0.1 * inputs.left_right
end
if state.player.action == :standing
state.player.dx += 0.1 * inputs.left_right
if state.player.dx.abs > state.player.max_speed
state.player.dx = state.player.max_speed * state.player.dx.sign
end
end
was_jump_requested = inputs.keyboard.key_down.up ||
inputs.keyboard.key_down.w ||
inputs.mouse.button_right ||
inputs.controller_one.key_down.up ||
inputs.controller_one.key_down.b ||
inputs.keyboard.key_down.space
can_jump = state.player.jump_at.elapsed_time > 20
if state.player.jump_count <= 1
can_jump = state.player.jump_at.elapsed_time > 10
end
if was_jump_requested && can_jump
if state.player.action == :slash_6
state.player.action = :standing
end
state.player.dy = 1
state.player.jump_count += 1
state.player.jump_at = state.tick_count
end
end
def calc
calc_input
calc_requested_action
calc_next_action
calc_sabre
calc_player_movement
if state.player.y <= 0 && state.player.dy < 0
state.player.y = 0
state.player.dy = 0
state.player.jump_at = 0
state.player.jump_count = 0
end
end
def calc_player_movement
state.player.x += state.player.dx
state.player.y += state.player.dy
state.player.dy -= 0.05
if state.player.y <= 0
state.player.y = 0
state.player.dy = 0
state.player.jump_at = 0
state.player.jump_count = 0
end
if state.player.dx.abs < 0.09
state.player.dx = 0
end
state.player.x = 8 if state.player.x < 8
state.player.x = 120 if state.player.x > 120
end
def calc_requested_action
return if !state.player.requested_action
return if state.player.requested_action_at > state.tick_count
player_action = state.player.action
player_action_at = state.player.action_at
# first attack
if state.player.requested_action == :attack
if player_action == :standing
state.player.next_action_queue.clear
state.player.next_action_queue[state.tick_count] = :slash_0
state.player.next_action_queue[state.tick_count + state.actions_lookup.slash_0.duration] = :standing
else
current_action = state.actions_lookup[state.player.action]
state.player.next_action_queue.clear
queue_at = player_action_at + current_action.interrupt_duration
queue_at = state.tick_count if queue_at < state.tick_count
next_action = current_action.next_action
next_action ||= { name: :standing,
duration: 4 }
if next_action
state.player.next_action_queue[queue_at] = next_action.name
state.player.next_action_queue[player_action_at +
current_action.interrupt_duration +
next_action.duration] = :standing
end
end
end
state.player.requested_action = nil
state.player.requested_action_at = nil
end
def calc_sabre
can_throw_sabre = true
sabre_throws = [:throw_0, :throw_1, :throw_2]
if !sabre_throws.include? state.player.action
state.sabre.facing = nil
state.sabre.is_active = false
return
end
current_action = state.actions_lookup[state.player.action]
throw_at = state.player.action_at + (current_action.throw_frame) * 5
catch_at = state.player.action_at + (current_action.catch_frame) * 5
if !state.tick_count.between? throw_at, catch_at
state.sabre.facing = nil
state.sabre.is_active = false
return
end
state.sabre.facing ||= state.player.facing
state.sabre.is_active = true
spline = [
[ 0, 0.25, 0.75, 1.0],
[1.0, 0.75, 0.25, 0]
]
throw_duration = catch_at - throw_at
current_progress = args.easing.ease_spline throw_at,
state.tick_count,
throw_duration,
spline
farthest_sabre_x = 32
state.sabre.y = state.player.y
state.sabre.x = state.player.x + farthest_sabre_x * current_progress * state.sabre.facing
end
def calc_next_action
return if !state.player.next_action_queue[state.tick_count]
state.player.previous_action = state.player.action
state.player.previous_action_at = state.player.action_at
state.player.previous_action_ended_at = state.tick_count
state.player.action = state.player.next_action_queue[state.tick_count]
state.player.action_at = state.tick_count
is_air_born = state.player.y != 0
if state.player.action == :slash_0
state.player.dy = 0 if state.player.dy > 0
if is_air_born
state.player.dy = 0.5
else
state.player.dx += 0.25 * state.player.facing
end
elsif state.player.action == :slash_1
state.player.dy = 0 if state.player.dy > 0
if is_air_born
state.player.dy = 0.5
else
state.player.dx += 0.25 * state.player.facing
end
elsif state.player.action == :throw_0
if is_air_born
state.player.dy = 1.0
end
state.player.dx += 0.5 * state.player.facing
elsif state.player.action == :throw_1
if is_air_born
state.player.dy = 1.0
end
state.player.dx += 0.5 * state.player.facing
elsif state.player.action == :throw_2
if is_air_born
state.player.dy = 1.0
end
state.player.dx += 0.5 * state.player.facing
elsif state.player.action == :slash_5
state.player.dy = 0 if state.player.dy < 0
if is_air_born
state.player.dy += 1.0
else
state.player.dy += 1.0
end
state.player.dx += 1.0 * state.player.facing
elsif state.player.action == :slash_6
state.player.dy = 0 if state.player.dy > 0
if is_air_born
state.player.dy = -0.5
end
state.player.dx += 0.5 * state.player.facing
end
end
def tick
defaults
calc
render
end
end
$game = Game.new
def tick args
$game.args = args
$game.tick
end
$gtk.reset
Rendering Sprites - Animation States Advanced - Metadata - ios_metadata.txt
# ./samples/03_rendering_sprites/03_animation_states_advanced/metadata/ios_metadata.txt
teamid=L7H57V9CRD
appid=com.scratchworkdevelopment.1bitanimate
appname=1-Bit Animate
version=1.0
devcert=iPhone Developer: Amirali Rajan (P2B6225J87)
prodcert=
Rendering Sprites - Color And Rotation - main.rb
# ./samples/03_rendering_sprites/04_color_and_rotation/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- merge: Returns a hash containing the contents of two original hashes.
Merge does not allow duplicate keys, so the value of a repeated key
will be overwritten.
For example, if we had two hashes
h1 = { "a" => 1, "b" => 2}
h2 = { "b" => 3, "c" => 3}
and we called the command
h1.merge(h2)
the result would the following hash
{ "a" => 1, "b" => 3, "c" => 3}.
Reminders:
- Hashes: Collection of unique keys and their corresponding values. The value can be found
using their keys.
In this sample app, we're using a hash to create a sprite.
- args.outputs.sprites: An array. The values generate a sprite.
The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE]
Before continuing with this sample app, it is HIGHLY recommended that you look
at mygame/documentation/05-sprites.md.
- args.inputs.keyboard.key_held.KEY: Determines if a key is being pressed.
For more information about the keyboard, go to mygame/documentation/06-keyboard.md.
- args.inputs.controller_one: Takes input from the controller based on what key is pressed.
For more information about the controller, go to mygame/documentation/08-controllers.md.
- num1.lesser(num2): Finds the lower value of the given options.
=end
# This sample app shows a car moving across the screen. It loops back around if it exceeds the dimensions of the screen,
# and also can be moved in different directions through keyboard input from the user.
# Calls the methods necessary for the game to run successfully.
def tick args
default args
render args.grid, args.outputs, args.state
calc args.state
process_inputs args
end
# Sets default values for the car sprite
# Initialization ||= only happens in the first frame
def default args
args.state.sprite.width = 19
args.state.sprite.height = 10
args.state.sprite.scale = 4
args.state.max_speed = 5
args.state.x ||= 100
args.state.y ||= 100
args.state.speed ||= 1
args.state.angle ||= 0
end
# Outputs sprite onto screen
def render grid, outputs, state
outputs.solids << [grid.rect, 70, 70, 70] # outputs gray background
outputs.sprites << [destination_rect(state), # sets first four parameters of car sprite
'sprites/86.png', # image path of car
state.angle,
opacity, # transparency
saturation,
source_rect(state), # sprite sub division/tile (tile x, y, w, h)
false, false, # don't flip sprites
rotation_anchor]
# also look at the create_sprite helper method
#
# For example:
#
# dest = destination_rect(state)
# source = source_rect(state),
# outputs.sprites << create_sprite(
# 'sprites/86.png',
# x: dest.x,
# y: dest.y,
# w: dest.w,
# h: dest.h,
# angle: state.angle,
# source_x: source.x,
# source_y: source.y,
# source_w: source.w,
# source_h: source.h,
# flip_h: false,
# flip_v: false,
# rotation_anchor_x: 0.7,
# rotation_anchor_y: 0.5
# )
end
# Creates sprite by setting values inside of a hash
def create_sprite path, options = {}
options = {
# dest x, y, w, h
x: 0,
y: 0,
w: 100,
h: 100,
# angle, rotation
angle: 0,
rotation_anchor_x: 0.5,
rotation_anchor_y: 0.5,
# color saturation (red, green, blue), transparency
r: 255,
g: 255,
b: 255,
a: 255,
# source x, y, width, height
source_x: 0,
source_y: 0,
source_w: -1,
source_h: -1,
# flip horiztonally, flip vertically
flip_h: false,
flip_v: false,
}.merge options
[
options[:x], options[:y], options[:w], options[:h], # dest rect keys
path,
options[:angle], options[:a], options[:r], options[:g], options[:b], # angle, color, alpha
options[:source_x], options[:source_y], options[:source_w], options[:source_h], # source rect keys
options[:flip_h], options[:flip_v], # flip
options[:rotation_anchor_x], options[:rotation_anchor_y], # rotation anchor
] # hash keys contain corresponding values
end
# Calls the calc_pos and calc_wrap methods.
def calc state
calc_pos state
calc_wrap state
end
# Changes sprite's position on screen
# Vectors have magnitude and direction, so the incremented x and y values give the car direction
def calc_pos state
state.x += state.angle.vector_x * state.speed # increments x by product of angle's x vector and speed
state.y += state.angle.vector_y * state.speed # increments y by product of angle's y vector and speed
state.speed *= 1.1 # scales speed up
state.speed = state.speed.lesser(state.max_speed) # speed is either current speed or max speed, whichever has a lesser value (ensures that the car doesn't go too fast or exceed the max speed)
end
# The screen's dimensions are 1280x720. If the car goes out of scope,
# it loops back around on the screen.
def calc_wrap state
# car returns to left side of screen if it disappears on right side of screen
# sprite.width refers to tile's size, which is multipled by scale (4) to make it bigger
state.x = -state.sprite.width * state.sprite.scale if state.x - 20 > 1280
# car wraps around to right side of screen if it disappears on the left side
state.x = 1280 if state.x + state.sprite.width * state.sprite.scale + 20 < 0
# car wraps around to bottom of screen if it disappears at the top of the screen
# if you subtract 520 pixels instead of 20 pixels, the car takes longer to reappear (try it!)
state.y = 0 if state.y - 20 > 720 # if 20 pixels less than car's y position is greater than vertical scope
# car wraps around to top of screen if it disappears at the bottom of the screen
state.y = 720 if state.y + state.sprite.height * state.sprite.scale + 20 < 0
end
# Changes angle of sprite based on user input from keyboard or controller
def process_inputs args
# NOTE: increasing the angle doesn't mean that the car will continue to go
# in a specific direction. The angle is increasing, which means that if the
# left key was kept in the "down" state, the change in the angle would cause
# the car to go in a counter-clockwise direction and form a circle (360 degrees)
if args.inputs.keyboard.key_held.left # if left key is pressed
args.state.angle += 2 # car's angle is incremented by 2
# The same applies to decreasing the angle. If the right key was kept in the
# "down" state, the decreasing angle would cause the car to go in a clockwise
# direction and form a circle (360 degrees)
elsif args.inputs.keyboard.key_held.right # if right key is pressed
args.state.angle -= 2 # car's angle is decremented by 2
# Input from a controller can also change the angle of the car
elsif args.inputs.controller_one.left_analog_x_perc != 0
args.state.angle += 2 * args.inputs.controller_one.left_analog_x_perc * -1
end
end
# A sprite's center of rotation can be altered
# Increasing either of these numbers would dramatically increase the
# car's drift when it turns!
def rotation_anchor
[0.7, 0.5]
end
# Sets opacity value of sprite to 255 so that it is not transparent at all
# Change it to 0 and you won't be able to see the car sprite on the screen
def opacity
255
end
# Sets the color of the sprite to white.
def saturation
[255, 255, 255]
end
# Sets definition of destination_rect (used to define the car sprite)
def destination_rect state
[state.x, state.y,
state.sprite.width * state.sprite.scale, # multiplies by 4 to set size
state.sprite.height * state.sprite.scale]
end
# Portion of a sprite (a tile)
# Sub division of sprite is denoted as a rectangle directly related to original size of .png
# Tile is located at bottom left corner within a 19x10 pixel rectangle (based on sprite.width, sprite.height)
def source_rect state
[0, 0, state.sprite.width, state.sprite.height]
end
Physics And Collisions - Simple - main.rb
# ./samples/04_physics_and_collisions/01_simple/app/main.rb
=begin
Reminders:
- ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect.
- args.outputs.solids: An array. The values generate a solid.
The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE]
=end
# This sample app shows collisions between two boxes.
# Runs methods needed for game to run properly.
def tick args
tick_instructions args, "Sample app shows how to move a square over time and determine collision."
defaults args
render args
calc args
end
# Sets default values.
def defaults args
# These values represent the moving box.
args.state.moving_box_speed = 10
args.state.moving_box_size = 100
args.state.moving_box_dx ||= 1
args.state.moving_box_dy ||= 1
args.state.moving_box ||= [0, 0, args.state.moving_box_size, args.state.moving_box_size] # moving_box_size is set as the width and height
# These values represent the center box.
args.state.center_box ||= [540, 260, 200, 200, 180]
args.state.center_box_collision ||= false # initially no collision
end
def render args
# If the game state denotes that a collision has occured,
# render a solid square, otherwise render a border instead.
if args.state.center_box_collision
args.outputs.solids << args.state.center_box
else
args.outputs.borders << args.state.center_box
end
# Then render the moving box.
args.outputs.solids << args.state.moving_box
end
# Generally in a pipeline for a game engine, you have rendering,
# game simulation (calculation), and input processing.
# This fuction represents the game simulation.
def calc args
position_moving_box args
determine_collision_center_box args
end
# Changes the position of the moving box on the screen by multiplying the change in x (dx) and change in y (dy) by the speed,
# and adding it to the current position.
# dx and dy are positive if the box is moving right and up, respectively
# dx and dy are negative if the box is moving left and down, respectively
def position_moving_box args
args.state.moving_box.x += args.state.moving_box_dx * args.state.moving_box_speed
args.state.moving_box.y += args.state.moving_box_dy * args.state.moving_box_speed
# 1280x720 are the virtual pixels you work with (essentially 720p).
screen_width = 1280
screen_height = 720
# Position of the box is denoted by the bottom left hand corner, in
# that case, we have to subtract the width of the box so that it stays
# in the scene (you can try deleting the subtraction to see how it
# impacts the box's movement).
if args.state.moving_box.x > screen_width - args.state.moving_box_size
args.state.moving_box_dx = -1 # moves left
elsif args.state.moving_box.x < 0
args.state.moving_box_dx = 1 # moves right
end
# Here, we're making sure the moving box remains within the vertical scope of the screen
if args.state.moving_box.y > screen_height - args.state.moving_box_size # if the box moves too high
args.state.moving_box_dy = -1 # moves down
elsif args.state.moving_box.y < 0 # if the box moves too low
args.state.moving_box_dy = 1 # moves up
end
end
def determine_collision_center_box args
# Collision is handled by the engine. You simply have to call the
# `intersect_rect?` function.
if args.state.moving_box.intersect_rect? args.state.center_box # if the two boxes intersect
args.state.center_box_collision = true # then a collision happened
else
args.state.center_box_collision = false # otherwise, no collision happened
end
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Physics And Collisions - Moving Objects - main.rb
# ./samples/04_physics_and_collisions/02_moving_objects/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- Hashes: Collection of unique keys and their corresponding values. The value can be found
using their keys.
For example, if we have a "numbers" hash that stores numbers in English as the
key and numbers in Spanish as the value, we'd have a hash that looks like this...
numbers = { "one" => "uno", "two" => "dos", "three" => "tres" }
and on it goes.
Now if we wanted to find the corresponding value of the "one" key, we could say
puts numbers["one"]
which would print "uno" to the console.
- num1.greater(num2): Returns the greater value.
For example, if we have the command
puts 4.greater(3)
the number 4 would be printed to the console since it has a greater value than 3.
Similar to lesser, which returns the lesser value.
- num1.lesser(num2): Finds the lower value of the given options.
For example, in the statement
a = 4.lesser(3)
3 has a lower value than 4, which means that the value of a would be set to 3,
but if the statement had been
a = 4.lesser(5)
4 has a lower value than 5, which means that the value of a would be set to 4.
- reject: Removes elements from a collection if they meet certain requirements.
For example, you can derive an array of odd numbers from an original array of
numbers 1 through 10 by rejecting all elements that are even (or divisible by 2).
- find_all: Finds all values that satisfy specific requirements.
For example, you can find all elements of a collection that are divisible by 2
or find all objects that have intersected with another object.
- abs: Returns the absolute value.
For example, the command
(-30).abs
would return 30 as a result.
- map: Ruby method used to transform data; used in arrays, hashes, and collections.
Can be used to perform an action on every element of a collection, such as multiplying
each element by 2 or declaring every element as a new entity.
Reminders:
- args.inputs.keyboard.KEY: Determines if a key has been pressed.
For more information about the keyboard, take a look at mygame/documentation/06-keyboard.md.
- ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect.
- args.outputs.solids: An array. The values generate a solid.
The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE]
For more information about solids, go to mygame/documentation/03-solids-and-borders.md.
=end
# Calls methods needed for game to run properly
def tick args
tick_instructions args, "Use LEFT and RIGHT arrow keys to move and SPACE to jump."
defaults args
render args
calc args
input args
end
# sets default values and creates empty collections
# initialization only happens in the first frame
def defaults args
fiddle args
args.state.enemy.hammers ||= []
args.state.enemy.hammer_queue ||= []
args.state.tick_count = args.state.tick_count
args.state.bridge_top = 128
args.state.player.x ||= 0 # initializes player's properties
args.state.player.y ||= args.state.bridge_top
args.state.player.w ||= 64
args.state.player.h ||= 64
args.state.player.dy ||= 0
args.state.player.dx ||= 0
args.state.enemy.x ||= 800 # initializes enemy's properties
args.state.enemy.y ||= 0
args.state.enemy.w ||= 128
args.state.enemy.h ||= 128
args.state.enemy.dy ||= 0
args.state.enemy.dx ||= 0
args.state.game_over_at ||= 0
end
# sets enemy, player, hammer values
def fiddle args
args.state.gravity = -0.3
args.state.enemy_jump_power = 10 # sets enemy values
args.state.enemy_jump_interval = 60
args.state.hammer_throw_interval = 40 # sets hammer values
args.state.hammer_launch_power_default = 5
args.state.hammer_launch_power_near = 2
args.state.hammer_launch_power_far = 7
args.state.hammer_upward_launch_power = 15
args.state.max_hammers_per_volley = 10
args.state.gap_between_hammers = 10
args.state.player_jump_power = 10 # sets player values
args.state.player_jump_power_duration = 10
args.state.player_max_run_speed = 10
args.state.player_speed_slowdown_rate = 0.9
args.state.player_acceleration = 1
args.state.hammer_size = 32
end
# outputs objects onto the screen
def render args
args.outputs.solids << 20.map_with_index do |i| # uses 20 squares to form bridge
# sets x by multiplying 64 to index to find pixel value (places all squares side by side)
# subtracts 64 from bridge_top because position is denoted by bottom left corner
[i * 64, args.state.bridge_top - 64, 64, 64]
end
args.outputs.solids << [args.state.x, args.state.y, args.state.w, args.state.h, 255, 0, 0]
args.outputs.solids << [args.state.player.x, args.state.player.y, args.state.player.w, args.state.player.h, 255, 0, 0] # outputs player onto screen (red box)
args.outputs.solids << [args.state.enemy.x, args.state.enemy.y, args.state.enemy.w, args.state.enemy.h, 0, 255, 0] # outputs enemy onto screen (green box)
args.outputs.solids << args.state.enemy.hammers # outputs enemy's hammers onto screen
end
# Performs calculations to move objects on the screen
def calc args
# Since velocity is the change in position, the change in x increases by dx. Same with y and dy.
args.state.player.x += args.state.player.dx
args.state.player.y += args.state.player.dy
# Since acceleration is the change in velocity, the change in y (dy) increases every frame
args.state.player.dy += args.state.gravity
# player's y position is either current y position or y position of top of
# bridge, whichever has a greater value
# ensures that the player never goes below the bridge
args.state.player.y = args.state.player.y.greater(args.state.bridge_top)
# player's x position is either the current x position or 0, whichever has a greater value
# ensures that the player doesn't go too far left (out of the screen's scope)
args.state.player.x = args.state.player.x.greater(0)
# player is not falling if it is located on the top of the bridge
args.state.player.falling = false if args.state.player.y == args.state.bridge_top
args.state.player.rect = [args.state.player.x, args.state.player.y, args.state.player.h, args.state.player.w] # sets definition for player
args.state.enemy.x += args.state.enemy.dx # velocity; change in x increases by dx
args.state.enemy.y += args.state.enemy.dy # same with y and dy
# ensures that the enemy never goes below the bridge
args.state.enemy.y = args.state.enemy.y.greater(args.state.bridge_top)
# ensures that the enemy never goes too far left (outside the screen's scope)
args.state.enemy.x = args.state.enemy.x.greater(0)
# objects that go up must come down because of gravity
args.state.enemy.dy += args.state.gravity
args.state.enemy.y = args.state.enemy.y.greater(args.state.bridge_top)
#sets definition of enemy
args.state.enemy.rect = [args.state.enemy.x, args.state.enemy.y, args.state.enemy.h, args.state.enemy.w]
if args.state.enemy.y == args.state.bridge_top # if enemy is located on the top of the bridge
args.state.enemy.dy = 0 # there is no change in y
end
# if 60 frames have passed and the enemy is not moving vertically
if args.state.tick_count.mod_zero?(args.state.enemy_jump_interval) && args.state.enemy.dy == 0
args.state.enemy.dy = args.state.enemy_jump_power # the enemy jumps up
end
# if 40 frames have passed or 5 frames have passed since the game ended
if args.state.tick_count.mod_zero?(args.state.hammer_throw_interval) || args.state.game_over_at.elapsed_time == 5
# rand will return a number greater than or equal to 0 and less than given variable's value (since max is excluded)
# that is why we're adding 1, to include the max possibility
volley_dx = (rand(args.state.hammer_launch_power_default) + 1) * -1 # horizontal movement (follow order of operations)
# if the horizontal distance between the player and enemy is less than 128 pixels
if (args.state.player.x - args.state.enemy.x).abs < 128
# the change in x won't be that great since the enemy and player are closer to each other
volley_dx = (rand(args.state.hammer_launch_power_near) + 1) * -1
end
# if the horizontal distance between the player and enemy is greater than 300 pixels
if (args.state.player.x - args.state.enemy.x).abs > 300
# change in x will be more drastic since player and enemy are so far apart
volley_dx = (rand(args.state.hammer_launch_power_far) + 1) * -1 # more drastic change
end
(rand(args.state.max_hammers_per_volley) + 1).map_with_index do |i|
args.state.enemy.hammer_queue << { # stores hammer values in a hash
x: args.state.enemy.x,
w: args.state.hammer_size,
h: args.state.hammer_size,
dx: volley_dx, # change in horizontal position
# multiplication operator takes precedence over addition operator
throw_at: args.state.tick_count + i * args.state.gap_between_hammers
}
end
end
# add elements from hammer_queue collection to the hammers collection by
# finding all hammers that were thrown before the current frame (have already been thrown)
args.state.enemy.hammers += args.state.enemy.hammer_queue.find_all do |h|
h[:throw_at] < args.state.tick_count
end
args.state.enemy.hammers.each do |h| # sets values for all hammers in collection
h[:y] ||= args.state.enemy.y + 130
h[:dy] ||= args.state.hammer_upward_launch_power
h[:dy] += args.state.gravity # acceleration is change in gravity
h[:x] += h[:dx] # incremented by change in position
h[:y] += h[:dy]
h[:rect] = [h[:x], h[:y], h[:w], h[:h]] # sets definition of hammer's rect
end
# reject hammers that have been thrown before current frame (have already been thrown)
args.state.enemy.hammer_queue = args.state.enemy.hammer_queue.reject do |h|
h[:throw_at] < args.state.tick_count
end
# any hammers with a y position less than 0 are rejected from the hammers collection
# since they have gone too far down (outside the scope's screen)
args.state.enemy.hammers = args.state.enemy.hammers.reject { |h| h[:y] < 0 }
# if there are any hammers that intersect with (or hit) the player,
# the reset_player method is called (so the game can start over)
if args.state.enemy.hammers.any? { |h| h[:rect].intersect_rect?(args.state.player.rect) }
reset_player args
end
# if the enemy's rect intersects with (or hits) the player,
# the reset_player method is called (so the game can start over)
if args.state.enemy.rect.intersect_rect? args.state.player.rect
reset_player args
end
end
# Resets the player by changing its properties back to the values they had at initialization
def reset_player args
args.state.player.x = 0
args.state.player.y = args.state.bridge_top
args.state.player.dy = 0
args.state.player.dx = 0
args.state.enemy.hammers.clear # empties hammer collection
args.state.enemy.hammer_queue.clear # empties hammer_queue
args.state.game_over_at = args.state.tick_count # game_over_at set to current frame (or passage of time)
end
# Processes input from the user to move the player
def input args
if args.inputs.keyboard.space # if the user presses the space bar
args.state.player.jumped_at ||= args.state.tick_count # jumped_at is set to current frame
# if the time that has passed since the jump is less than the player's jump duration and
# the player is not falling
if args.state.player.jumped_at.elapsed_time < args.state.player_jump_power_duration && !args.state.player.falling
args.state.player.dy = args.state.player_jump_power # change in y is set to power of player's jump
end
end
# if the space bar is in the "up" state (or not being pressed down)
if args.inputs.keyboard.key_up.space
args.state.player.jumped_at = nil # jumped_at is empty
args.state.player.falling = true # the player is falling
end
if args.inputs.keyboard.left # if left key is pressed
args.state.player.dx -= args.state.player_acceleration # dx decreases by acceleration (player goes left)
# dx is either set to current dx or the negative max run speed (which would be -10),
# whichever has a greater value
args.state.player.dx = args.state.player.dx.greater(-args.state.player_max_run_speed)
elsif args.inputs.keyboard.right # if right key is pressed
args.state.player.dx += args.state.player_acceleration # dx increases by acceleration (player goes right)
# dx is either set to current dx or max run speed (which would be 10),
# whichever has a lesser value
args.state.player.dx = args.state.player.dx.lesser(args.state.player_max_run_speed)
else
args.state.player.dx *= args.state.player_speed_slowdown_rate # dx is scaled down
end
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.space ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Physics And Collisions - Entities - main.rb
# ./samples/04_physics_and_collisions/03_entities/app/main.rb
=begin
Reminders:
- map: Ruby method used to transform data; used in arrays, hashes, and collections.
Can be used to perform an action on every element of a collection, such as multiplying
each element by 2 or declaring every element as a new entity.
- reject: Removes elements from a collection if they meet certain requirements.
For example, you can derive an array of odd numbers from an original array of
numbers 1 through 10 by rejecting all elements that are even (or divisible by 2).
- args.state.new_entity: Used when we want to create a new object, like a sprite or button.
In this sample app, new_entity is used to define the properties of enemies and bullets.
(Remember, you can use state to define ANY property and it will be retained across frames.)
- args.outputs.labels: An array. The values generate a label on the screen.
The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE]
- ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect.
- args.inputs.mouse.click.point.(x|y): The x and y location of the mouse.
=end
# This sample app shows enemies that contain an id value and the time they were created.
# These enemies can be removed by shooting at them with bullets.
# Calls all methods necessary for the game to function properly.
def tick args
tick_instructions args, "Sample app shows how to use args.state.new_entity along with collisions. CLICK to shoot a bullet."
defaults args
render args
calc args
process_inputs args
end
# Sets default values
# Enemies and bullets start off as empty collections
def defaults args
args.state.enemies ||= []
args.state.bullets ||= []
end
# Provides each enemy in enemies collection with rectangular border,
# as well as a label showing id and when they were created
def render args
# When you're calling a method that takes no arguments, you can use this & syntax on map.
# Numbers are being added to x and y in order to keep the text within the enemy's borders.
args.outputs.borders << args.state.enemies.map(&:rect)
args.outputs.labels << args.state.enemies.flat_map do |enemy|
[
[enemy.x + 4, enemy.y + 29, "id: #{enemy.entity_id}", -3, 0],
[enemy.x + 4, enemy.y + 17, "created_at: #{enemy.created_at}", -3, 0] # frame enemy was created
]
end
# Outputs bullets in bullets collection as rectangular solids
args.outputs.solids << args.state.bullets.map(&:rect)
end
# Calls all methods necessary for performing calculations
def calc args
add_new_enemies_if_needed args
move_bullets args
calculate_collisions args
remove_bullets_of_screen args
end
# Adds enemies to the enemies collection and sets their values
def add_new_enemies_if_needed args
return if args.state.enemies.length >= 10 # if 10 or more enemies, enemies are not added
return unless args.state.bullets.length == 0 # if user has not yet shot bullet, no enemies are added
args.state.enemies += (10 - args.state.enemies.length).map do # adds enemies so there are 10 total
args.state.new_entity(:enemy) do |e| # each enemy is declared as a new entity
e.x = 640 + 500 * rand # each enemy is given random position on screen
e.y = 600 * rand + 50
e.rect = [e.x, e.y, 130, 30] # sets definition for enemy's rect
end
end
end
# Moves bullets across screen
# Sets definition of the bullets
def move_bullets args
args.state.bullets.each do |bullet| # perform action on each bullet in collection
bullet.x += bullet.speed # increment x by speed (bullets fly horizontally across screen)
# By randomizing the value that increments bullet.y, the bullet does not fly straight up and out
# of the scope of the screen. Try removing what follows bullet.speed, or changing 0.25 to 1.25 to
# see what happens to the bullet's movement.
bullet.y += bullet.speed.*(0.25).randomize(:ratio, :sign)
bullet.rect = [bullet.x, bullet.y, bullet.size, bullet.size] # sets definition of bullet's rect
end
end
# Determines if a bullet hits an enemy
def calculate_collisions args
args.state.bullets.each do |bullet| # perform action on every bullet and enemy in collections
args.state.enemies.each do |enemy|
# if bullet has not exploded yet and the bullet hits an enemy
if !bullet.exploded && bullet.rect.intersect_rect?(enemy.rect)
bullet.exploded = true # bullet explodes
enemy.dead = true # enemy is killed
end
end
end
# All exploded bullets are rejected or removed from the bullets collection
# and any dead enemy is rejected from the enemies collection.
args.state.bullets = args.state.bullets.reject(&:exploded)
args.state.enemies = args.state.enemies.reject(&:dead)
end
# Bullets are rejected from bullets collection once their position exceeds the width of screen
def remove_bullets_of_screen args
args.state.bullets = args.state.bullets.reject { |bullet| bullet.x > 1280 } # screen width is 1280
end
# Calls fire_bullet method
def process_inputs args
fire_bullet args
end
# Once mouse is clicked by the user to fire a bullet, a new bullet is added to bullets collection
def fire_bullet args
return unless args.inputs.mouse.click # return unless mouse is clicked
args.state.bullets << args.state.new_entity(:bullet) do |bullet| # new bullet is declared a new entity
bullet.y = args.inputs.mouse.click.point.y # set to the y value of where the mouse was clicked
bullet.x = 0 # starts on the left side of the screen
bullet.size = 10
bullet.speed = 10 * rand + 2 # speed of a bullet is randomized
bullet.rect = [bullet.x, bullet.y, bullet.size, bullet.size] # definition is set
end
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.space ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Physics And Collisions - Box Collision - main.rb
# ./samples/04_physics_and_collisions/04_box_collision/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- first: Returns the first element of the array.
For example, if we have an array
numbers = [1, 2, 3, 4, 5]
and we call first by saying
numbers.first
the number 1 will be returned because it is the first element of the numbers array.
- num1.idiv(num2): Divides two numbers and returns an integer.
For example,
16.idiv(3) = 5, because 16 / 3 is 5.33333 returned as an integer.
16.idiv(4) = 4, because 16 / 4 is 4 and already has no decimal.
Reminders:
- find_all: Finds all values that satisfy specific requirements.
- ARRAY#intersect_rect?: An array with at least four values is
considered a rect. The intersect_rect? function returns true
or false depending on if the two rectangles intersect.
- reject: Removes elements from a collection if they meet certain requirements.
=end
# This sample app allows users to create tiles and place them anywhere on the screen as obstacles.
# The player can then move and maneuver around them.
class PoorManPlatformerPhysics
attr_accessor :grid, :inputs, :state, :outputs
# Calls all methods necessary for the app to run successfully.
def tick
defaults
render
calc
process_inputs
end
# Sets default values for variables.
# The ||= sign means that the variable will only be set to the value following the = sign if the value has
# not already been set before. Intialization happens only in the first frame.
def defaults
state.tile_size = 64
state.gravity = -0.2
state.previous_tile_size ||= state.tile_size
state.x ||= 0
state.y ||= 800
state.dy ||= 0
state.dx ||= 0
state.world ||= []
state.world_lookup ||= {}
state.world_collision_rects ||= []
end
# Outputs solids and borders of different colors for the world and collision_rects collections.
def render
# Sets a black background on the screen (Comment this line out and the background will become white.)
# Also note that black is the default color for when no color is assigned.
outputs.solids << grid.rect
# The position, size, and color (white) are set for borders given to the world collection.
# Try changing the color by assigning different numbers (between 0 and 255) to the last three parameters.
outputs.borders << state.world.map do |x, y|
[x * state.tile_size,
y * state.tile_size,
state.tile_size,
state.tile_size, 255, 255, 255]
end
# The top, bottom, and sides of the borders for collision_rects are different colors.
outputs.borders << state.world_collision_rects.map do |e|
[
[e[:top], 0, 170, 0], # top is a shade of green
[e[:bottom], 0, 100, 170], # bottom is a shade of greenish-blue
[e[:left_right], 170, 0, 0], # left and right are a shade of red
]
end
# Sets the position, size, and color (a shade of green) of the borders of only the player's
# box and outputs it. If you change the 180 to 0, the player's box will be black and you
# won't be able to see it (because it will match the black background).
outputs.borders << [state.x,
state.y,
state.tile_size,
state.tile_size, 0, 180, 0]
end
# Calls methods needed to perform calculations.
def calc
calc_world_lookup
calc_player
end
# Performs calculations on world_lookup and sets values.
def calc_world_lookup
# If the tile size isn't equal to the previous tile size,
# the previous tile size is set to the tile size,
# and world_lookup hash is set to empty.
if state.tile_size != state.previous_tile_size
state.previous_tile_size = state.tile_size
state.world_lookup = {} # empty hash
end
# return if the world_lookup hash has keys (or, in other words, is not empty)
# return unless the world collection has values inside of it (or is not empty)
return if state.world_lookup.keys.length > 0
return unless state.world.length > 0
# Starts with an empty hash for world_lookup.
# Searches through the world and finds the coordinates that exist.
state.world_lookup = {}
state.world.each { |x, y| state.world_lookup[[x, y]] = true }
# Assigns world_collision_rects for every sprite drawn.
state.world_collision_rects =
state.world_lookup
.keys
.map do |coord_x, coord_y|
s = state.tile_size
# multiply by tile size so the grid coordinates; sets pixel value
# don't forget that position is denoted by bottom left corner
# set x = coord_x or y = coord_y and see what happens!
x = s * coord_x
y = s * coord_y
{
# The values added to x, y, and s position the world_collision_rects so they all appear
# stacked (on top of world rects) but don't directly overlap.
# Remove these added values and mess around with the rect placement!
args: [coord_x, coord_y],
left_right: [x, y + 4, s, s - 6], # hash keys and values
top: [x + 4, y + 6, s - 8, s - 6],
bottom: [x + 1, y - 1, s - 2, s - 8],
}
end
end
# Performs calculations to change the x and y values of the player's box.
def calc_player
# Since acceleration is the change in velocity, the change in y (dy) increases every frame.
# What goes up must come down because of gravity.
state.dy += state.gravity
# Calls the calc_box_collision and calc_edge_collision methods.
calc_box_collision
calc_edge_collision
# Since velocity is the change in position, the change in y increases by dy. Same with x and dx.
state.y += state.dy
state.x += state.dx
# Scales dx down.
state.dx *= 0.8
end
# Calls methods needed to determine collisions between player and world_collision rects.
def calc_box_collision
return unless state.world_lookup.keys.length > 0 # return unless hash has atleast 1 key
collision_floor!
collision_left!
collision_right!
collision_ceiling!
end
# Finds collisions between the bottom of the player's rect and the top of a world_collision_rect.
def collision_floor!
return unless state.dy <= 0 # return unless player is going down or is as far down as possible
player_rect = [state.x, state.y - 0.1, state.tile_size, state.tile_size] # definition of player
# Goes through world_collision_rects to find all intersections between the bottom of player's rect and
# the top of a world_collision_rect (hence the "-0.1" above)
floor_collisions = state.world_collision_rects
.find_all { |r| r[:top].intersect_rect?(player_rect, collision_tollerance) }
.first
return unless floor_collisions # return unless collision occurred
state.y = floor_collisions[:top].top # player's y is set to the y of the top of the collided rect
state.dy = 0 # if a collision occurred, the player's rect isn't moving because its path is blocked
end
# Finds collisions between the player's left side and the right side of a world_collision_rect.
def collision_left!
return unless state.dx < 0 # return unless player is moving left
player_rect = [state.x - 0.1, state.y, state.tile_size, state.tile_size]
# Goes through world_collision_rects to find all intersections beween the player's left side and the
# right side of a world_collision_rect.
left_side_collisions = state.world_collision_rects
.find_all { |r| r[:left_right].intersect_rect?(player_rect, collision_tollerance) }
.first
return unless left_side_collisions # return unless collision occurred
# player's x is set to the value of the x of the collided rect's right side
state.x = left_side_collisions[:left_right].right
state.dx = 0 # player isn't moving left because its path is blocked
end
# Finds collisions between the right side of the player and the left side of a world_collision_rect.
def collision_right!
return unless state.dx > 0 # return unless player is moving right
player_rect = [state.x + 0.1, state.y, state.tile_size, state.tile_size]
# Goes through world_collision_rects to find all intersections between the player's right side
# and the left side of a world_collision_rect (hence the "+0.1" above)
right_side_collisions = state.world_collision_rects
.find_all { |r| r[:left_right].intersect_rect?(player_rect, collision_tollerance) }
.first
return unless right_side_collisions # return unless collision occurred
# player's x is set to the value of the collided rect's left, minus the size of a rect
# tile size is subtracted because player's position is denoted by bottom left corner
state.x = right_side_collisions[:left_right].left - state.tile_size
state.dx = 0 # player isn't moving right because its path is blocked
end
# Finds collisions between the top of the player's rect and the bottom of a world_collision_rect.
def collision_ceiling!
return unless state.dy > 0 # return unless player is moving up
player_rect = [state.x, state.y + 0.1, state.tile_size, state.tile_size]
# Goes through world_collision_rects to find intersections between the bottom of a
# world_collision_rect and the top of the player's rect (hence the "+0.1" above)
ceil_collisions = state.world_collision_rects
.find_all { |r| r[:bottom].intersect_rect?(player_rect, collision_tollerance) }
.first
return unless ceil_collisions # return unless collision occurred
# player's y is set to the bottom y of the rect it collided with, minus the size of a rect
state.y = ceil_collisions[:bottom].y - state.tile_size
state.dy = 0 # if a collision occurred, the player isn't moving up because its path is blocked
end
# Makes sure the player remains within the screen's dimensions.
def calc_edge_collision
#Ensures that the player doesn't fall below the map.
if state.y < 0
state.y = 0
state.dy = 0
#Ensures that the player doesn't go too high.
# Position of player is denoted by bottom left hand corner, which is why we have to subtract the
# size of the player's box (so it remains visible on the screen)
elsif state.y > 720 - state.tile_size # if the player's y position exceeds the height of screen
state.y = 720 - state.tile_size # the player will remain as high as possible while staying on screen
state.dy = 0
end
# Ensures that the player remains in the horizontal range that it is supposed to.
if state.x >= 1280 - state.tile_size && state.dx > 0 # if player moves too far right
state.x = 1280 - state.tile_size # player will remain as right as possible while staying on screen
state.dx = 0
elsif state.x <= 0 && state.dx < 0 # if player moves too far left
state.x = 0 # player will remain as left as possible while remaining on screen
state.dx = 0
end
end
# Processes input from the user on the keyboard.
def process_inputs
if inputs.mouse.down
state.world_lookup = {}
x, y = to_coord inputs.mouse.down.point # gets x, y coordinates for the grid
if state.world.any? { |loc| loc == [x, y] } # checks if coordinates duplicate
state.world = state.world.reject { |loc| loc == [x, y] } # erases tile space
else
state.world << [x, y] # If no duplicates, adds to world collection
end
end
# Sets dx to 0 if the player lets go of arrow keys.
if inputs.keyboard.key_up.right
state.dx = 0
elsif inputs.keyboard.key_up.left
state.dx = 0
end
# Sets dx to 3 in whatever direction the player chooses.
if inputs.keyboard.key_held.right # if right key is pressed
state.dx = 3
elsif inputs.keyboard.key_held.left # if left key is pressed
state.dx = -3
end
#Sets dy to 5 to make the player ~fly~ when they press the space bar
if inputs.keyboard.key_held.space
state.dy = 5
end
end
def to_coord point
# Integer divides (idiv) point.x to turn into grid
# Then, you can just multiply each integer by state.tile_size later so the grid coordinates.
[point.x.idiv(state.tile_size), point.y.idiv(state.tile_size)]
end
# Represents the tolerance for a collision between the player's rect and another rect.
def collision_tollerance
0.0
end
end
$platformer_physics = PoorManPlatformerPhysics.new
def tick args
$platformer_physics.grid = args.grid
$platformer_physics.inputs = args.inputs
$platformer_physics.state = args.state
$platformer_physics.outputs = args.outputs
$platformer_physics.tick
tick_instructions args, "Sample app shows platformer collisions. CLICK to place box. ARROW keys to move around. SPACE to jump."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Physics And Collisions - Box Collision 2 - main.rb
# ./samples/04_physics_and_collisions/05_box_collision_2/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- times: Performs an action a specific number of times.
For example, if we said
5.times puts "Hello DragonRuby",
then we'd see the words "Hello DragonRuby" printed on the console 5 times.
- split: Divides a string into substrings based on a delimiter.
For example, if we had a command
"DragonRuby is awesome".split(" ")
then the result would be
["DragonRuby", "is", "awesome"] because the words are separated by a space delimiter.
- join: Opposite of split; converts each element of array to a string separated by delimiter.
For example, if we had a command
["DragonRuby","is","awesome"].join(" ")
then the result would be
"DragonRuby is awesome".
Reminders:
- to_s: Returns a string representation of an object.
For example, if we had
500.to_s
the string "500" would be returned.
Similar to to_i, which returns an integer representation of an object.
- elapsed_time: How many frames have passed since the click event.
- args.outputs.labels: An array. Values in the array generate labels on the screen.
The parameters are: [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.md.
- inputs.mouse.down: Determines whether or not the mouse is being pressed down.
The position of the mouse when it is pressed down can be found using inputs.mouse.down.point.(x|y).
- first: Returns the first element of the array.
- num1.idiv(num2): Divides two numbers and returns an integer.
- find_all: Finds all values that satisfy specific requirements.
- ARRAY#intersect_rect?: Returns true or false depending on if two rectangles intersect.
- reject: Removes elements from a collection if they meet certain requirements.
- String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
=end
MAP_FILE_PATH = 'app/map.txt' # the map.txt file in the app folder contains exported map
class MetroidvaniaStarter
attr_accessor :grid, :inputs, :state, :outputs, :gtk
# Calls methods needed to run the game properly.
def tick
defaults
render
calc
process_inputs
end
# Sets all the default variables.
# '||' states that initialization occurs only in the first frame.
def defaults
state.tile_size = 64
state.gravity = -0.2
state.player_width = 60
state.player_height = 64
state.collision_tolerance = 0.0
state.previous_tile_size ||= state.tile_size
state.x ||= 0
state.y ||= 800
state.dy ||= 0
state.dx ||= 0
attempt_load_world_from_file
state.world_lookup ||= { }
state.world_collision_rects ||= []
state.mode ||= :creating # alternates between :creating and :selecting for sprite selection
state.select_menu ||= [0, 720, 1280, 720]
#=======================================IMPORTANT=======================================#
# When adding sprites, please label them "image1.png", "image2.png", image3".png", etc.
# Once you have done that, adjust "state.sprite_quantity" to how many sprites you have.
#=======================================================================================#
state.sprite_quantity ||= 20 # IMPORTANT TO ALTER IF SPRITES ADDED IF YOU ADD MORE SPRITES
state.sprite_coords ||= []
state.banner_coords ||= [640, 680 + 720]
state.sprite_selected ||= 1
state.map_saved_at ||= 0
# Sets all the cordinate values for the sprite selection screen into a grid
# Displayed when 's' is pressed by player to access sprites
if state.sprite_coords == [] # if sprite_coords is an empty array
count = 1
temp_x = 165 # sets a starting x and y position for display
temp_y = 500 + 720
state.sprite_quantity.times do # for the number of sprites you have
state.sprite_coords += [[temp_x, temp_y, count]] # add element to sprite_coords array
temp_x += 100 # increment temp_x
count += 1 # increment count
if temp_x > 1280 - (165 + 50) # if exceeding specific horizontal width on screen
temp_x = 165 # a new row of sprites starts
temp_y -= 75 # new row of sprites starts 75 units lower than the previous row
end
end
end
end
# Places sprites
def render
# Sets the x, y, width, height, and image path for each sprite in the world collection.
outputs.sprites << state.world.map do |x, y, sprite|
[x * state.tile_size, # multiply by size so grid coordinates; pixel value of location
y * state.tile_size,
state.tile_size,
state.tile_size,
'sprites/image' + sprite.to_s + '.png'] # uses concatenation to create unique image path
end
# Outputs sprite for the player by setting x, y, width, height, and image path
outputs.sprites << [state.x,
state.y,
state.player_width,
state.player_height,'sprites/player.png']
# Outputs labels as primitives in top right of the screen
outputs.primitives << [920, 700, 'Press \'s\' to access sprites.', 1, 0].label
outputs.primitives << [920, 675, 'Click existing sprite to delete.', 1, 0].label
outputs.primitives << [920, 640, '<- and -> to move.', 1, 0].label
outputs.primitives << [920, 615, 'Press and hold space to jump.', 1, 0].label
outputs.primitives << [920, 580, 'Press \'e\' to export current map.', 1, 0].label
# if the map is saved and less than 120 frames have passed, the label is displayed
if state.map_saved_at > 0 && state.map_saved_at.elapsed_time < 120
outputs.primitives << [920, 555, 'Map has been exported!', 1, 0, 50, 100, 50].label
end
# If player hits 's', following appears
if state.mode == :selecting
# White background for sprite selection
outputs.primitives << [state.select_menu, 255, 255, 255].solid
# Select tile label at the top of the screen
outputs.primitives << [state.banner_coords.x, state.banner_coords.y, "Select Sprite (sprites located in \"sprites\" folder)", 10, 1, 0, 0, 0, 255].label
# Places sprites in locations calculated in the defaults function
outputs.primitives << state.sprite_coords.map do |x, y, order|
[x, y, 50, 50, 'sprites/image' + order.to_s + ".png"].sprite
end
end
# Creates sprite following mouse to help indicate which sprite you have selected
# 10 is subtracted from the mouse's x position so that the sprite is not covered by the mouse icon
outputs.primitives << [inputs.mouse.position.x - 10, inputs.mouse.position.y,
10, 10, 'sprites/image' + state.sprite_selected.to_s + ".png"].sprite
end
# Calls methods that perform calculations
def calc
calc_in_game
calc_sprite_selection
end
# Calls methods that perform calculations (if in creating mode)
def calc_in_game
return unless state.mode == :creating
calc_world_lookup
calc_player
end
def calc_world_lookup
# If the tile size isn't equal to the previous tile size,
# the previous tile size is set to the tile size,
# and world_lookup hash is set to empty.
if state.tile_size != state.previous_tile_size
state.previous_tile_size = state.tile_size
state.world_lookup = {}
end
# return if world_lookup is not empty or if world is empty
return if state.world_lookup.keys.length > 0
return unless state.world.length > 0
# Searches through the world and finds the coordinates that exist
state.world_lookup = {}
state.world.each { |x, y| state.world_lookup[[x, y]] = true }
# Assigns collision rects for every sprite drawn
state.world_collision_rects =
state.world_lookup
.keys
.map do |coord_x, coord_y|
s = state.tile_size
# Multiplying by s (the size of a tile) ensures that the rect is
# placed exactly where you want it to be placed (causes grid to coordinate)
# How many pixels horizontally across and vertically up and down
x = s * coord_x
y = s * coord_y
{
args: [coord_x, coord_y],
left_right: [x, y + 4, s, s - 6], # hash keys and values
top: [x + 4, y + 6, s - 8, s - 6],
bottom: [x + 1, y - 1, s - 2, s - 8],
}
end
end
# Calculates movement of player and calls methods that perform collision calculations
def calc_player
state.dy += state.gravity # what goes up must come down because of gravity
calc_box_collision
calc_edge_collision
state.y += state.dy # Since velocity is the change in position, the change in y increases by dy
state.x += state.dx # Ditto line above but dx and x
state.dx *= 0.8 # Scales dx down
end
# Calls methods that determine whether the player collides with any world_collision_rects.
def calc_box_collision
return unless state.world_lookup.keys.length > 0 # return unless hash has atleast 1 key
collision_floor
collision_left
collision_right
collision_ceiling
end
# Finds collisions between the bottom of the player's rect and the top of a world_collision_rect.
def collision_floor
return unless state.dy <= 0 # return unless player is going down or is as far down as possible
player_rect = [state.x, next_y, state.tile_size, state.tile_size] # definition of player
# Runs through all the sprites on the field and finds all intersections between player's
# bottom and the top of a rect.
floor_collisions = state.world_collision_rects
.find_all { |r| r[:top].intersect_rect?(player_rect, state.collision_tolerance) }
.first
return unless floor_collisions # performs following changes if a collision has occurred
state.y = floor_collisions[:top].top # y of player is set to the y of the colliding rect's top
state.dy = 0 # no change in y because the player's path is blocked
end
# Finds collisions between the player's left side and the right side of a world_collision_rect.
def collision_left
return unless state.dx < 0 # return unless player is moving left
player_rect = [next_x, state.y, state.tile_size, state.tile_size]
# Runs through all the sprites on the field and finds all intersections between the player's left side
# and the right side of a rect.
left_side_collisions = state.world_collision_rects
.find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) }
.first
return unless left_side_collisions # return unless collision occurred
state.x = left_side_collisions[:left_right].right # sets player's x to the x of the colliding rect's right side
state.dx = 0 # no change in x because the player's path is blocked
end
# Finds collisions between the right side of the player and the left side of a world_collision_rect.
def collision_right
return unless state.dx > 0 # return unless player is moving right
player_rect = [next_x, state.y, state.tile_size, state.tile_size]
# Runs through all the sprites on the field and finds all intersections between the player's
# right side and the left side of a rect.
right_side_collisions = state.world_collision_rects
.find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) }
.first
return unless right_side_collisions # return unless collision occurred
state.x = right_side_collisions[:left_right].left - state.tile_size # player's x is set to the x of colliding rect's left side (minus tile size since x is the player's bottom left corner)
state.dx = 0 # no change in x because the player's path is blocked
end
# Finds collisions between the top of the player's rect and the bottom of a world_collision_rect.
def collision_ceiling
return unless state.dy > 0 # return unless player is moving up
player_rect = [state.x, next_y, state.player_width, state.player_height]
# Runs through all the sprites on the field and finds all intersections between the player's top
# and the bottom of a rect.
ceil_collisions = state.world_collision_rects
.find_all { |r| r[:bottom].intersect_rect?(player_rect, state.collision_tolerance) }
.first
return unless ceil_collisions # return unless collision occurred
state.y = ceil_collisions[:bottom].y - state.tile_size # player's y is set to the y of the colliding rect's bottom (minus tile size)
state.dy = 0 # no change in y because the player's path is blocked
end
# Makes sure the player remains within the screen's dimensions.
def calc_edge_collision
# Ensures that player doesn't fall below the map
if next_y < 0 && state.dy < 0 # if player is moving down and is about to fall (next_y) below the map's scope
state.y = 0 # 0 is the lowest the player can be while staying on the screen
state.dy = 0
# Ensures player doesn't go insanely high
elsif next_y > 720 - state.tile_size && state.dy > 0 # if player is moving up, about to exceed map's scope
state.y = 720 - state.tile_size # if we don't subtract tile_size, we won't be able to see the player on the screen
state.dy = 0
end
# Ensures that player remains in the horizontal range its supposed to
if state.x >= 1280 - state.tile_size && state.dx > 0 # if the player is moving too far right
state.x = 1280 - state.tile_size # farthest right the player can be while remaining in the screen's scope
state.dx = 0
elsif state.x <= 0 && state.dx < 0 # if the player is moving too far left
state.x = 0 # farthest left the player can be while remaining in the screen's scope
state.dx = 0
end
end
def calc_sprite_selection
# Does the transition to bring down the select sprite screen
if state.mode == :selecting && state.select_menu.y != 0
state.select_menu.y = 0 # sets y position of select menu (shown when 's' is pressed)
state.banner_coords.y = 680 # sets y position of Select Sprite banner
state.sprite_coords = state.sprite_coords.map do |x, y, w, h|
[x, y - 720, w, h] # sets definition of sprites (change '-' to '+' and the sprites can't be seen)
end
end
# Does the transition to leave the select sprite screen
if state.mode == :creating && state.select_menu.y != 720
state.select_menu.y = 720 # sets y position of select menu (menu is retreated back up)
state.banner_coords.y = 1000 # sets y position of Select Sprite banner
state.sprite_coords = state.sprite_coords.map do |x, y, w, h|
[x, y + 720, w, h] # sets definition of all elements in collection
end
end
end
def process_inputs
# If the state.mode is back and if the menu has retreated back up
# call methods that process user inputs
if state.mode == :creating
process_inputs_player_movement
process_inputs_place_tile
end
# For each sprite_coordinate added, check what sprite was selected
if state.mode == :selecting
state.sprite_coords.map do |x, y, order| # goes through all sprites in collection
# checks that a specific sprite was pressed based on x, y position
if inputs.mouse.down && # the && (and) sign means ALL statements must be true for the evaluation to be true
inputs.mouse.down.point.x >= x && # x is greater than or equal to sprite's x and
inputs.mouse.down.point.x <= x + 50 && # x is less than or equal to 50 pixels to the right
inputs.mouse.down.point.y >= y && # y is greater than or equal to sprite's y
inputs.mouse.down.point.y <= y + 50 # y is less than or equal to 50 pixels up
state.sprite_selected = order # sprite is chosen
end
end
end
inputs_export_stage
process_inputs_show_available_sprites
end
# Moves the player based on the keys they press on their keyboard
def process_inputs_player_movement
# Sets dx to 0 if the player lets go of arrow keys (player won't move left or right)
if inputs.keyboard.key_up.right
state.dx = 0
elsif inputs.keyboard.key_up.left
state.dx = 0
end
# Sets dx to 3 in whatever direction the player chooses when they hold down (or press) the left or right keys
if inputs.keyboard.key_held.right
state.dx = 3
elsif inputs.keyboard.key_held.left
state.dx = -3
end
# Sets dy to 5 to make the player ~fly~ when they press the space bar on their keyboard
if inputs.keyboard.key_held.space
state.dy = 5
end
end
# Adds tile in the place the user holds down the mouse
def process_inputs_place_tile
if inputs.mouse.down # if mouse is pressed
state.world_lookup = {}
x, y = to_coord inputs.mouse.down.point # gets x, y coordinates for the grid
# Checks if any coordinates duplicate (already exist in world)
if state.world.any? { |existing_x, existing_y, n| existing_x == x && existing_y == y }
#erases existing tile space by rejecting them from world
state.world = state.world.reject do |existing_x, existing_y, n|
existing_x == x && existing_y == y
end
else
state.world << [x, y, state.sprite_selected] # If no duplicates, add the sprite
end
end
end
# Stores/exports world collection's info (coordinates, sprite number) into a file
def inputs_export_stage
if inputs.keyboard.key_down.e # if "e" is pressed
export_string = state.world.map do |x, y, sprite_number| # stores world info in a string
"#{x},#{y},#{sprite_number}" # using string interpolation
end
gtk.write_file(MAP_FILE_PATH, export_string.join("\n")) # writes string into a file
state.map_saved_at = state.tick_count # frame number (passage of time) when the map was saved
end
end
def process_inputs_show_available_sprites
# Based on keyboard input, the entity (:creating and :selecting) switch
if inputs.keyboard.key_held.s && state.mode == :creating # if "s" is pressed and currently creating
state.mode = :selecting # will change to selecting
inputs.keyboard.clear # VERY IMPORTANT! If not present, it'll flicker between on and off
elsif inputs.keyboard.key_held.s && state.mode == :selecting # if "s" is pressed and currently selecting
state.mode = :creating # will change to creating
inputs.keyboard.clear # VERY IMPORTANT! If not present, it'll flicker between on and off
end
end
# Loads the world collection by reading from the map.txt file in the app folder
def attempt_load_world_from_file
return if state.world # return if the world collection is already populated
state.world ||= [] # initialized as an empty collection
exported_world = gtk.read_file(MAP_FILE_PATH) # reads the file using the path mentioned at top of code
return unless exported_world # return unless the file read was successful
state.world = exported_world.each_line.map do |l| # perform action on each line of exported_world
l.split(',').map(&:to_i) # calls split using ',' as a delimiter, and invokes .map on the collection,
# calling to_i (converts to integers) on each element
end
end
# Adds the change in y to y to determine the next y position of the player.
def next_y
state.y + state.dy
end
# Determines next x position of player
def next_x
if state.dx < 0 # if the player moves left
return state.x - (state.tile_size - state.player_width) # subtracts since the change in x is negative (player is moving left)
else
return state.x + (state.tile_size - state.player_width) # adds since the change in x is positive (player is moving right)
end
end
def to_coord point
# Integer divides (idiv) point.x to turn into grid
# Then, you can just multiply each integer by state.tile_size
# later and huzzah. Grid coordinates
[point.x.idiv(state.tile_size), point.y.idiv(state.tile_size)]
end
end
$metroidvania_starter = MetroidvaniaStarter.new
def tick args
$metroidvania_starter.grid = args.grid
$metroidvania_starter.inputs = args.inputs
$metroidvania_starter.state = args.state
$metroidvania_starter.outputs = args.outputs
$metroidvania_starter.gtk = args.gtk
$metroidvania_starter.tick
end
Physics And Collisions - Box Collision 3 - main.rb
# ./samples/04_physics_and_collisions/06_box_collision_3/app/main.rb
class Game
attr_gtk
def tick
defaults
render
input_edit_map
input_player
calc_player
end
def defaults
state.gravity = -0.4
state.drag = 0.15
state.tile_size = 32
state.player.size = 16
state.player.jump_power = 12
state.tiles ||= []
state.player.y ||= 800
state.player.x ||= 100
state.player.dy ||= 0
state.player.dx ||= 0
state.player.jumped_down_at ||= 0
state.player.jumped_at ||= 0
calc_player_rect if !state.player.rect
end
def render
outputs.labels << [10, 10.from_top, "tile: click to add a tile, hold X key and click to delete a tile."]
outputs.labels << [10, 35.from_top, "move: use left and right to move, space to jump, down and space to jump down."]
outputs.labels << [10, 55.from_top, " You can jump through or jump down through tiles with a height of 1."]
outputs.background_color = [80, 80, 80]
outputs.sprites << tiles.map(&:sprite)
outputs.sprites << (player.rect.merge path: 'sprites/square/green.png')
mouse_overlay = {
x: (inputs.mouse.x.ifloor state.tile_size),
y: (inputs.mouse.y.ifloor state.tile_size),
w: state.tile_size,
h: state.tile_size,
a: 100
}
mouse_overlay = mouse_overlay.merge r: 255 if state.delete_mode
if state.mouse_held
outputs.primitives << mouse_overlay.border!
else
outputs.primitives << mouse_overlay.solid!
end
end
def input_edit_map
state.mouse_held = true if inputs.mouse.down
state.mouse_held = false if inputs.mouse.up
if inputs.keyboard.x
state.delete_mode = true
elsif inputs.keyboard.key_up.x
state.delete_mode = false
end
return unless state.mouse_held
ordinal = { x: (inputs.mouse.x.idiv state.tile_size),
y: (inputs.mouse.y.idiv state.tile_size) }
found = find_tile ordinal
if !found && !state.delete_mode
tiles << (state.new_entity :tile, ordinal)
recompute_tiles
elsif found && state.delete_mode
tiles.delete found
recompute_tiles
end
end
def input_player
player.dx += inputs.left_right
if inputs.keyboard.key_down.space && inputs.keyboard.down
player.dy = player.jump_power * -1
player.jumped_at = 0
player.jumped_down_at = state.tick_count
elsif inputs.keyboard.key_down.space
player.dy = player.jump_power
player.jumped_at = state.tick_count
player.jumped_down_at = 0
end
end
def calc_player
calc_player_rect
calc_below
calc_left
calc_right
calc_above
calc_player_dy
calc_player_dx
reset_player if player_off_stage?
end
def calc_player_rect
player.rect = current_player_rect
player.next_rect = player.rect.merge x: player.x + player.dx,
y: player.y + player.dy
player.prev_rect = player.rect.merge x: player.x - player.dx,
y: player.y - player.dy
end
def calc_below
return unless player.dy <= 0
tiles_below = find_tiles { |t| t.rect.top <= player.prev_rect.y }
collision = find_colliding_tile tiles_below, (player.rect.merge y: player.next_rect.y)
return unless collision
if collision.neighbors.b == :none && player.jumped_down_at.elapsed_time < 10
player.dy = -1
else
player.y = collision.rect.y + state.tile_size
player.dy = 0
end
end
def calc_left
return unless player.dx < 0
tiles_left = find_tiles { |t| t.rect.right <= player.prev_rect.left }
collision = find_colliding_tile tiles_left, (player.rect.merge x: player.next_rect.x)
return unless collision
player.x = collision.rect.right
player.dx = 0
end
def calc_right
return unless player.dx > 0
tiles_right = find_tiles { |t| t.rect.left >= player.prev_rect.right }
collision = find_colliding_tile tiles_right, (player.rect.merge x: player.next_rect.x)
return unless collision
player.x = collision.rect.left - player.rect.w
player.dx = 0
end
def calc_above
return unless player.dy > 0
tiles_above = find_tiles { |t| t.rect.y >= player.prev_rect.y }
collision = find_colliding_tile tiles_above, (player.rect.merge y: player.next_rect.y)
return unless collision
return if collision.neighbors.t == :none
player.dy = 0
player.y = collision.rect.bottom - player.rect.h
end
def calc_player_dx
player.dx = player.dx.clamp(-5, 5)
player.dx *= 0.9
player.x += player.dx
end
def calc_player_dy
player.y += player.dy
player.dy += state.gravity
player.dy += player.dy * state.drag ** 2 * -1
end
def reset_player
player.x = 100
player.y = 720
player.dy = 0
end
def recompute_tiles
tiles.each do |t|
t.w = state.tile_size
t.h = state.tile_size
t.neighbors = tile_neighbors t, tiles
t.rect = [t.x * state.tile_size,
t.y * state.tile_size,
state.tile_size,
state.tile_size].rect.to_hash
sprite_sub_path = t.neighbors.mask.map { |m| flip_bit m }.join("")
t.sprite = {
x: t.x * state.tile_size,
y: t.y * state.tile_size,
w: state.tile_size,
h: state.tile_size,
path: "sprites/tile/wall-#{sprite_sub_path}.png"
}
end
end
def flip_bit bit
return 0 if bit == 1
return 1
end
def player
state.player
end
def player_off_stage?
player.rect.top < grid.bottom ||
player.rect.right < grid.left ||
player.rect.left > grid.right
end
def current_player_rect
{ x: player.x, y: player.y, w: player.size, h: player.size }
end
def tiles
state.tiles
end
def find_tile ordinal
tiles.find { |t| t.x == ordinal.x && t.y == ordinal.y }
end
def find_tiles &block
tiles.find_all(&block)
end
def find_colliding_tile tiles, target
tiles.find { |t| t.rect.intersect_rect? target }
end
def tile_neighbors tile, other_points
t = find_tile x: tile.x + 0, y: tile.y + 1
r = find_tile x: tile.x + 1, y: tile.y + 0
b = find_tile x: tile.x + 0, y: tile.y - 1
l = find_tile x: tile.x - 1, y: tile.y + 0
tile_t, tile_r, tile_b, tile_l = 0
tile_t = 1 if t
tile_r = 1 if r
tile_b = 1 if b
tile_l = 1 if l
state.new_entity :neighbors, mask: [tile_t, tile_r, tile_b, tile_l],
t: t ? :some : :none,
b: b ? :some : :none,
l: l ? :some : :none,
r: r ? :some : :none
end
end
def tick args
$game ||= Game.new
$game.args = args
$game.tick
end
Physics And Collisions - Jump Physics - main.rb
# ./samples/04_physics_and_collisions/07_jump_physics/app/main.rb
=begin
Reminders:
- args.state.new_entity: Used when we want to create a new object, like a sprite or button.
For example, if we want to create a new button, we would declare it as a new entity and
then define its properties. (Remember, you can use state to define ANY property and it will
be retained across frames.)
- args.outputs.solids: An array. The values generate a solid.
The parameters for a solid are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE]
For more information about solids, go to mygame/documentation/03-solids-and-borders.md.
- num1.greater(num2): Returns the greater value.
- Hashes: Collection of unique keys and their corresponding values. The value can be found
using their keys.
- ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect.
=end
# This sample app is a game that requires the user to jump from one platform to the next.
# As the player successfully clears platforms, they become smaller and move faster.
class VerticalPlatformer
attr_gtk
# declares vertical platformer as new entity
def s
state.vertical_platformer ||= state.new_entity(:vertical_platformer)
state.vertical_platformer
end
# creates a new platform using a hash
def new_platform hash
s.new_entity_strict(:platform, hash) # platform key
end
# calls methods needed for game to run properly
def tick
defaults
render
calc
input
end
def init_game
s.platforms ||= [ # initializes platforms collection with two platforms using hashes
new_platform(x: 0, y: 0, w: 700, h: 32, dx: 1, speed: 0, rect: nil),
new_platform(x: 0, y: 300, w: 700, h: 32, dx: 1, speed: 0, rect: nil), # 300 pixels higher
]
s.tick_count = args.state.tick_count
s.gravity = -0.3 # what goes up must come down because of gravity
s.player.platforms_cleared ||= 0 # counts how many platforms the player has successfully cleared
s.player.x ||= 0 # sets player values
s.player.y ||= 100
s.player.w ||= 64
s.player.h ||= 64
s.player.dy ||= 0 # change in position
s.player.dx ||= 0
s.player_jump_power = 15
s.player_jump_power_duration = 10
s.player_max_run_speed = 5
s.player_speed_slowdown_rate = 0.9
s.player_acceleration = 1
s.camera ||= { y: -100 } # shows view on screen (as the player moves upward, the camera does too)
end
# Sets default values
def defaults
init_game
end
# Outputs objects onto the screen
def render
outputs.solids << s.platforms.map do |p| # outputs platforms onto screen
[p.x + 300, p.y - s.camera[:y], p.w, p.h] # add 300 to place platform in horizontal center
# don't forget, position of platform is denoted by bottom left hand corner
end
# outputs player using hash
outputs.solids << {
x: s.player.x + 300, # player positioned on top of platform
y: s.player.y - s.camera[:y],
w: s.player.w,
h: s.player.h,
r: 100, # color saturation
g: 100,
b: 200
}
end
# Performs calculations
def calc
s.platforms.each do |p| # for each platform in the collection
p.rect = [p.x, p.y, p.w, p.h] # set the definition
end
# sets player point by adding half the player's width to the player's x
s.player.point = [s.player.x + s.player.w.half, s.player.y] # change + to - and see what happens!
# search the platforms collection to find if the player's point is inside the rect of a platform
collision = s.platforms.find { |p| s.player.point.inside_rect? p.rect }
# if collision occurred and player is moving down (or not moving vertically at all)
if collision && s.player.dy <= 0
s.player.y = collision.rect.y + collision.rect.h - 2 # player positioned on top of platform
s.player.dy = 0 if s.player.dy < 0 # player stops moving vertically
if !s.player.platform
s.player.dx = 0 # no horizontal movement
end
# changes horizontal position of player by multiplying collision change in x (dx) by speed and adding it to current x
s.player.x += collision.dx * collision.speed
s.player.platform = collision # player is on the platform that it collided with (or landed on)
if s.player.falling # if player is falling
s.player.dx = 0 # no horizontal movement
end
s.player.falling = false
s.player.jumped_at = nil
else
s.player.platform = nil # player is not on a platform
s.player.y += s.player.dy # velocity is the change in position
s.player.dy += s.gravity # acceleration is the change in velocity; what goes up must come down
end
s.platforms.each do |p| # for each platform in the collection
p.x += p.dx * p.speed # x is incremented by product of dx and speed (causes platform to move horizontally)
# changes platform's x so it moves left and right across the screen (between -300 and 300 pixels)
if p.x < -300 # if platform goes too far left
p.dx *= -1 # dx is scaled down
p.x = -300 # as far left as possible within scope
elsif p.x > (1000 - p.w) # if platform's x is greater than 300
p.dx *= -1
p.x = (1000 - p.w) # set to 300 (as far right as possible within scope)
end
end
delta = (s.player.y - s.camera[:y] - 100) # used to position camera view
if delta > -200
s.camera[:y] += delta * 0.01 # allows player to see view as they move upwards
s.player.x += s.player.dx # velocity is change in position; change in x increases by dx
# searches platform collection to find platforms located more than 300 pixels above the player
has_platforms = s.platforms.find { |p| p.y > (s.player.y + 300) }
if !has_platforms # if there are no platforms 300 pixels above the player
width = 700 - (700 * (0.1 * s.player.platforms_cleared)) # the next platform is smaller than previous
s.player.platforms_cleared += 1 # player successfully cleared another platform
last_platform = s.platforms[-1] # platform just cleared becomes last platform
# another platform is created 300 pixels above the last platform, and this
# new platform has a smaller width and moves faster than all previous platforms
s.platforms << new_platform(x: (700 - width) * rand, # random x position
y: last_platform.y + 300,
w: width,
h: 32,
dx: 1.randomize(:sign), # random change in x
speed: 2 * s.player.platforms_cleared,
rect: nil)
end
else
# game over
s.as_hash.clear # otherwise clear the hash (no new platform is necessary)
init_game
end
end
# Takes input from the user to move the player
def input
if inputs.keyboard.space # if the space bar is pressed
s.player.jumped_at ||= s.tick_count # set to current frame
# if the time that has passed since the jump is less than the duration of a jump (10 frames)
# and the player is not falling
if s.player.jumped_at.elapsed_time < s.player_jump_power_duration && !s.player.falling
s.player.dy = s.player_jump_power # player jumps up
end
end
if inputs.keyboard.key_up.space # if space bar is in "up" state
s.player.falling = true # player is falling
end
if inputs.keyboard.left # if left key is pressed
s.player.dx -= s.player_acceleration # player's position changes, decremented by acceleration
s.player.dx = s.player.dx.greater(-s.player_max_run_speed) # dx is either current dx or -5, whichever is greater
elsif inputs.keyboard.right # if right key is pressed
s.player.dx += s.player_acceleration # player's position changes, incremented by acceleration
s.player.dx = s.player.dx.lesser(s.player_max_run_speed) # dx is either current dx or 5, whichever is lesser
else
s.player.dx *= s.player_speed_slowdown_rate # scales dx down
end
end
end
$game = VerticalPlatformer.new
def tick args
$game.args = args
$game.tick
end
Physics And Collisions - Bouncing On Collision - ball.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/ball.rb
GRAVITY = -0.08
class Ball
attr_accessor :velocity, :center, :radius, :collision_enabled
def initialize args
#Start the ball in the top center
#@x = args.grid.w / 2
#@y = args.grid.h - 20
@velocity = {x: 0, y: 0}
#@width = 20
#@height = @width
@radius = 20.0 / 2.0
@center = {x: (args.grid.w / 2), y: (args.grid.h)}
#@left_wall = (args.state.board_width + args.grid.w / 8)
#@right_wall = @left_wall + args.state.board_width
@left_wall = 0
@right_wall = $args.grid.right
@max_velocity = 7
@collision_enabled = true
end
#Move the ball according to its velocity
def update args
@center.x += @velocity.x
@center.y += @velocity.y
@velocity.y += GRAVITY
alpha = 0.2
if @center.y-@radius <= 0
@velocity.y = (@velocity.y.abs*0.7).abs
@velocity.x = (@velocity.x.abs*0.9).abs * ((@velocity.x < 0) ? -1 : 1)
if @velocity.y.abs() < alpha
@velocity.y=0
end
if @velocity.x.abs() < alpha
@velocity.x=0
end
end
if @center.x > args.grid.right+@radius*2
@center.x = 0-@radius
elsif @center.x< 0-@radius*2
@center.x = args.grid.right + @radius
end
end
def wallBounds args
#if @x < @left_wall || @x + @width > @right_wall
#@velocity.x *= -1.1
#if @velocity.x > @max_velocity
#@velocity.x = @max_velocity
#elsif @velocity.x < @max_velocity * -1
#@velocity.x = @max_velocity * -1
#end
#end
#if @y < 0 || @y + @height > args.grid.h
#@velocity.y *= -1.1
#if @velocity.y > @max_velocity
#@velocity.y = @max_velocity
#elsif @velocity.y < @max_velocity * -1
#@velocity.y = @max_velocity * -1
#end
#end
end
#render the ball to the screen
def draw args
#args.outputs.solids << [@x, @y, @width, @height, 255, 255, 0];
args.outputs.sprites << [
@center.x-@radius,
@center.y-@radius,
@radius*2,
@radius*2,
"sprites/circle-white.png",
0,
255,
255, #r
0, #g
255 #b
]
end
end
Physics And Collisions - Bouncing On Collision - block.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/block.rb
DEGREES_TO_RADIANS = Math::PI / 180
class Block
def initialize(x, y, block_size, rotation)
@x = x
@y = y
@block_size = block_size
@rotation = rotation
#The repel velocity?
@velocity = {x: 2, y: 0}
horizontal_offset = (3 * block_size) * Math.cos(rotation * DEGREES_TO_RADIANS)
vertical_offset = block_size * Math.sin(rotation * DEGREES_TO_RADIANS)
if rotation >= 0
theta = 90 - rotation
#The line doesn't visually line up exactly with the edge of the sprite, so artificially move it a bit
modifier = 5
x_offset = modifier * Math.cos(theta * DEGREES_TO_RADIANS)
y_offset = modifier * Math.sin(theta * DEGREES_TO_RADIANS)
@x1 = @x - x_offset
@y1 = @y + y_offset
@x2 = @x1 + horizontal_offset
@y2 = @y1 + (vertical_offset * 3)
@imaginary_line = [ @x1, @y1, @x2, @y2 ]
else
theta = 90 + rotation
x_offset = @block_size * Math.cos(theta * DEGREES_TO_RADIANS)
y_offset = @block_size * Math.sin(theta * DEGREES_TO_RADIANS)
@x1 = @x + x_offset
@y1 = @y + y_offset + 19
@x2 = @x1 + horizontal_offset
@y2 = @y1 + (vertical_offset * 3)
@imaginary_line = [ @x1, @y1, @x2, @y2 ]
end
end
def draw args
args.outputs.sprites << [
@x,
@y,
@block_size*3,
@block_size,
"sprites/square-green.png",
@rotation
]
args.outputs.lines << @imaginary_line
args.outputs.solids << @debug_shape
end
def multiply_matricies
end
def calc args
if collision? args
collide args
end
end
#Determine if the ball and block are touching
def collision? args
#The minimum area enclosed by the center of the ball and the 2 corners of the block
#If the area ever drops below this value, we know there is a collision
min_area = ((@block_size * 3) * args.state.ball.radius) / 2
#https://www.mathopenref.com/coordtrianglearea.html
ax = @x1
ay = @y1
bx = @x2
by = @y2
cx = args.state.ball.center.x
cy = args.state.ball.center.y
current_area = (ax*(by-cy)+bx*(cy-ay)+cx*(ay-by))/2
collision = false
if @rotation >= 0
if (current_area < min_area &&
current_area > 0 &&
args.state.ball.center.y > @y1 &&
args.state.ball.center.x < @x2)
collision = true
end
else
if (current_area < min_area &&
current_area > 0 &&
args.state.ball.center.y > @y2 &&
args.state.ball.center.x > @x1)
collision = true
end
end
return collision
end
def collide args
#Slope of the block
slope = (@y2 - @y1) / (@x2 - @x1)
#Create a unit vector and tilt it (@rotation) number of degrees
x = -Math.cos(@rotation * DEGREES_TO_RADIANS)
y = Math.sin(@rotation * DEGREES_TO_RADIANS)
#Find the vector that is perpendicular to the slope
perpVect = { x: x, y: y }
mag = (perpVect.x**2 + perpVect.y**2)**0.5 # find the magniude of the perpVect
perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} # divide the perpVect by the magniude to make it a unit vector
previousPosition = { # calculate an ESTIMATE of the previousPosition of the ball
x:args.state.ball.center.x-args.state.ball.velocity.x,
y:args.state.ball.center.y-args.state.ball.velocity.y
}
velocityMag = (args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5 # the current velocity magnitude of the ball
theta_ball = Math.atan2(args.state.ball.velocity.y, args.state.ball.velocity.x) #the angle of the ball's velocity
theta_repel = (180 * DEGREES_TO_RADIANS) - theta_ball + (@rotation * DEGREES_TO_RADIANS)
fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity
fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity
frx = velocityMag * Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx
fry = velocityMag * Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby
args.state.display_value = velocityMag
fsumx = fbx+frx #sum of x forces
fsumy = fby+fry #sum of y forces
fr = velocityMag #fr is the resulting magnitude
thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle
xnew = fr*Math.cos(thetaNew) #resulting x velocity
ynew = fr*Math.sin(thetaNew) #resulting y velocity
dampener = 0.3
ynew *= dampener * 0.5
#If the bounce is very low, that means the ball is rolling and we don't want to dampenen the X velocity
if ynew > -0.1
xnew *= dampener
end
#Add the sine component of gravity back in (X component)
gravity_x = 4 * Math.sin(@rotation * DEGREES_TO_RADIANS)
xnew += gravity_x
args.state.ball.velocity.x = -xnew
args.state.ball.velocity.y = -ynew
#Set the position of the ball to the previous position so it doesn't warp throught the block
args.state.ball.center.x = previousPosition.x
args.state.ball.center.y = previousPosition.y
end
end
Physics And Collisions - Bouncing On Collision - cannon.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/cannon.rb
class Cannon
def initialize args
@pointA = {x: args.grid.right/2,y: args.grid.top}
@pointB = {x: args.inputs.mouse.x, y: args.inputs.mouse.y}
end
def update args
activeBall = args.state.ball
@pointB = {x: args.inputs.mouse.x, y: args.inputs.mouse.y}
if args.inputs.mouse.click
alpha = 0.01
activeBall.velocity.y = (@pointB.y - @pointA.y) * alpha
activeBall.velocity.x = (@pointB.x - @pointA.x) * alpha
activeBall.center = {x: (args.grid.w / 2), y: (args.grid.h)}
end
end
def render args
args.outputs.lines << [@pointA.x, @pointA.y, @pointB.x, @pointB.y]
end
end
Physics And Collisions - Bouncing On Collision - main.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/main.rb
INFINITY= 10**10
require 'app/vector2d.rb'
require 'app/peg.rb'
require 'app/block.rb'
require 'app/ball.rb'
require 'app/cannon.rb'
#Method to init default values
def defaults args
args.state.pegs ||= []
args.state.blocks ||= []
args.state.cannon ||= Cannon.new args
args.state.ball ||= Ball.new args
args.state.horizontal_offset ||= 0
init_pegs args
init_blocks args
args.state.display_value ||= "test"
end
begin :default_methods
def init_pegs args
num_horizontal_pegs = 14
num_rows = 5
return unless args.state.pegs.count < num_rows * num_horizontal_pegs
block_size = 32
block_spacing = 50
total_width = num_horizontal_pegs * (block_size + block_spacing)
starting_offset = (args.grid.w - total_width) / 2 + block_size
for i in (0...num_rows)
for j in (0...num_horizontal_pegs)
row_offset = 0
if i % 2 == 0
row_offset = 20
else
row_offset = -20
end
args.state.pegs.append(Peg.new(j * (block_size+block_spacing) + starting_offset + row_offset, (args.grid.h - block_size * 2) - (i * block_size * 2)-90, block_size))
end
end
end
def init_blocks args
return unless args.state.blocks.count < 10
#Sprites are rotated in degrees, but the Ruby math functions work on radians
radians_to_degrees = Math::PI / 180
block_size = 25
#Rotation angle (in degrees) of the blocks
rotation = 30
vertical_offset = block_size * Math.sin(rotation * radians_to_degrees)
horizontal_offset = (3 * block_size) * Math.cos(rotation * radians_to_degrees)
center = args.grid.w / 2
for i in (0...5)
#Create a ramp of blocks. Not going to be perfect because of the float to integer conversion and anisotropic to isotropic coversion
args.state.blocks.append(Block.new((center + 100 + (i * horizontal_offset)).to_i, 100 + (vertical_offset * i) + (i * block_size), block_size, rotation))
args.state.blocks.append(Block.new((center - 100 - (i * horizontal_offset)).to_i, 100 + (vertical_offset * i) + (i * block_size), block_size, -rotation))
end
end
end
#Render loop
def render args
args.outputs.borders << args.state.game_area
render_pegs args
render_blocks args
args.state.cannon.render args
args.state.ball.draw args
end
begin :render_methods
#Draw the pegs in a grid pattern
def render_pegs args
args.state.pegs.each do |peg|
peg.draw args
end
end
def render_blocks args
args.state.blocks.each do |block|
block.draw args
end
end
end
#Calls all methods necessary for performing calculations
def calc args
args.state.pegs.each do |peg|
peg.calc args
end
args.state.blocks.each do |block|
block.calc args
end
args.state.ball.update args
args.state.cannon.update args
end
begin :calc_methods
end
def tick args
defaults args
render args
calc args
end
Physics And Collisions - Bouncing On Collision - peg.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/peg.rb
class Peg
def initialize(x, y, block_size)
@x = x # x cordinate of the LEFT side of the peg
@y = y # y cordinate of the RIGHT side of the peg
@block_size = block_size # diameter of the peg
@radius = @block_size/2.0 # radius of the peg
@center = { # cordinatees of the CENTER of the peg
x: @x+@block_size/2.0,
y: @y+@block_size/2.0
}
@r = 255 # color of the peg
@g = 0
@b = 0
@velocity = {x: 2, y: 0}
end
def draw args
args.outputs.sprites << [ # draw the peg according to the @x, @y, @radius, and the RGB
@x,
@y,
@radius*2.0,
@radius*2.0,
"sprites/circle-white.png",
0,
255,
@r, #r
@g, #g
@b #b
]
end
def calc args
if collisionWithBounce? args # if the is a collision with the bouncing ball
collide args
@r = 0
@b = 0
@g = 255
else
end
end
# do two circles (the ball and this peg) intersect
def collisionWithBounce? args
squareDistance = ( # the squared distance between the ball's center and this peg's center
(args.state.ball.center.x - @center.x) ** 2.0 +
(args.state.ball.center.y - @center.y) ** 2.0
)
radiusSum = ( # the sum of the radius squared of the this peg and the ball
(args.state.ball.radius + @radius) ** 2.0
)
# if the squareDistance is less or equal to radiusSum, then there is a radial intersection between the ball and this peg
return (squareDistance <= radiusSum)
end
# ! The following links explain the getRepelMagnitude function !
# https://raw.githubusercontent.com/DragonRuby/dragonruby-game-toolkit-physics/master/docs/docImages/LinearCollider_4.png
# https://raw.githubusercontent.com/DragonRuby/dragonruby-game-toolkit-physics/master/docs/docImages/LinearCollider_5.png
# https://github.com/DragonRuby/dragonruby-game-toolkit-physics/blob/master/docs/LinearCollider.md
def getRepelMagnitude (args, fbx, fby, vrx, vry, ballMag)
a = fbx ; b = vrx ; c = fby
d = vry ; e = ballMag
if b**2 + d**2 == 0
#unexpected
end
x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)
x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2))
err = 0.00001
o = ((fbx + x1*vrx)**2 + (fby + x1*vry)**2 ) ** 0.5
p = ((fbx + x2*vrx)**2 + (fby + x2*vry)**2 ) ** 0.5
r = 0
if (ballMag >= o-err and ballMag <= o+err)
r = x1
elsif (ballMag >= p-err and ballMag <= p+err)
r = x2
else
#unexpected
end
if (args.state.ball.center.x > @center.x)
return x2*-1
end
return x2
#return r
end
#this sets the new velocity of the ball once it has collided with this peg
def collide args
normalOfRCCollision = [ #this is the normal of the collision in COMPONENT FORM
{x: @center.x, y: @center.y}, #see https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mathscard.co.uk%2Fonline%2Fcircle-coordinate-geometry%2F&psig=AOvVaw2GcD-e2-nJR_IUKpw3hO98&ust=1605731315521000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMjBo7e1iu0CFQAAAAAdAAAAABAD
{x: args.state.ball.center.x, y: args.state.ball.center.y},
]
normalSlope = ( #normalSlope is the slope of normalOfRCCollision
(normalOfRCCollision[1].y - normalOfRCCollision[0].y) /
(normalOfRCCollision[1].x - normalOfRCCollision[0].x)
)
slope = normalSlope**-1.0 * -1 # slope is the slope of the tangent
# args.state.display_value = slope
pointA = { # pointA and pointB are using the var slope to tangent in COMPONENT FORM
x: args.state.ball.center.x-1,
y: -(slope-args.state.ball.center.y)
}
pointB = {
x: args.state.ball.center.x+1,
y: slope+args.state.ball.center.y
}
perpVect = {x: pointB.x - pointA.x, y:pointB.y - pointA.y} # perpVect is to be VECTOR of the perpendicular tangent
mag = (perpVect.x**2 + perpVect.y**2)**0.5 # find the magniude of the perpVect
perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} # divide the perpVect by the magniude to make it a unit vector
perpVect = {x: -perpVect.y, y: perpVect.x} # swap the x and y and multiply by -1 to make the vector perpendicular
args.state.display_value = perpVect
if perpVect.y > 0 #ensure perpVect points upward
perpVect = {x: perpVect.x*-1, y: perpVect.y*-1}
end
previousPosition = { # calculate an ESTIMATE of the previousPosition of the ball
x:args.state.ball.center.x-args.state.ball.velocity.x,
y:args.state.ball.center.y-args.state.ball.velocity.y
}
yInterc = pointA.y + -slope*pointA.x
if slope == INFINITY # the perpVect presently either points in the correct dirrection or it is 180 degrees off we need to correct this
if previousPosition.x < pointA.x
perpVect = {x: perpVect.x*-1, y: perpVect.y*-1}
yInterc = -INFINITY
end
elsif previousPosition.y < slope*previousPosition.x + yInterc # check if ball is bellow or above the collider to determine if perpVect is - or +
perpVect = {x: perpVect.x*-1, y: perpVect.y*-1}
end
velocityMag = # the current velocity magnitude of the ball
(args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5
theta_ball=
Math.atan2(args.state.ball.velocity.y,args.state.ball.velocity.x) #the angle of the ball's velocity
theta_repel=
Math.atan2(args.state.ball.center.y,args.state.ball.center.x) #the angle of the repelling force(perpVect)
fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity
fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity
repelMag = getRepelMagnitude( # the magniude of the collision vector
args,
fbx,
fby,
perpVect.x,
perpVect.y,
(args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5
)
frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx
fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby
fsumx = fbx+frx # sum of x forces
fsumy = fby+fry # sum of y forces
fr = velocityMag # fr is the resulting magnitude
thetaNew = Math.atan2(fsumy, fsumx) # thetaNew is the resulting angle
xnew = fr*Math.cos(thetaNew) # resulting x velocity
ynew = fr*Math.sin(thetaNew) # resulting y velocity
if (args.state.ball.center.x >= @center.x) # this is necessary for the ball colliding on the right side of the peg
xnew=xnew.abs
end
args.state.ball.velocity.x = xnew # set the x-velocity to the new velocity
if args.state.ball.center.y > @center.y # if the ball is above the middle of the peg we need to temporarily ignore some of the gravity
args.state.ball.velocity.y = ynew + GRAVITY * 0.01
else
args.state.ball.velocity.y = ynew - GRAVITY * 0.01 # if the ball is bellow the middle of the peg we need to temporarily increase the power of the gravity
end
args.state.ball.center.x+= args.state.ball.velocity.x # update the position of the ball so it never looks like the ball is intersecting the circle
args.state.ball.center.y+= args.state.ball.velocity.y
end
end
Physics And Collisions - Bouncing On Collision - vector2d.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/vector2d.rb
class Vector2d
attr_accessor :x, :y
def initialize x=0, y=0
@x=x
@y=y
end
#returns a vector multiplied by scalar x
#x [float] scalar
def mult x
r = Vector2d.new(0,0)
r.x=@x*x
r.y=@y*x
r
end
# vect [Vector2d] vector to copy
def copy vect
Vector2d.new(@x, @y)
end
#returns a new vector equivalent to this+vect
#vect [Vector2d] vector to add to self
def add vect
Vector2d.new(@x+vect.x,@y+vect.y)
end
#returns a new vector equivalent to this-vect
#vect [Vector2d] vector to subtract to self
def sub vect
Vector2d.new(@x-vect.c, @y-vect.y)
end
#return the magnitude of the vector
def mag
((@x**2)+(@y**2))**0.5
end
#returns a new normalize version of the vector
def normalize
Vector2d.new(@x/mag, @y/mag)
end
#TODO delet?
def distABS vect
(((vect.x-@x)**2+(vect.y-@y)**2)**0.5).abs()
end
end
Physics And Collisions - Arbitrary Collision - ball.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/ball.rb
class Ball
attr_accessor :velocity, :child, :parent, :number, :leastChain
attr_reader :x, :y, :hypotenuse, :width, :height
def initialize args, number, leastChain, parent, child
#Start the ball in the top center
@number = number
@leastChain = leastChain
@x = args.grid.w / 2
@y = args.grid.h - 20
@velocity = Vector2d.new(2, -2)
@width = 10
@height = 10
@left_wall = (args.state.board_width + args.grid.w / 8)
@right_wall = @left_wall + args.state.board_width
@max_velocity = MAX_VELOCITY
@child = child
@parent = parent
@past = [{x: @x, y: @y}]
@next = nil
end
def reassignLeastChain (lc=nil)
if (lc == nil)
lc = @number
end
@leastChain = lc
if (parent != nil)
@parent.reassignLeastChain(lc)
end
end
def makeLeader args
if isLeader
return
end
@parent.reassignLeastChain
args.state.ballParents.push(self)
@parent = nil
end
def isLeader
return (parent == nil)
end
def receiveNext (p)
#trace!
if parent != nil
@x = p[:x]
@y = p[:y]
@velocity = p[:velocity]
#puts @x.to_s + "|" + @y.to_s + "|"+@velocity.to_s
@past.append(p)
if (@past.length >= BALL_DISTANCE)
if (@child != nil)
@child.receiveNext(@past[0])
@past.shift
end
end
end
end
#Move the ball according to its velocity
def update args
if isLeader
wallBounds args
@x += @velocity.x
@y += @velocity.y
@past.append({x: @x, y: @y, velocity: @velocity})
#puts @past
if (@past.length >= BALL_DISTANCE)
if (@child != nil)
@child.receiveNext(@past[0])
@past.shift
end
end
else
puts "unexpected"
raise "unexpected"
end
end
def wallBounds args
b= false
if @x < @left_wall
@velocity.x = @velocity.x.abs() * 1
b=true
elsif @x + @width > @right_wall
@velocity.x = @velocity.x.abs() * -1
b=true
end
if @y < 0
@velocity.y = @velocity.y.abs() * 1
b=true
elsif @y + @height > args.grid.h
@velocity.y = @velocity.y.abs() * -1
b=true
end
mag = (@velocity.x**2.0 + @velocity.y**2.0)**0.5
if (b == true && mag < MAX_VELOCITY)
@velocity.x*=1.1;
@velocity.y*=1.1;
end
end
#render the ball to the screen
def draw args
#update args
#args.outputs.solids << [@x, @y, @width, @height, 255, 255, 0];
#args.outputs.sprits << {
#x: @x,
#y: @y,
#w: @width,
#h: @height,
#path: "sprites/ball10.png"
#}
#args.outputs.sprites <<[@x, @y, @width, @height, "sprites/ball10.png"]
args.outputs.sprites << {x: @x, y: @y, w: @width, h: @height, path:"sprites/ball10.png" }
end
def getDraw args
#wallBounds args
#update args
#args.outputs.labels << [@x, @y, @number.to_s + "|" + @leastChain.to_s]
return [@x, @y, @width, @height, "sprites/ball10.png"]
end
def getPoints args
points = [
{x:@x+@width/2, y: @y},
{x:@x+@width, y:@y+@height/2},
{x:@x+@width/2,y:@y+@height},
{x:@x,y:@y+@height/2}
]
#psize = 5.0
#for p in points
#args.outputs.solids << [p.x-psize/2.0, p.y-psize/2.0, psize, psize, 0, 0, 0];
#end
return points
end
def serialize
{x: @x, y:@y}
end
def inspect
serialize.to_s
end
def to_s
serialize.to_s
end
end
Physics And Collisions - Arbitrary Collision - blocks.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/blocks.rb
MAX_COUNT=100
def universalUpdateOne args, shape
didHit = false
hitters = []
#puts shape.to_s
toCollide = nil
for b in args.state.balls
if [b.x, b.y, b.width, b.height].intersect_rect?(shape.bold)
didSquare = false
for s in shape.squareColliders
if (s.collision?(args, b))
didSquare = true
didHit = true
#s.collide(args, b)
toCollide = s
#hitter = b
hitters.append(b)
end #end if
end #end for
if (didSquare == false)
for c in shape.colliders
#puts args.state.ball.velocity
if c.collision?(args, b.getPoints(args),b)
#c.collide args, b
toCollide = c
didHit = true
hitters.append(b)
end #end if
end #end for
end #end if
end#end if
end#end for
if (didHit)
shape.count=0
hitters = hitters.uniq
for hitter in hitters
hitter.makeLeader args
#toCollide.collide(args, hitter)
if shape.home == "squares"
args.state.squares.delete(shape)
elsif shape.home == "tshapes"
args.state.tshapes.delete(shape)
else shape.home == "lines"
args.state.lines.delete(shape)
end
end
#puts "HIT!" + hitter.number
end
end
def universalUpdate args, shape
#puts shape.home
if (shape.count <= 1)
universalUpdateOne args, shape
return
end
didHit = false
hitter = nil
for b in args.state.ballParents
if [b.x, b.y, b.width, b.height].intersect_rect?(shape.bold)
didSquare = false
for s in shape.squareColliders
if (s.collision?(args, b))
didSquare = true
didHit = true
s.collide(args, b)
hitter = b
end
end
if (didSquare == false)
for c in shape.colliders
#puts args.state.ball.velocity
if c.collision?(args, b.getPoints(args),b)
c.collide args, b
didHit = true
hitter = b
end
end
end
end
end
if (didHit)
shape.count=shape.count-1
shape.damageCount.append([(hitter.leastChain+1 - hitter.number)-1, args.state.tick_count])
end
i=0
while i < shape.damageCount.length
if shape.damageCount[i][0] <= 0
shape.damageCount.delete_at(i)
i-=1
elsif shape.damageCount[i][1].elapsed_time > BALL_DISTANCE and shape.damageCount[i][0] > 1
shape.count-=1
shape.damageCount[i][0]-=1
shape.damageCount[i][1] = args.state.tick_count
end
i+=1
end
end
class Square
attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount
def initialize(args, x, y, block_size, orientation, block_offset)
@x = x * block_size
@y = y * block_size
@block_size = block_size
@block_offset = block_offset
@orientation = orientation
@damageCount = []
@home = 'squares'
Kernel.srand()
@r = rand(255)
@g = rand(255)
@b = rand(255)
@count = rand(MAX_COUNT)+1
x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2
@x_adjusted = @x + x_offset
@y_adjusted = @y
@size_adjusted = @block_size * 2 - @block_offset
hypotenuse=args.state.ball_hypotenuse
@bold = [(@x_adjusted-hypotenuse/2)-1, (@y_adjusted-hypotenuse/2)-1, @size_adjusted + hypotenuse + 2, @size_adjusted + hypotenuse + 2]
@points = [
{x:@x_adjusted, y:@y_adjusted},
{x:@x_adjusted+@size_adjusted, y:@y_adjusted},
{x:@x_adjusted+@size_adjusted, y:@y_adjusted+@size_adjusted},
{x:@x_adjusted, y:@y_adjusted+@size_adjusted}
]
@squareColliders = [
SquareCollider.new(@points[0].x,@points[0].y,{x:-1,y:-1}),
SquareCollider.new(@points[1].x-COLLISIONWIDTH,@points[1].y,{x:1,y:-1}),
SquareCollider.new(@points[2].x-COLLISIONWIDTH,@points[2].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(@points[3].x,@points[3].y-COLLISIONWIDTH,{x:-1,y:1}),
]
@colliders = [
LinearCollider.new(@points[0],@points[1], :neg),
LinearCollider.new(@points[1],@points[2], :neg),
LinearCollider.new(@points[2],@points[3], :pos),
LinearCollider.new(@points[0],@points[3], :pos)
]
end
def draw(args)
#Offset the coordinates to the edge of the game area
x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2
#args.outputs.solids << [@x + x_offset, @y, @block_size * 2 - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b]
args.outputs.solids <<{x: (@x + x_offset), y: (@y), w: (@block_size * 2 - @block_offset), h: (@block_size * 2 - @block_offset), r: @r , g: @g , b: @b }
#args.outputs.solids << @bold.append([255,0,0])
args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s]
end
def update args
universalUpdate args, self
end
end
class TShape
attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount
def initialize(args, x, y, block_size, orientation, block_offset)
@x = x * block_size
@y = y * block_size
@block_size = block_size
@block_offset = block_offset
@orientation = orientation
@damageCount = []
@home = "tshapes"
Kernel.srand()
@r = rand(255)
@g = rand(255)
@b = rand(255)
@count = rand(MAX_COUNT)+1
@shapePoints = getShapePoints(args)
minX={x:INFINITY, y:0}
minY={x:0, y:INFINITY}
maxX={x:-INFINITY, y:0}
maxY={x:0, y:-INFINITY}
for p in @shapePoints
if p.x < minX.x
minX = p
end
if p.x > maxX.x
maxX = p
end
if p.y < minY.y
minY = p
end
if p.y > maxY.y
maxY = p
end
end
hypotenuse=args.state.ball_hypotenuse
@bold = [(minX.x-hypotenuse/2)-1, (minY.y-hypotenuse/2)-1, -((minX.x-hypotenuse/2)-1)+(maxX.x + hypotenuse + 2), -((minY.y-hypotenuse/2)-1)+(maxY.y + hypotenuse + 2)]
end
def getShapePoints(args)
points=[]
x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2)
if @orientation == :right
#args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
#args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2, @block_size, @r, @g, @b]
points = [
{x:@x + x_offset, y:@y},
{x:(@x + x_offset)+(@block_size - @block_offset), y:@y},
{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size},
{x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size},
{x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size+@block_size},
{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size+@block_size},
{x:(@x + x_offset)+(@block_size - @block_offset), y:@y+ @block_size * 3 - @block_offset},
{x:@x + x_offset , y:@y+ @block_size * 3 - @block_offset}
]
@squareColliders = [
SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}),
SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}),
SquareCollider.new(points[2].x,points[2].y-COLLISIONWIDTH,{x:1,y:-1}),
SquareCollider.new(points[3].x-COLLISIONWIDTH,points[3].y,{x:1,y:-1}),
SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(points[5].x,points[5].y,{x:1,y:1}),
SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(points[7].x,points[7].y-COLLISIONWIDTH,{x:-1,y:1}),
]
@colliders = [
LinearCollider.new(points[0],points[1], :neg),
LinearCollider.new(points[1],points[2], :neg),
LinearCollider.new(points[2],points[3], :neg),
LinearCollider.new(points[3],points[4], :neg),
LinearCollider.new(points[4],points[5], :pos),
LinearCollider.new(points[5],points[6], :neg),
LinearCollider.new(points[6],points[7], :pos),
LinearCollider.new(points[0],points[7], :pos)
]
elsif @orientation == :up
#args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
#args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size, @block_size * 2, @r, @g, @b]
points = [
{x:@x + x_offset, y:@y},
{x:(@x + x_offset)+(@block_size * 3 - @block_offset), y:@y},
{x:(@x + x_offset)+(@block_size * 3 - @block_offset), y:@y+(@block_size - @block_offset)},
{x:@x + x_offset + @block_size + @block_size, y:@y+(@block_size - @block_offset)},
{x:@x + x_offset + @block_size + @block_size, y:@y+@block_size*2},
{x:@x + x_offset + @block_size, y:@y+@block_size*2},
{x:@x + x_offset + @block_size, y:@y+(@block_size - @block_offset)},
{x:@x + x_offset, y:@y+(@block_size - @block_offset)}
]
@squareColliders = [
SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}),
SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}),
SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(points[3].x,points[3].y,{x:1,y:1}),
SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(points[5].x,points[5].y-COLLISIONWIDTH,{x:-1,y:1}),
SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y,{x:-1,y:1}),
SquareCollider.new(points[7].x,points[7].y-COLLISIONWIDTH,{x:-1,y:1}),
]
@colliders = [
LinearCollider.new(points[0],points[1], :neg),
LinearCollider.new(points[1],points[2], :neg),
LinearCollider.new(points[2],points[3], :pos),
LinearCollider.new(points[3],points[4], :neg),
LinearCollider.new(points[4],points[5], :pos),
LinearCollider.new(points[5],points[6], :neg),
LinearCollider.new(points[6],points[7], :pos),
LinearCollider.new(points[0],points[7], :pos)
]
elsif @orientation == :left
#args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
#args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2 - @block_offset, @block_size - @block_offset, @r, @g, @b]
xh = @x + x_offset
#points = [
#{x:@x + x_offset, y:@y},
#{x:(@x + x_offset)+(@block_size - @block_offset), y:@y},
#{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size},
#{x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size},
#{x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size+@block_size},
#{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size+@block_size},
#{x:(@x + x_offset)+(@block_size - @block_offset), y:@y+ @block_size * 3 - @block_offset},
#{x:@x + x_offset , y:@y+ @block_size * 3 - @block_offset}
#]
points = [
{x:@x + x_offset + @block_size, y:@y},
{x:@x + x_offset + @block_size + (@block_size - @block_offset), y:@y},
{x:@x + x_offset + @block_size + (@block_size - @block_offset),y:@y+@block_size*3- @block_offset},
{x:@x + x_offset + @block_size, y:@y+@block_size*3- @block_offset},
{x:@x + x_offset+@block_size, y:@y+@block_size*2- @block_offset},
{x:@x + x_offset, y:@y+@block_size*2- @block_offset},
{x:@x + x_offset, y:@y+@block_size},
{x:@x + x_offset+@block_size, y:@y+@block_size}
]
@squareColliders = [
SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}),
SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}),
SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:-1,y:1}),
SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y,{x:-1,y:1}),
SquareCollider.new(points[5].x,points[5].y-COLLISIONWIDTH,{x:-1,y:1}),
SquareCollider.new(points[6].x,points[6].y,{x:-1,y:-1}),
SquareCollider.new(points[7].x-COLLISIONWIDTH,points[7].y-COLLISIONWIDTH,{x:-1,y:-1}),
]
@colliders = [
LinearCollider.new(points[0],points[1], :neg),
LinearCollider.new(points[1],points[2], :neg),
LinearCollider.new(points[2],points[3], :pos),
LinearCollider.new(points[3],points[4], :neg),
LinearCollider.new(points[4],points[5], :pos),
LinearCollider.new(points[5],points[6], :neg),
LinearCollider.new(points[6],points[7], :neg),
LinearCollider.new(points[0],points[7], :pos)
]
elsif @orientation == :down
#args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
#args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b]
points = [
{x:@x + x_offset, y:@y+(@block_size*2)-@block_offset},
{x:@x + x_offset+ @block_size*3-@block_offset, y:@y+(@block_size*2)-@block_offset},
{x:@x + x_offset+ @block_size*3-@block_offset, y:@y+(@block_size)},
{x:@x + x_offset+ @block_size*2-@block_offset, y:@y+(@block_size)},
{x:@x + x_offset+ @block_size*2-@block_offset, y:@y},#
{x:@x + x_offset+ @block_size, y:@y},#
{x:@x + x_offset + @block_size, y:@y+(@block_size)},
{x:@x + x_offset, y:@y+(@block_size)}
]
@squareColliders = [
SquareCollider.new(points[0].x,points[0].y-COLLISIONWIDTH,{x:-1,y:1}),
SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y,{x:1,y:-1}),
SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:1,y:-1}),
SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y,{x:1,y:-1}),
SquareCollider.new(points[5].x,points[5].y,{x:-1,y:-1}),
SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y-COLLISIONWIDTH,{x:-1,y:-1}),
SquareCollider.new(points[7].x,points[7].y,{x:-1,y:-1}),
]
@colliders = [
LinearCollider.new(points[0],points[1], :pos),
LinearCollider.new(points[1],points[2], :pos),
LinearCollider.new(points[2],points[3], :neg),
LinearCollider.new(points[3],points[4], :pos),
LinearCollider.new(points[4],points[5], :neg),
LinearCollider.new(points[5],points[6], :pos),
LinearCollider.new(points[6],points[7], :neg),
LinearCollider.new(points[0],points[7], :neg)
]
end
return points
end
def draw(args)
#Offset the coordinates to the edge of the game area
x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2)
if @orientation == :right
#args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset), y: @y, w: @block_size - @block_offset, h: (@block_size * 3 - @block_offset), r: @r , g: @g, b: @b}
#args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2, @block_size, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 2), h: (@block_size), r: @r , g: @g, b: @b }
elsif @orientation == :up
#args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset), y: (@y), w: (@block_size * 3 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b}
#args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size, @block_size * 2, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size), h: (@block_size * 2), r: @r , g: @g, b: @b}
elsif @orientation == :left
#args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size - @block_offset), h: (@block_size * 3 - @block_offset), r: @r , g: @g, b: @b}
#args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2 - @block_offset, @block_size - @block_offset, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 2 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b}
elsif @orientation == :down
#args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 3 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b}
#args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b]
args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size - @block_offset), h: ( @block_size * 2 - @block_offset), r: @r , g: @g, b: @b}
end
#psize = 5.0
#for p in @shapePoints
#args.outputs.solids << [p.x-psize/2, p.y-psize/2, psize, psize, 0, 0, 0]
#end
args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s]
end
def updateOne_old args
didHit = false
hitter = nil
toCollide = nil
for b in args.state.balls
if [b.x, b.y, b.width, b.height].intersect_rect?(@bold)
didSquare = false
for s in @squareColliders
if (s.collision?(args, b))
didSquare = true
didHit = true
#s.collide(args, b)
toCollide = s
hitter = b
break
end
end
if (didSquare == false)
for c in @colliders
#puts args.state.ball.velocity
if c.collision?(args, b.getPoints(args),b)
#c.collide args, b
toCollide = c
didHit = true
hitter = b
break
end
end
end
end
if didHit
break
end
end
if (didHit)
@count=0
hitter.makeLeader args
#toCollide.collide(args, hitter)
args.state.tshapes.delete(self)
#puts "HIT!" + hitter.number
end
end
def update_old args
if (@count == 1)
updateOne args
return
end
didHit = false
hitter = nil
for b in args.state.ballParents
if [b.x, b.y, b.width, b.height].intersect_rect?(@bold)
didSquare = false
for s in @squareColliders
if (s.collision?(args, b))
didSquare = true
didHit=true
s.collide(args, b)
hitter = b
end
end
if (didSquare == false)
for c in @colliders
#puts args.state.ball.velocity
if c.collision?(args, b.getPoints(args), b)
c.collide args, b
didHit=true
hitter = b
end
end
end
end
end
if (didHit)
@count=@count-1
@damageCount.append([(hitter.leastChain+1 - hitter.number)-1, args.state.tick_count])
if (@count == 0)
args.state.tshapes.delete(self)
return
end
end
i=0
while i < @damageCount.length
if @damageCount[i][0] <= 0
@damageCount.delete_at(i)
i-=1
elsif @damageCount[i][1].elapsed_time > BALL_DISTANCE
@count-=1
@damageCount[i][0]-=1
end
if (@count == 0)
args.state.tshapes.delete(self)
return
end
i+=1
end
end #end update
def update args
universalUpdate args, self
end
end
class Line
attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount
def initialize(args, x, y, block_size, orientation, block_offset)
@x = x * block_size
@y = y * block_size
@block_size = block_size
@block_offset = block_offset
@orientation = orientation
@damageCount = []
@home = "lines"
Kernel.srand()
@r = rand(255)
@g = rand(255)
@b = rand(255)
@count = rand(MAX_COUNT)+1
@shapePoints = getShapePoints(args)
minX={x:INFINITY, y:0}
minY={x:0, y:INFINITY}
maxX={x:-INFINITY, y:0}
maxY={x:0, y:-INFINITY}
for p in @shapePoints
if p.x < minX.x
minX = p
end
if p.x > maxX.x
maxX = p
end
if p.y < minY.y
minY = p
end
if p.y > maxY.y
maxY = p
end
end
hypotenuse=args.state.ball_hypotenuse
@bold = [(minX.x-hypotenuse/2)-1, (minY.y-hypotenuse/2)-1, -((minX.x-hypotenuse/2)-1)+(maxX.x + hypotenuse + 2), -((minY.y-hypotenuse/2)-1)+(maxY.y + hypotenuse + 2)]
end
def getShapePoints(args)
points=[]
x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2)
if @orientation == :right
#args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
xa =@x + x_offset
ya =@y
wa =@block_size * 3 - @block_offset
ha =(@block_size - @block_offset)
elsif @orientation == :up
#args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
xa =@x + x_offset
ya =@y
wa =@block_size - @block_offset
ha =@block_size * 3 - @block_offset
elsif @orientation == :left
#args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
xa =@x + x_offset
ya =@y
wa =@block_size * 3 - @block_offset
ha =@block_size - @block_offset
elsif @orientation == :down
#args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
xa =@x + x_offset
ya =@y
wa =@block_size - @block_offset
ha =@block_size * 3 - @block_offset
end
points = [
{x: xa, y:ya},
{x: xa + wa,y:ya},
{x: xa + wa,y:ya+ha},
{x: xa, y:ya+ha},
]
@squareColliders = [
SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}),
SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}),
SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}),
SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:-1,y:1}),
]
@colliders = [
LinearCollider.new(points[0],points[1], :neg),
LinearCollider.new(points[1],points[2], :neg),
LinearCollider.new(points[2],points[3], :pos),
LinearCollider.new(points[0],points[3], :pos),
]
return points
end
def update args
universalUpdate args, self
end
def draw(args)
x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2
if @orientation == :right
args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
elsif @orientation == :up
args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
elsif @orientation == :left
args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b]
elsif @orientation == :down
args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b]
end
args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s]
end
end
Physics And Collisions - Arbitrary Collision - linear_collider.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/linear_collider.rb
COLLISIONWIDTH=8
class LinearCollider
attr_reader :pointA, :pointB
def initialize (pointA, pointB, mode,collisionWidth=COLLISIONWIDTH)
@pointA = pointA
@pointB = pointB
@mode = mode
@collisionWidth = collisionWidth
if (@pointA.x > @pointB.x)
@pointA, @pointB = @pointB, @pointA
end
@linearCollider_collision_once = false
end
def collisionSlope args
if (@pointB.x-@pointA.x == 0)
return INFINITY
end
return (@pointB.y - @pointA.y) / (@pointB.x - @pointA.x)
end
def collision? (args, points, ball=nil)
slope = collisionSlope args
result = false
# calculate a vector with a magnitude of (1/2)collisionWidth and a direction perpendicular to the collision line
vect=nil;mag=nil;vect=nil;
if @mode == :both
vect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y}
mag = (vect.x**2 + vect.y**2)**0.5
vect = {y: -1*(vect.x/(mag))*@collisionWidth*0.5, x: (vect.y/(mag))*@collisionWidth*0.5}
else
vect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y}
mag = (vect.x**2 + vect.y**2)**0.5
vect = {y: -1*(vect.x/(mag))*@collisionWidth, x: (vect.y/(mag))*@collisionWidth}
end
rpointA=nil;rpointB=nil;rpointC=nil;rpointD=nil;
if @mode == :pos
rpointA = {x:@pointA.x + vect.x, y:@pointA.y + vect.y}
rpointB = {x:@pointB.x + vect.x, y:@pointB.y + vect.y}
rpointC = {x:@pointB.x, y:@pointB.y}
rpointD = {x:@pointA.x, y:@pointA.y}
elsif @mode == :neg
rpointA = {x:@pointA.x, y:@pointA.y}
rpointB = {x:@pointB.x, y:@pointB.y}
rpointC = {x:@pointB.x - vect.x, y:@pointB.y - vect.y}
rpointD = {x:@pointA.x - vect.x, y:@pointA.y - vect.y}
elsif @mode == :both
rpointA = {x:@pointA.x + vect.x, y:@pointA.y + vect.y}
rpointB = {x:@pointB.x + vect.x, y:@pointB.y + vect.y}
rpointC = {x:@pointB.x - vect.x, y:@pointB.y - vect.y}
rpointD = {x:@pointA.x - vect.x, y:@pointA.y - vect.y}
end
#four point rectangle
if ball != nil
xs = [rpointA.x,rpointB.x,rpointC.x,rpointD.x]
ys = [rpointA.y,rpointB.y,rpointC.y,rpointD.y]
correct = 1
rect1 = [ball.x, ball.y, ball.width, ball.height]
#$r1 = rect1
rect2 = [xs.min-correct,ys.min-correct,(xs.max-xs.min)+correct*2,(ys.max-ys.min)+correct*2]
#$r2 = rect2
if rect1.intersect_rect?(rect2) == false
return false
end
end
#area of a triangle
triArea = -> (a,b,c) { ((a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y))/2.0).abs }
#if at least on point is in the rectangle then collision? is true - otherwise false
for point in points
#Check whether a given point lies inside a rectangle or not:
#if the sum of the area of traingls, PAB, PBC, PCD, PAD equal the area of the rec, then an intersection has occured
areaRec = triArea.call(rpointA, rpointB, rpointC)+triArea.call(rpointA, rpointC, rpointD)
areaSum = [
triArea.call(point, rpointA, rpointB),triArea.call(point, rpointB, rpointC),
triArea.call(point, rpointC, rpointD),triArea.call(point, rpointA, rpointD)
].inject(0){|sum,x| sum + x }
e = 0.0001 #allow for minor error
if areaRec>= areaSum-e and areaRec<= areaSum+e
result = true
#return true
break
end
end
#args.outputs.lines << [@pointA.x, @pointA.y, @pointB.x, @pointB.y, 000, 000, 000]
#args.outputs.lines << [rpointA.x, rpointA.y, rpointB.x, rpointB.y, 255, 000, 000]
#args.outputs.lines << [rpointC.x, rpointC.y, rpointD.x, rpointD.y, 000, 000, 255]
#puts (rpointA.x.to_s + " " + rpointA.y.to_s + " " + rpointB.x.to_s + " "+ rpointB.y.to_s)
return result
end #end collision?
def getRepelMagnitude (fbx, fby, vrx, vry, ballMag)
a = fbx ; b = vrx ; c = fby
d = vry ; e = ballMag
if b**2 + d**2 == 0
#unexpected
end
x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)
x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2))
err = 0.00001
o = ((fbx + x1*vrx)**2 + (fby + x1*vry)**2 ) ** 0.5
p = ((fbx + x2*vrx)**2 + (fby + x2*vry)**2 ) ** 0.5
r = 0
if (ballMag >= o-err and ballMag <= o+err)
r = x1
elsif (ballMag >= p-err and ballMag <= p+err)
r = x2
else
#unexpected
end
return r
end
def collide args, ball
slope = collisionSlope args
# perpVect: normal vector perpendicular to collision
perpVect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y}
mag = (perpVect.x**2 + perpVect.y**2)**0.5
perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)}
perpVect = {x: -perpVect.y, y: perpVect.x}
if perpVect.y > 0 #ensure perpVect points upward
perpVect = {x: perpVect.x*-1, y: perpVect.y*-1}
end
previousPosition = {
x:ball.x-ball.velocity.x,
y:ball.y-ball.velocity.y
}
yInterc = @pointA.y + -slope*@pointA.x
if slope == INFINITY
if previousPosition.x < @pointA.x
perpVect = {x: perpVect.x*-1, y: perpVect.y*-1}
yInterc = -INFINITY
end
elsif previousPosition.y < slope*previousPosition.x + yInterc #check if ball is bellow or above the collider to determine if perpVect is - or +
perpVect = {x: perpVect.x*-1, y: perpVect.y*-1}
end
velocityMag = (ball.velocity.x**2 + ball.velocity.y**2)**0.5
theta_ball=Math.atan2(ball.velocity.y,ball.velocity.x) #the angle of the ball's velocity
theta_repel=Math.atan2(perpVect.y,perpVect.x) #the angle of the repelling force(perpVect)
fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity
fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity
#the magnitude of the repelling force
repelMag = getRepelMagnitude(fbx, fby, perpVect.x, perpVect.y, (ball.velocity.x**2 + ball.velocity.y**2)**0.5)
frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx
fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby
fsumx = fbx+frx #sum of x forces
fsumy = fby+fry #sum of y forces
fr = velocityMag#fr is the resulting magnitude
thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle
xnew = fr*Math.cos(thetaNew)#resulting x velocity
ynew = fr*Math.sin(thetaNew)#resulting y velocity
if (velocityMag < MAX_VELOCITY)
ball.velocity = Vector2d.new(xnew*1.1, ynew*1.1)
else
ball.velocity = Vector2d.new(xnew, ynew)
end
end
end
Physics And Collisions - Arbitrary Collision - main.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/main.rb
INFINITY= 10**10
MAX_VELOCITY = 8.0
BALL_COUNT = 90
BALL_DISTANCE = 20
require 'app/vector2d.rb'
require 'app/blocks.rb'
require 'app/ball.rb'
require 'app/rectangle.rb'
require 'app/linear_collider.rb'
require 'app/square_collider.rb'
#Method to init default values
def defaults args
args.state.board_width ||= args.grid.w / 4
args.state.board_height ||= args.grid.h
args.state.game_area ||= [(args.state.board_width + args.grid.w / 8), 0, args.state.board_width, args.grid.h]
args.state.balls ||= []
args.state.num_balls ||= 0
args.state.ball_created_at ||= args.state.tick_count
args.state.ball_hypotenuse = (10**2 + 10**2)**0.5
args.state.ballParents ||=nil
init_blocks args
init_balls args
end
begin :default_methods
def init_blocks args
block_size = args.state.board_width / 8
#Space inbetween each block
block_offset = 4
args.state.squares ||=[
Square.new(args, 2, 0, block_size, :right, block_offset),
Square.new(args, 5, 0, block_size, :right, block_offset),
Square.new(args, 6, 7, block_size, :right, block_offset)
]
#Possible orientations are :right, :left, :up, :down
args.state.tshapes ||= [
TShape.new(args, 0, 6, block_size, :left, block_offset),
TShape.new(args, 3, 3, block_size, :down, block_offset),
TShape.new(args, 0, 3, block_size, :right, block_offset),
TShape.new(args, 0, 11, block_size, :up, block_offset)
]
args.state.lines ||= [
Line.new(args,3, 8, block_size, :down, block_offset),
Line.new(args, 7, 3, block_size, :up, block_offset),
Line.new(args, 3, 7, block_size, :right, block_offset)
]
#exit()
end
def init_balls args
return unless args.state.num_balls < BALL_COUNT
#only create a new ball every 10 ticks
return unless args.state.ball_created_at.elapsed_time > 10
if (args.state.num_balls == 0)
args.state.balls.append(Ball.new(args,args.state.num_balls,BALL_COUNT-1, nil, nil))
args.state.ballParents = [args.state.balls[0]]
else
args.state.balls.append(Ball.new(args,args.state.num_balls,BALL_COUNT-1, args.state.balls.last, nil) )
args.state.balls[-2].child = args.state.balls[-1]
end
args.state.ball_created_at = args.state.tick_count
args.state.num_balls += 1
end
end
#Render loop
def render args
bgClr = {r:10, g:10, b:200}
bgClr = {r:255-30, g:255-30, b:255-30}
args.outputs.solids << [0, 0, $args.grid.right, $args.grid.top, bgClr[:r], bgClr[:g], bgClr[:b]];
args.outputs.borders << args.state.game_area
render_instructions args
render_shapes args
render_balls args
#args.state.rectangle.draw args
args.outputs.sprites << [$args.grid.right-(args.state.board_width + args.grid.w / 8), 0, $args.grid.right, $args.grid.top, "sprites/square-white-2.png", 0, 255, bgClr[:r], bgClr[:g], bgClr[:b]]
args.outputs.sprites << [0, 0, (args.state.board_width + args.grid.w / 8), $args.grid.top, "sprites/square-white-2.png", 0, 255, bgClr[:r], bgClr[:g], bgClr[:b]]
end
begin :render_methods
def render_instructions args
#gtk.current_framerate
args.outputs.labels << [20, $args.grid.top-20, "FPS: " + $gtk.current_framerate.to_s]
if (args.state.balls != nil && args.state.balls[0] != nil)
bx = args.state.balls[0].velocity.x
by = args.state.balls[0].velocity.y
bmg = (bx**2.0 + by**2.0)**0.5
args.outputs.labels << [20, $args.grid.top-20-20, "V: " + bmg.to_s ]
end
end
def render_shapes args
for s in args.state.squares
s.draw args
end
for l in args.state.lines
l.draw args
end
for t in args.state.tshapes
t.draw args
end
end
def render_balls args
#args.state.balls.each do |ball|
#ball.draw args
#end
args.outputs.sprites << args.state.balls.map do |ball|
ball.getDraw args
end
end
end
#Calls all methods necessary for performing calculations
def calc args
for b in args.state.ballParents
b.update args
end
for s in args.state.squares
s.update args
end
for l in args.state.lines
l.update args
end
for t in args.state.tshapes
t.update args
end
end
begin :calc_methods
end
def tick args
defaults args
render args
calc args
end
Physics And Collisions - Arbitrary Collision - paddle.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/paddle.rb
class Paddle
attr_accessor :enabled
def initialize ()
@x=WIDTH/2
@y=100
@width=100
@height=20
@speed=10
@xyCollision = LinearCollider.new({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5})
@xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @x+@width, y: @y}, :pos)
@xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @y+@height+5})
@xyCollision4 = LinearCollider.new({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5}, :pos)
@enabled = true
end
def update args
@xyCollision.resetPoints({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5})
@xyCollision2.resetPoints({x: @x,y: @y}, {x: @x+@width, y: @y})
@xyCollision3.resetPoints({x: @x,y: @y}, {x: @x, y: @y+@height+5})
@xyCollision4.resetPoints({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5})
@xyCollision.update args
@xyCollision2.update args
@xyCollision3.update args
@xyCollision4.update args
args.inputs.keyboard.key_held.left ||= false
args.inputs.keyboard.key_held.right ||= false
if not (args.inputs.keyboard.key_held.left == args.inputs.keyboard.key_held.right)
if args.inputs.keyboard.key_held.left && @enabled
@x-=@speed
elsif args.inputs.keyboard.key_held.right && @enabled
@x+=@speed
end
end
xmin =WIDTH/4
xmax = 3*(WIDTH/4)
@x = (@x+@width > xmax) ? xmax-@width : (@x
Physics And Collisions - Arbitrary Collision - rectangle.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/rectangle.rb
class Rectangle
def initialize args
@image = "sprites/roundSquare_white.png"
@width = 160.0
@height = 80.0
@x=$args.grid.right/2.0 - @width/2.0
@y=$args.grid.top/2.0 - @height/2.0
@xtmp = @width * (1.0/10.0)
@ytmp = @height * (1.0/10.0)
#ball0 = args.state.balls[0]
#hypotenuse = (args.state.balls[0].width**2 + args.state.balls[0].height**2)**0.5
hypotenuse=args.state.ball_hypotenuse
@boldXY = {x:(@x-hypotenuse/2)-1, y:(@y-hypotenuse/2)-1}
@boldWidth = @width + hypotenuse + 2
@boldHeight = @height + hypotenuse + 2
@bold = [(@x-hypotenuse/2)-1,(@y-hypotenuse/2)-1,@width + hypotenuse + 2,@height + hypotenuse + 2]
@points = [
{x:@x, y:@y+@ytmp},
{x:@x+@xtmp, y:@y},
{x:@x+@width-@xtmp, y:@y},
{x:@x+@width, y:@y+@ytmp},
{x:@x+@width, y:@y+@height-@ytmp},#
{x:@x+@width-@xtmp, y:@y+@height},
{x:@x+@xtmp, y:@y+@height},
{x:@x, y:@y+@height-@ytmp}
]
@colliders = []
#i = 0
#while i < @points.length-1
#@colliders.append(LinearCollider.new(@points[i],@points[i+1],:pos))
#i+=1
#end
@colliders.append(LinearCollider.new(@points[0],@points[1], :neg))
@colliders.append(LinearCollider.new(@points[1],@points[2], :neg))
@colliders.append(LinearCollider.new(@points[2],@points[3], :neg))
@colliders.append(LinearCollider.new(@points[3],@points[4], :neg))
@colliders.append(LinearCollider.new(@points[4],@points[5], :pos))
@colliders.append(LinearCollider.new(@points[5],@points[6], :pos))
@colliders.append(LinearCollider.new(@points[6],@points[7], :pos))
@colliders.append(LinearCollider.new(@points[0],@points[7], :pos))
end
def update args
for b in args.state.balls
if [b.x, b.y, b.width, b.height].intersect_rect?(@bold)
for c in @colliders
if c.collision?(args, b.getPoints(args),b)
c.collide args, b
end
end
end
end
end
def draw args
args.outputs.sprites << [
@x, # X
@y, # Y
@width, # W
@height, # H
@image, # PATH
0, # ANGLE
255, # ALPHA
219, # RED_SATURATION
112, # GREEN_SATURATION
147 # BLUE_SATURATION
]
#args.outputs.sprites << [@x, @y, @width, @height, "sprites/roundSquare_small_black.png"]
end
def serialize
{x: @x, y:@y}
end
def inspect
serialize.to_s
end
def to_s
serialize.to_s
end
end
Physics And Collisions - Arbitrary Collision - square_collider.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/square_collider.rb
class SquareCollider
def initialize x,y,direction,size=COLLISIONWIDTH
@x = x
@y = y
@size = size
@direction = direction
end
def collision? args, ball
#args.outputs.solids << [@x, @y, @size, @size, 000, 255, 255]
return [@x,@y,@size,@size].intersect_rect?([ball.x,ball.y,ball.width,ball.height])
end
def collide args, ball
vmag = (ball.velocity.x**2.0 +ball.velocity.y**2.0)**0.5
a = ((2.0**0.5)*vmag)/2.0
if vmag < MAX_VELOCITY
ball.velocity.x = (a) * @direction.x * 1.1
ball.velocity.y = (a) * @direction.y * 1.1
else
ball.velocity.x = (a) * @direction.x
ball.velocity.y = (a) * @direction.y
end
end
end
Physics And Collisions - Arbitrary Collision - vector2d.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/vector2d.rb
class Vector2d
attr_accessor :x, :y
def initialize x=0, y=0
@x=x
@y=y
end
#returns a vector multiplied by scalar x
#x [float] scalar
def mult x
r = Vector2d.new(0,0)
r.x=@x*x
r.y=@y*x
r
end
# vect [Vector2d] vector to copy
def copy vect
Vector2d.new(@x, @y)
end
#returns a new vector equivalent to this+vect
#vect [Vector2d] vector to add to self
def add vect
Vector2d.new(@x+vect.x,@y+vect.y)
end
#returns a new vector equivalent to this-vect
#vect [Vector2d] vector to subtract to self
def sub vect
Vector2d.new(@x-vect.c, @y-vect.y)
end
#return the magnitude of the vector
def mag
((@x**2)+(@y**2))**0.5
end
#returns a new normalize version of the vector
def normalize
Vector2d.new(@x/mag, @y/mag)
end
#TODO delet?
def distABS vect
(((vect.x-@x)**2+(vect.y-@y)**2)**0.5).abs()
end
end
Physics And Collisions - Collision With Object Removal - ball.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/ball.rb
class Ball
#TODO limit accessors?
attr_accessor :xy, :width, :height, :velocity
#@xy [Vector2d] x,y position
#@velocity [Vector2d] velocity of ball
def initialize
@xy = Vector2d.new(WIDTH/2,500)
@velocity = Vector2d.new(4,-4)
@width = 20
@height = 20
end
#move the ball according to its velocity
def update args
@xy.x+=@velocity.x
@xy.y+=@velocity.y
end
#render the ball to the screen
def render args
args.outputs.solids << [@xy.x,@xy.y,@width,@height,255,0,255];
#args.outputs.labels << [20,HEIGHT-50,"velocity: " +@velocity.x.to_s+","+@velocity.y.to_s + " magnitude:" + @velocity.mag.to_s]
end
def rect
[@xy.x,@xy.y,@width,@height]
end
end
Physics And Collisions - Collision With Object Removal - linear_collider.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/linear_collider.rb
#The LinearCollider (theoretically) produces collisions upon a line segment defined point.y two x,y cordinates
class LinearCollider
#start [Array of length 2] start of the line segment as a x,y cordinate
#last [Array of length 2] end of the line segment as a x,y cordinate
#inorder for the LinearCollider to be functional the line segment must be said to have a thickness
#(as it is unlikly that a colliding object will land exactly on the linesegment)
#extension defines if the line's thickness extends negatively or positively
#extension :pos extends positively
#extension :neg extends negatively
#thickness [float] how thick the line should be (should always be atleast as large as the magnitude of the colliding object)
def initialize (pointA, pointB, extension=:neg, thickness=10)
@pointA = pointA
@pointB = pointB
@thickness = thickness
@extension = extension
@pointAExtended={
x: @pointA.x + @thickness*(@extension == :neg ? -1 : 1),
y: @pointA.y + @thickness*(@extension == :neg ? -1 : 1)
}
@pointBExtended={
x: @pointB.x + @thickness*(@extension == :neg ? -1 : 1),
y: @pointB.y + @thickness*(@extension == :neg ? -1 : 1)
}
end
def resetPoints(pointA,pointB)
@pointA = pointA
@pointB = pointB
@pointAExtended={
x:@pointA.x + @thickness*(@extension == :neg ? -1 : 1),
y:@pointA.y + @thickness*(@extension == :neg ? -1 : 1)
}
@pointBExtended={
x:@pointB.x + @thickness*(@extension == :neg ? -1 : 1),
y:@pointB.y + @thickness*(@extension == :neg ? -1 : 1)
}
end
#TODO: Ugly function
def slope (pointA, pointB)
return (pointB.x==pointA.x) ? INFINITY : (pointB.y+-pointA.y)/(pointB.x+-pointA.x)
end
#TODO: Ugly function
def intercept(pointA, pointB)
if (slope(pointA, pointB) == INFINITY)
-INFINITY
elsif slope(pointA, pointB) == -1*INFINITY
INFINITY
else
pointA.y+-1.0*(slope(pointA, pointB)*pointA.x)
end
end
def calcY(pointA, pointB, x)
return slope(pointA, pointB)*x + intercept(pointA, pointB)
end
#test if a collision has occurred
def isCollision? (point)
#INFINITY slop breaks down when trying to determin collision, ergo it requires a special test
if slope(@pointA, @pointB) == INFINITY &&
point.x >= [@pointA.x,@pointB.x].min+(@extension == :pos ? -@thickness : 0) &&
point.x <= [@pointA.x,@pointB.x].max+(@extension == :neg ? @thickness : 0) &&
point.y >= [@pointA.y,@pointB.y].min && point.y <= [@pointA.y,@pointB.y].max
return true
end
isNegInLine = @extension == :neg &&
point.y <= slope(@pointA, @pointB)*point.x+intercept(@pointA,@pointB) &&
point.y >= point.x*slope(@pointAExtended, @pointBExtended)+intercept(@pointAExtended,@pointBExtended)
isPosInLine = @extension == :pos &&
point.y >= slope(@pointA, @pointB)*point.x+intercept(@pointA,@pointB) &&
point.y <= point.x*slope(@pointAExtended, @pointBExtended)+intercept(@pointAExtended,@pointBExtended)
isInBoxBounds = point.x >= [@pointA.x,@pointB.x].min &&
point.x <= [@pointA.x,@pointB.x].max &&
point.y >= [@pointA.y,@pointB.y].min+(@extension == :neg ? -@thickness : 0) &&
point.y <= [@pointA.y,@pointB.y].max+(@extension == :pos ? @thickness : 0)
return isInBoxBounds && (isNegInLine || isPosInLine)
end
def getRepelMagnitude (fbx, fby, vrx, vry, args)
a = fbx ; b = vrx ; c = fby
d = vry ; e = args.state.ball.velocity.mag
if b**2 + d**2 == 0
puts "magnitude error"
end
x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)
x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2))
return ((a+x1*b)**2 + (c+x1*d)**2 == e**2) ? x1 : x2
end
def update args
#each of the four points on the square ball - NOTE simple to extend to a circle
points= [ {x: args.state.ball.xy.x, y: args.state.ball.xy.y},
{x: args.state.ball.xy.x+args.state.ball.width, y: args.state.ball.xy.y},
{x: args.state.ball.xy.x, y: args.state.ball.xy.y+args.state.ball.height},
{x: args.state.ball.xy.x+args.state.ball.width, y: args.state.ball.xy.y + args.state.ball.height}
]
#for each point p in points
for point in points
#isCollision.md has more information on this section
#TODO: section can certainly be simplifyed
if isCollision?(point)
u = Vector2d.new(1.0,((slope(@pointA, @pointB)==0) ? INFINITY : -1/slope(@pointA, @pointB))*1.0).normalize #normal perpendicular (to line segment) vector
#the vector with the repeling force can be u or -u depending of where the ball was coming from in relation to the line segment
previousBallPosition=Vector2d.new(point.x-args.state.ball.velocity.x,point.y-args.state.ball.velocity.y)
choiceA = (u.mult(1))
choiceB = (u.mult(-1))
vectorRepel = nil
if (slope(@pointA, @pointB))!=INFINITY && u.y < 0
choiceA, choiceB = choiceB, choiceA
end
vectorRepel = (previousBallPosition.y > calcY(@pointA, @pointB, previousBallPosition.x)) ? choiceA : choiceB
#vectorRepel = (previousBallPosition.y > slope(@pointA, @pointB)*previousBallPosition.x+intercept(@pointA,@pointB)) ? choiceA : choiceB)
if (slope(@pointA, @pointB) == INFINITY) #slope INFINITY breaks down in the above test, ergo it requires a custom test
vectorRepel = (previousBallPosition.x > @pointA.x) ? (u.mult(1)) : (u.mult(-1))
end
#puts (" " + $t[0].to_s + "," + $t[1].to_s + " " + $t[2].to_s + "," + $t[3].to_s + " " + " " + u.x.to_s + "," + u.y.to_s)
#vectorRepel now has the repeling force
mag = args.state.ball.velocity.mag
theta_ball=Math.atan2(args.state.ball.velocity.y,args.state.ball.velocity.x) #the angle of the ball's velocity
theta_repel=Math.atan2(vectorRepel.y,vectorRepel.x) #the angle of the repeling force
#puts ("theta:" + theta_ball.to_s + " " + theta_repel.to_s) #theta okay
fbx = mag * Math.cos(theta_ball) #the x component of the ball's velocity
fby = mag * Math.sin(theta_ball) #the y component of the ball's velocity
repelMag = getRepelMagnitude(fbx, fby, vectorRepel.x, vectorRepel.y, args)
frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx
fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby
fsumx = fbx+frx #sum of x forces
fsumy = fby+fry #sum of y forces
fr = mag#fr is the resulting magnitude
thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle
xnew = fr*Math.cos(thetaNew) #resulting x velocity
ynew = fr*Math.sin(thetaNew) #resulting y velocity
args.state.ball.velocity = Vector2d.new(xnew,ynew)
#args.state.ball.xy.add(args.state.ball.velocity)
break #no need to check the other points ?
else
end
end
end #end update
end
Physics And Collisions - Collision With Object Removal - main.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/main.rb
# coding: utf-8
INFINITY= 10**10
WIDTH=1280
HEIGHT=720
require 'app/vector2d.rb'
require 'app/paddle.rb'
require 'app/ball.rb'
require 'app/linear_collider.rb'
#Method to init default values
def defaults args
args.state.game_board ||= [(args.grid.w / 2 - args.grid.w / 4), 0, (args.grid.w / 2), args.grid.h]
args.state.bricks ||= []
args.state.num_bricks ||= 0
args.state.game_over_at ||= 0
args.state.paddle ||= Paddle.new
args.state.ball ||= Ball.new
args.state.westWall ||= LinearCollider.new({x: args.grid.w/4, y: 0}, {x: args.grid.w/4, y: args.grid.h}, :pos)
args.state.eastWall ||= LinearCollider.new({x: 3*args.grid.w*0.25, y: 0}, {x: 3*args.grid.w*0.25, y: args.grid.h})
args.state.southWall ||= LinearCollider.new({x: 0, y: 0}, {x: args.grid.w, y: 0})
args.state.northWall ||= LinearCollider.new({x: 0, y:args.grid.h}, {x: args.grid.w, y: args.grid.h}, :pos)
#args.state.testWall ||= LinearCollider.new({x:0 , y:0},{x:args.grid.w, y:args.grid.h})
end
#Render loop
def render args
render_instructions args
render_board args
render_bricks args
end
begin :render_methods
#Method to display the instructions of the game
def render_instructions args
args.outputs.labels << [225, args.grid.h - 30, "← and → to move the paddle left and right", 0, 1]
end
def render_board args
args.outputs.borders << args.state.game_board
end
def render_bricks args
args.outputs.solids << args.state.bricks.map(&:rect)
end
end
#Calls all methods necessary for performing calculations
def calc args
add_new_bricks args
reset_game args
calc_collision args
win_game args
args.state.westWall.update args
args.state.eastWall.update args
args.state.southWall.update args
args.state.northWall.update args
args.state.paddle.update args
args.state.ball.update args
#args.state.testWall.update args
args.state.paddle.render args
args.state.ball.render args
end
begin :calc_methods
def add_new_bricks args
return if args.state.num_bricks > 40
#Width of the game board is 640px
brick_width = (args.grid.w / 2) / 10
brick_height = brick_width / 2
(4).map_with_index do |y|
#Make a box that is 10 bricks wide and 4 bricks tall
args.state.bricks += (10).map_with_index do |x|
args.state.new_entity(:brick) do |b|
b.x = x * brick_width + (args.grid.w / 2 - args.grid.w / 4)
b.y = args.grid.h - ((y + 1) * brick_height)
b.rect = [b.x + 1, b.y - 1, brick_width - 2, brick_height - 2, 235, 50 * y, 52]
#Add linear colliders to the brick
b.collider_bottom = LinearCollider.new([(b.x-2), (b.y-5)], [(b.x+brick_width+1), (b.y-5)], :pos, brick_height)
b.collider_right = LinearCollider.new([(b.x+brick_width+1), (b.y-5)], [(b.x+brick_width+1), (b.y+brick_height+1)], :pos)
b.collider_left = LinearCollider.new([(b.x-2), (b.y-5)], [(b.x-2), (b.y+brick_height+1)], :neg)
b.collider_top = LinearCollider.new([(b.x-2), (b.y+brick_height+1)], [(b.x+brick_width+1), (b.y+brick_height+1)], :neg)
# @xyCollision = LinearCollider.new({x: @x,y: @y+@height}, {x: @x+@width, y: @y+@height})
# @xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @x+@width, y: @y}, :pos)
# @xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @y+@height})
# @xyCollision4 = LinearCollider.new({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height}, :pos)
b.broken = false
args.state.num_bricks += 1
end
end
end
end
def reset_game args
if args.state.ball.xy.y < 20 && args.state.game_over_at.elapsed_time > 60
#Freeze the ball
args.state.ball.velocity.x = 0
args.state.ball.velocity.y = 0
#Freeze the paddle
args.state.paddle.enabled = false
args.state.game_over_at = args.state.tick_count
end
if args.state.game_over_at.elapsed_time < 60 && args.state.tick_count > 60 && args.state.bricks.count != 0
#Display a "Game over" message
args.outputs.labels << [100, 100, "GAME OVER", 10]
end
#If 60 frames have passed since the game ended, restart the game
if args.state.game_over_at != 0 && args.state.game_over_at.elapsed_time == 60
# FIXME: only put value types in state
args.state.ball = Ball.new
# FIXME: only put value types in state
args.state.paddle = Paddle.new
args.state.bricks = []
args.state.num_bricks = 0
end
end
def calc_collision args
#Remove the brick if it is hit with the ball
ball = args.state.ball
ball_rect = [ball.xy.x, ball.xy.y, 20, 20]
#Loop through each brick to see if the ball is colliding with it
args.state.bricks.each do |b|
if b.rect.intersect_rect?(ball_rect)
#Run the linear collider for the brick if there is a collision
b[:collider_bottom].update args
b[:collider_right].update args
b[:collider_left].update args
b[:collider_top].update args
b.broken = true
end
end
args.state.bricks = args.state.bricks.reject(&:broken)
end
def win_game args
if args.state.bricks.count == 0 && args.state.game_over_at.elapsed_time > 60
#Freeze the ball
args.state.ball.velocity.x = 0
args.state.ball.velocity.y = 0
#Freeze the paddle
args.state.paddle.enabled = false
args.state.game_over_at = args.state.tick_count
end
if args.state.game_over_at.elapsed_time < 60 && args.state.tick_count > 60 && args.state.bricks.count == 0
#Display a "Game over" message
args.outputs.labels << [100, 100, "CONGRATULATIONS!", 10]
end
end
end
def tick args
defaults args
render args
calc args
#args.outputs.lines << [0, 0, args.grid.w, args.grid.h]
#$tc+=1
#if $tc == 5
#$train << [args.state.ball.xy.x, args.state.ball.xy.y]
#$tc = 0
#end
#for t in $train
#args.outputs.solids << [t[0],t[1],5,5,255,0,0];
#end
end
Physics And Collisions - Collision With Object Removal - paddle.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/paddle.rb
class Paddle
attr_accessor :enabled
def initialize ()
@x=WIDTH/2
@y=100
@width=100
@height=20
@speed=10
@xyCollision = LinearCollider.new({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5})
@xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @x+@width, y: @y}, :pos)
@xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @y+@height+5})
@xyCollision4 = LinearCollider.new({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5}, :pos)
@enabled = true
end
def update args
@xyCollision.resetPoints({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5})
@xyCollision2.resetPoints({x: @x,y: @y}, {x: @x+@width, y: @y})
@xyCollision3.resetPoints({x: @x,y: @y}, {x: @x, y: @y+@height+5})
@xyCollision4.resetPoints({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5})
@xyCollision.update args
@xyCollision2.update args
@xyCollision3.update args
@xyCollision4.update args
args.inputs.keyboard.key_held.left ||= false
args.inputs.keyboard.key_held.right ||= false
if not (args.inputs.keyboard.key_held.left == args.inputs.keyboard.key_held.right)
if args.inputs.keyboard.key_held.left && @enabled
@x-=@speed
elsif args.inputs.keyboard.key_held.right && @enabled
@x+=@speed
end
end
xmin =WIDTH/4
xmax = 3*(WIDTH/4)
@x = (@x+@width > xmax) ? xmax-@width : (@x
Physics And Collisions - Collision With Object Removal - tests.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/tests.rb
# For advanced users:
# You can put some quick verification tests here, any method
# that starts with the `test_` will be run when you save this file.
# Here is an example test and game
# To run the test: ./dragonruby mygame --eval app/tests.rb --no-tick
class MySuperHappyFunGame
attr_gtk
def tick
outputs.solids << [100, 100, 300, 300]
end
end
def test_universe args, assert
game = MySuperHappyFunGame.new
game.args = args
game.tick
assert.true! args.outputs.solids.length == 1, "failure: a solid was not added after tick"
assert.false! 1 == 2, "failure: some how, 1 equals 2, the world is ending"
puts "test_universe completed successfully"
end
puts "running tests"
$gtk.reset 100
$gtk.log_level = :off
$gtk.tests.start
Physics And Collisions - Collision With Object Removal - vector2d.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/vector2d.rb
class Vector2d
attr_accessor :x, :y
def initialize x=0, y=0
@x=x
@y=y
end
#returns a vector multiplied by scalar x
#x [float] scalar
def mult x
r = Vector2d.new(0,0)
r.x=@x*x
r.y=@y*x
r
end
# vect [Vector2d] vector to copy
def copy vect
Vector2d.new(@x, @y)
end
#returns a new vector equivalent to this+vect
#vect [Vector2d] vector to add to self
def add vect
Vector2d.new(@x+vect.x,@y+vect.y)
end
#returns a new vector equivalent to this-vect
#vect [Vector2d] vector to subtract to self
def sub vect
Vector2d.new(@x-vect.c, @y-vect.y)
end
#return the magnitude of the vector
def mag
((@x**2)+(@y**2))**0.5
end
#returns a new normalize version of the vector
def normalize
Vector2d.new(@x/mag, @y/mag)
end
#TODO delet?
def distABS vect
(((vect.x-@x)**2+(vect.y-@y)**2)**0.5).abs()
end
end
Physics And Collisions - Bouncing Ball With Gravity - main.rb
# ./samples/04_physics_and_collisions/11_bouncing_ball_with_gravity/app/main.rb
include MatrixFunctions
class BouncingBall
attr_gtk
def tick
defaults
render
input
calc
reset_ball if args.inputs.keyboard.key_down.r
args.state.debug = !args.state.debug if inputs.keyboard.key_down.g
debug if args.state.debug
end
def defaults
args.state.rest ||= false
args.state.debug ||= false
state.walls ||= [
{ x: 50.from_left, y: 50.from_bottom, x2: 50.from_left, y2: 50.from_top },
{ x: 50.from_left, y: 50.from_bottom, x2: 50.from_right, y2: 50.from_bottom },
{ x: 50.from_left, y: 50.from_top, x2: 50.from_right, y2: 50.from_top },
{ x: 50.from_right, y: 50.from_bottom, x2: 50.from_right, y2: 50.from_top },
]
state.ball ||= { x: 250, y: 250, w: 50, h: 50, path: 'circle-white.png' }
state.ball_old_x ||= state.ball[:x]
state.ball_old_y ||= state.ball[:y]
state.ball_vector ||= vec2(0, 0)
state.stick_length = 200
state.stick_angle ||= 0
state.stick_power ||= 0
# Prevent consecutive bounces on the same normal vector
# Solves issue where ball gets stuck on a wall
state.prevent_collision ||= {}
state.physics.gravity = 0.4
state.physics.restitution = 0.80
state.physics.friction = 0.70
end
def render
outputs.lines << state.walls
outputs.sprites << state.ball
render_stick
render_point_one
end
def render_stick
stick_vec_x = Math.cos(state.stick_angle.to_radians)
stick_vec_y = Math.sin(state.stick_angle.to_radians)
ball_center_x = state.ball[:x] + (state.ball[:w] / 2)
ball_center_y = state.ball[:y] + (state.ball[:h] / 2)
# Draws the line starting 15% of stick_length away from the ball
outputs.lines << {
x: ball_center_x + (stick_vec_x * state.stick_length * -0.15),
y: ball_center_y + (stick_vec_y * state.stick_length * -0.15),
w: stick_vec_x * state.stick_length * -1,
h: stick_vec_y * state.stick_length * -1,
}
end
def render_point_one
return unless state.point_one
outputs.lines << { x: state.point_one.x, y: state.point_one.y,
x2: inputs.mouse.x, y2: inputs.mouse.y,
r: 255 }
end
def input
input_stick
input_lines
state.point_one = nil if inputs.keyboard.key_down.escape
end
def input_stick
if inputs.keyboard.key_up.space
hit_ball
state.stick_power = 0
end
if inputs.keyboard.key_held.space
state.stick_power += 1 unless state.stick_power >= 50
outputs.labels << [100, 100, state.stick_power]
end
state.stick_angle += inputs.keyboard.left_right
end
def input_lines
return unless inputs.mouse.click
if state.point_one
x = snap(state.point_one.x)
y = snap(state.point_one.y)
x2 = snap(inputs.mouse.click.x)
y2 = snap(inputs.mouse.click.y)
state.walls << { x: x, y: y, x2: x2, y2: y2 }
state.point_one = nil
else
state.point_one = inputs.mouse.click.point
end
end
# FIX: does not snap negative numbers properly
def snap value
snap_number = 10
min = value.to_i.idiv(snap_number) * snap_number
max = min + snap_number
result = (max - value).abs < (min - value).abs ? max : min
puts "SNAP: #{ value } --> #{ result }" if state.debug
result
end
def hit_ball
vec_x = Math.cos(state.stick_angle.to_radians) * state.stick_power
vec_y = Math.sin(state.stick_angle.to_radians) * state.stick_power
state.ball_vector = vec2(vec_x, vec_y)
state.rest = false
end
def entropy
state.ball_vector[:x].abs + state.ball_vector[:y].abs
end
# Ball is resting if
# entropy is low, ball is touching a line
# the line is not steep and the ball is above the line
def ball_is_resting?(walls, true_normal)
entropy < 1.5 && !walls.empty? && true_normal[:y] > 0.96
end
def calc
walls = []
state.walls.each do |wall|
if line_intersect_rect?(wall, state.ball)
walls << wall unless state.prevent_collision.key?(wall)
end
end
state.prevent_collision = {}
walls.each { |w| state.prevent_collision[w] = true }
normals = walls.map { |w| compute_proper_normal(w) }
true_normal = normals.inject { |a, b| normalize(vector_add(a, b)) }
unless state.rest
state.ball_vector = collision(true_normal) unless walls.empty?
state.ball_old_x = state.ball[:x]
state.ball_old_y = state.ball[:y]
state.ball[:x] += state.ball_vector[:x]
state.ball[:y] += state.ball_vector[:y]
state.ball_vector[:y] -= state.physics.gravity
if ball_is_resting?(walls, true_normal)
state.ball[:y] += 1
state.rest = true
end
end
end
# Line segment intersects rect if it intersects
# any of the lines that make up the rect
# This doesn't cover the case where the line is completely within the rect
def line_intersect_rect?(line, rect)
rect_to_lines(rect).each do |rect_line|
return true if segments_intersect?(line, rect_line)
end
false
end
# https://stackoverflow.com/questions/573084/
def collision(normal_vector)
dot_product = dot(state.ball_vector, normal_vector)
normal_square = dot(normal_vector, normal_vector)
perpendicular = vector_multiply(normal_vector, (dot_product / normal_square))
parallel = vector_minus(state.ball_vector, perpendicular)
perpendicular = vector_multiply(perpendicular, state.physics.restitution)
parallel = vector_multiply(parallel, state.physics.friction)
vector_minus(parallel, perpendicular)
end
# https://stackoverflow.com/questions/1243614/
def compute_normals(line)
h = line[:y2] - line[:y]
w = line[:x2] - line[:x]
a = normalize vec2(-h, w)
b = normalize vec2(h, -w)
[a, b]
end
# https://stackoverflow.com/questions/3838319/
# Get the normal vector that points at the ball from the center of the line
def compute_proper_normal(line)
normals = compute_normals(line)
ball_center_x = state.ball_old_x + (state.ball[:w] / 2)
ball_center_y = state.ball_old_y + (state.ball[:h] / 2)
v1 = vec2(line[:x2] - line[:x], line[:y2] - line[:y])
v2 = vec2(line[:x2] - ball_center_x, line[:y2] - ball_center_y)
cp = v1[:x] * v2[:y] - v1[:y] * v2[:x]
cp < 0 ? normals[0] : normals[1]
end
def vector_multiply(vector, value)
vec2(vector[:x] * value, vector[:y] * value)
end
def vector_minus(vec_a, vec_b)
vec2(vec_a[:x] - vec_b[:x], vec_a[:y] - vec_b[:y])
end
def vector_add a, b
vec2(a[:x] + b[:x], a[:y] + b[:y])
end
# The lines composing the boundaries of a rectangle
def rect_to_lines(rect)
x = rect[:x]
y = rect[:y]
x2 = rect[:x] + rect[:w]
y2 = rect[:y] + rect[:h]
[{ x: x, y: y, x2: x2, y2: y },
{ x: x, y: y, x2: x, y2: y2 },
{ x: x2, y: y, x2: x2, y2: y2 },
{ x: x, y: y2, x2: x2, y2: y2 }]
end
# This is different from args.geometry.line_intersect
# This considers line segments instead of lines
# http://jeffreythompson.org/collision-detection/line-line.php
def segments_intersect?(line_one, line_two)
x1 = line_one[:x]
y1 = line_one[:y]
x2 = line_one[:x2]
y2 = line_one[:y2]
x3 = line_two[:x]
y3 = line_two[:y]
x4 = line_two[:x2]
y4 = line_two[:y2]
uA = ((x4-x3)*(y1-y3) - (y4-y3)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1))
uB = ((x2-x1)*(y1-y3) - (y2-y1)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1))
uA >= 0 && uA <= 1 && uB >= 0 && uB <= 1
end
def reset_ball
state.ball = nil
state.ball_vector = nil
state.rest = false
end
def debug
outputs.labels << { x: 50.from_left, y: 50.from_top, text: "Entropy: #{entropy}"}
end
end
def tick args
$game ||= BouncingBall.new
$game.args = args
$game.tick
end
Mouse - Mouse Click - main.rb
# ./samples/05_mouse/01_mouse_click/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- product: Returns an array of all combinations of elements from all arrays.
For example, [1,2].product([1,2]) would return the following array...
[[1,1], [1,2], [2,1], [2,2]]
More than two arrays can be given to product and it will still work,
such as [1,2].product([1,2],[3,4]). What would product return in this case?
Answer:
[[1,1,3],[1,1,4],[1,2,3],[1,2,4],[2,1,3],[2,1,4],[2,2,3],[2,2,4]]
- num1.fdiv(num2): Returns the float division (will have a decimal) of the two given numbers.
For example, 5.fdiv(2) = 2.5 and 5.fdiv(5) = 1.0
- yield: Allows you to call a method with a code block and yield to that block.
Reminders:
- ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect.
- String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
- args.inputs.mouse.click: This property will be set if the mouse was clicked.
- Ternary operator (?): Will evaluate a statement (just like an if statement)
and perform an action if the result is true or another action if it is false.
- reject: Removes elements from a collection if they meet certain requirements.
- args.outputs.borders: An array. The values generate a border.
The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE]
For more information about borders, go to mygame/documentation/03-solids-and-borders.md.
- args.outputs.labels: An array. The values generate a label.
The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.
=end
# This sample app is a classic game of Tic Tac Toe.
class TicTacToe
attr_accessor :_, :state, :outputs, :inputs, :grid, :gtk
# Starts the game with player x's turn and creates an array (to_a) for space combinations.
# Calls methods necessary for the game to run properly.
def tick
init_new_game
render_board
input_board
end
def init_new_game
state.current_turn ||= :x
state.space_combinations ||= [-1, 0, 1].product([-1, 0, 1]).to_a
state.spaces ||= {}
state.space_combinations.each do |x, y|
state.spaces[x] ||= {}
state.spaces[x][y] ||= state.new_entity(:space)
end
end
# Uses borders to create grid squares for the game's board. Also outputs the game pieces using labels.
def render_board
square_size = 80
# Positions the game's board in the center of the screen.
# Try removing what follows grid.w_half or grid.h_half and see how the position changes!
board_left = grid.w_half - square_size * 1.5
board_top = grid.h_half - square_size * 1.5
# At first glance, the add(1) looks pretty trivial. But if you remove it,
# you'll see that the positioning of the board would be skewed without it!
# Or if you put 2 in the parenthesis, the pieces will be placed in the wrong squares
# due to the change in board placement.
outputs.borders << all_spaces do |x, y, space| # outputs borders for all board spaces
space.border ||= [
board_left + x.add(1) * square_size, # space.border is initialized using this definition
board_top + y.add(1) * square_size,
square_size,
square_size
]
end
# Again, the calculations ensure that the piece is placed in the center of the grid square.
# Remove the '- 20' and the piece will be placed at the top of the grid square instead of the center.
outputs.labels << filled_spaces do |x, y, space| # put label in each filled space of board
label board_left + x.add(1) * square_size + square_size.fdiv(2),
board_top + y.add(1) * square_size + square_size - 20,
space.piece # text of label, either "x" or "o"
end
# Uses a label to output whether x or o won, or if a draw occurred.
# If the game is ongoing, a label shows whose turn it currently is.
outputs.labels << if state.x_won
label grid.w_half, grid.top - 80, "x won" # the '-80' positions the label 80 pixels lower than top
elsif state.o_won
label grid.w_half, grid.top - 80, "o won" # grid.w_half positions the label in the center horizontally
elsif state.draw
label grid.w_half, grid.top - 80, "a draw"
else # if no one won and the game is ongoing
label grid.w_half, grid.top - 80, "turn: #{state.current_turn}"
end
end
# Calls the methods responsible for handling user input and determining the winner.
# Does nothing unless the mouse is clicked.
def input_board
return unless inputs.mouse.click
input_place_piece
input_restart_game
determine_winner
end
# Handles user input for placing pieces on the board.
def input_place_piece
return if state.game_over
# Checks to find the space that the mouse was clicked inside of, and makes sure the space does not already
# have a piece in it.
__, __, space = all_spaces.find do |__, __, space|
inputs.mouse.click.point.inside_rect?(space.border) && !space.piece
end
# The piece that goes into the space belongs to the player whose turn it currently is.
return unless space
space.piece = state.current_turn
# This ternary operator statement allows us to change the current player's turn.
# If it is currently x's turn, it becomes o's turn. If it is not x's turn, it become's x's turn.
state.current_turn = state.current_turn == :x ? :o : :x
end
# Resets the game.
def input_restart_game
return unless state.game_over
gtk.reset
init_new_game
end
# Checks if x or o won the game.
# If neither player wins and all nine squares are filled, a draw happens.
# Once a player is chosen as the winner or a draw happens, the game is over.
def determine_winner
state.x_won = won? :x # evaluates to either true or false (boolean values)
state.o_won = won? :o
state.draw = true if filled_spaces.length == 9 && !state.x_won && !state.o_won
state.game_over = state.x_won || state.o_won || state.draw
end
# Determines if a player won by checking if there is a horizontal match or vertical match.
# Horizontal_match and vertical_match have boolean values. If either is true, the game has been won.
def won? piece
# performs action on all space combinations
won = [[-1, 0, 1]].product([-1, 0, 1]).map do |xs, y|
# Checks if the 3 grid spaces with the same y value (or same row) and
# x values that are next to each other have pieces that belong to the same player.
# Remember, the value of piece is equal to the current turn (which is the player).
horizontal_match = state.spaces[xs[0]][y].piece == piece &&
state.spaces[xs[1]][y].piece == piece &&
state.spaces[xs[2]][y].piece == piece
# Checks if the 3 grid spaces with the same x value (or same column) and
# y values that are next to each other have pieces that belong to the same player.
# The && represents an "and" statement: if even one part of the statement is false,
# the entire statement evaluates to false.
vertical_match = state.spaces[y][xs[0]].piece == piece &&
state.spaces[y][xs[1]].piece == piece &&
state.spaces[y][xs[2]].piece == piece
horizontal_match || vertical_match # if either is true, true is returned
end
# Sees if there is a diagonal match, starting from the bottom left and ending at the top right.
# Is added to won regardless of whether the statement is true or false.
won << (state.spaces[-1][-1].piece == piece && # bottom left
state.spaces[ 0][ 0].piece == piece && # center
state.spaces[ 1][ 1].piece == piece) # top right
# Sees if there is a diagonal match, starting at the bottom right and ending at the top left
# and is added to won.
won << (state.spaces[ 1][-1].piece == piece && # bottom right
state.spaces[ 0][ 0].piece == piece && # center
state.spaces[-1][ 1].piece == piece) # top left
# Any false statements (meaning false diagonal matches) are rejected from won
won.reject_false.any?
end
# Defines filled spaces on the board by rejecting all spaces that do not have game pieces in them.
# The ! before a statement means "not". For example, we are rejecting any space combinations that do
# NOT have pieces in them.
def filled_spaces
state.space_combinations
.reject { |x, y| !state.spaces[x][y].piece } # reject spaces with no pieces in them
.map do |x, y|
if block_given?
yield x, y, state.spaces[x][y]
else
[x, y, state.spaces[x][y]] # sets definition of space
end
end
end
# Defines all spaces on the board.
def all_spaces
if !block_given?
state.space_combinations.map do |x, y|
[x, y, state.spaces[x][y]] # sets definition of space
end
else # if a block is given (block_given? is true)
state.space_combinations.map do |x, y|
yield x, y, state.spaces[x][y] # yield if a block is given
end
end
end
# Sets values for a label, such as the position, value, size, alignment, and color.
def label x, y, value
[x, y + 10, value, 20, 1, 0, 0, 0]
end
end
$tic_tac_toe = TicTacToe.new
def tick args
$tic_tac_toe._ = args
$tic_tac_toe.state = args.state
$tic_tac_toe.outputs = args.outputs
$tic_tac_toe.inputs = args.inputs
$tic_tac_toe.grid = args.grid
$tic_tac_toe.gtk = args.gtk
$tic_tac_toe.tick
tick_instructions args, "Sample app shows how to work with mouse clicks."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Mouse - Mouse Move - main.rb
# ./samples/05_mouse/02_mouse_move/app/main.rb
=begin
Reminders:
- num1.greater(num2): Returns the greater value.
For example, if we have the command
puts 4.greater(3)
the number 4 would be printed to the console since it has a greater value than 3.
Similar to lesser, which returns the lesser value.
- find_all: Finds all elements of a collection that meet certain requirements.
For example, in this sample app, we're using find_all to find all zombies that have intersected
or hit the player's sprite since these zombies have been killed.
- args.inputs.keyboard.key_down.KEY: Determines if a key is being held or pressed.
Stores the frame the "down" event occurred.
For more information about the keyboard, go to mygame/documentation/06-keyboard.md.
- args.outputs.sprites: An array. The values generate a sprite.
The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE]
For more information about sprites, go to mygame/documentation/05-sprites.md.
- args.state.new_entity: Used when we want to create a new object, like a sprite or button.
When we want to create a new object, we can declare it as a new entity and then define
its properties. (Remember, you can use state to define ANY property and it will
be retained across frames.)
- String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
- map: Ruby method used to transform data; used in arrays, hashes, and collections.
Can be used to perform an action on every element of a collection, such as multiplying
each element by 2 or declaring every element as a new entity.
- sample: Chooses a random element from the array.
- reject: Removes elements that meet certain requirements.
In this sample app, we're removing/rejecting zombies that reach the center of the screen. We're also
rejecting zombies that were killed more than 30 frames ago.
=end
# This sample app allows users to move around the screen in order to kill zombies. Zombies appear from every direction so the goal
# is to kill the zombies as fast as possible!
class ProtectThePuppiesFromTheZombies
attr_accessor :grid, :inputs, :state, :outputs
# Calls the methods necessary for the game to run properly.
def tick
defaults
render
calc
input
end
# Sets default values for the zombies and for the player.
# Initialization happens only in the first frame.
def defaults
state.flash_at ||= 0
state.zombie_min_spawn_rate ||= 60
state.zombie_spawn_countdown ||= random_spawn_countdown state.zombie_min_spawn_rate
state.zombies ||= []
state.killed_zombies ||= []
# Declares player as a new entity and sets its properties.
# The player begins the game in the center of the screen, not moving in any direction.
state.player ||= state.new_entity(:player, { x: 640,
y: 360,
attack_angle: 0,
dx: 0,
dy: 0 })
end
# Outputs a gray background.
# Calls the methods needed to output the player, zombies, etc onto the screen.
def render
outputs.solids << [grid.rect, 100, 100, 100]
render_zombies
render_killed_zombies
render_player
render_flash
end
# Outputs the zombies on the screen and sets values for the sprites, such as the position, width, height, and animation.
def render_zombies
outputs.sprites << state.zombies.map do |z| # performs action on all zombies in the collection
z.sprite = [z.x, z.y, 4 * 3, 8 * 3, animation_sprite(z)].sprite # sets definition for sprite, calls animation_sprite method
z.sprite
end
end
# Outputs sprites of killed zombies, and displays a slash image to show that a zombie has been killed.
def render_killed_zombies
outputs.sprites << state.killed_zombies.map do |z| # performs action on all killed zombies in collection
z.sprite = [z.x,
z.y,
4 * 3,
8 * 3,
animation_sprite(z, z.death_at), # calls animation_sprite method
0, # angle
255 * z.death_at.ease(30, :flip)].sprite # transparency of a zombie changes when they die
# change the value of 30 and see what happens when a zombie is killed
# Sets values to output the slash over the zombie's sprite when a zombie is killed.
# The slash is tilted 45 degrees from the angle of the player's attack.
# Change the 3 inside scale_rect to 30 and the slash will be HUGE! Scale_rect positions
# the slash over the killed zombie's sprite.
[z.sprite, [z.sprite.rect, 'sprites/slash.png', 45 + state.player.attack_angle_on_click, z.sprite.a].scale_rect(3, 0.5, 0.5)]
end
end
# Outputs the player sprite using the images in the sprites folder.
def render_player
state.player_sprite = [state.player.x,
state.player.y,
4 * 3,
8 * 3, "sprites/player-#{animation_index(state.player.created_at_elapsed)}.png"] # string interpolation
outputs.sprites << state.player_sprite
# Outputs a small red square that previews the angles that the player can attack in.
# It can be moved in a perfect circle around the player to show possible movements.
# Change the 60 in the parenthesis and see what happens to the movement of the red square.
outputs.solids << [state.player.x + state.player.attack_angle.vector_x(60),
state.player.y + state.player.attack_angle.vector_y(60),
3, 3, 255, 0, 0]
end
# Renders flash as a solid. The screen turns white for 10 frames when a zombie is killed.
def render_flash
return if state.flash_at.elapsed_time > 10 # return if more than 10 frames have passed since flash.
# Transparency gradually changes (or eases) during the 10 frames of flash.
outputs.primitives << [grid.rect, 255, 255, 255, 255 * state.flash_at.ease(10, :flip)].solid
end
# Calls all methods necessary for performing calculations.
def calc
calc_spawn_zombie
calc_move_zombies
calc_player
calc_kill_zombie
end
# Decreases the zombie spawn countdown by 1 if it has a value greater than 0.
def calc_spawn_zombie
if state.zombie_spawn_countdown > 0
state.zombie_spawn_countdown -= 1
return
end
# New zombies are created, positioned on the screen, and added to the zombies collection.
state.zombies << state.new_entity(:zombie) do |z| # each zombie is declared a new entity
if rand > 0.5
z.x = grid.rect.w.randomize(:ratio) # random x position on screen (within grid scope)
z.y = [-10, 730].sample # y position is set to either -10 or 730 (randomly chosen)
# the possible values exceed the screen's scope so zombies appear to be coming from far away
else
z.x = [-10, 1290].sample # x position is set to either -10 or 1290 (randomly chosen)
z.y = grid.rect.w.randomize(:ratio) # random y position on screen
end
end
# Calls random_spawn_countdown method (determines how fast new zombies appear)
state.zombie_spawn_countdown = random_spawn_countdown state.zombie_min_spawn_rate
state.zombie_min_spawn_rate -= 1
# set to either the current zombie_min_spawn_rate or 0, depending on which value is greater
state.zombie_min_spawn_rate = state.zombie_min_spawn_rate.greater(0)
end
# Moves all zombies towards the center of the screen.
# All zombies that reach the center (640, 360) are rejected from the zombies collection and disappear.
def calc_move_zombies
state.zombies.each do |z| # for each zombie in the collection
z.y = z.y.towards(360, 0.1) # move the zombie towards the center (640, 360) at a rate of 0.1
z.x = z.x.towards(640, 0.1) # change 0.1 to 1.1 and see how much faster the zombies move to the center
end
state.zombies = state.zombies.reject { |z| z.y == 360 && z.x == 640 } # remove zombies that are in center
end
# Calculates the position and movement of the player on the screen.
def calc_player
state.player.x += state.player.dx # changes x based on dx (change in x)
state.player.y += state.player.dy # changes y based on dy (change in y)
state.player.dx *= 0.9 # scales dx down
state.player.dy *= 0.9 # scales dy down
# Compares player's x to 1280 to find lesser value, then compares result to 0 to find greater value.
# This ensures that the player remains within the screen's scope.
state.player.x = state.player.x.lesser(1280).greater(0)
state.player.y = state.player.y.lesser(720).greater(0) # same with player's y
end
# Finds all zombies that intersect with the player's sprite. These zombies are removed from the zombies collection
# and added to the killed_zombies collection since any zombie that intersects with the player is killed.
def calc_kill_zombie
# Find all zombies that intersect with the player. They are considered killed.
killed_this_frame = state.zombies.find_all { |z| z.sprite && (z.sprite.intersect_rect? state.player_sprite) }
state.zombies = state.zombies - killed_this_frame # remove newly killed zombies from zombies collection
state.killed_zombies += killed_this_frame # add newly killed zombies to killed zombies
if killed_this_frame.length > 0 # if atleast one zombie was killed in the frame
state.flash_at = state.tick_count # flash_at set to the frame when the zombie was killed
# Don't forget, the rendered flash lasts for 10 frames after the zombie is killed (look at render_flash method)
end
# Sets the tick_count (passage of time) as the value of the death_at variable for each killed zombie.
# Death_at stores the frame a zombie was killed.
killed_this_frame.each do |z|
z.death_at = state.tick_count
end
# Zombies are rejected from the killed_zombies collection depending on when they were killed.
# They are rejected if more than 30 frames have passed since their death.
state.killed_zombies = state.killed_zombies.reject { |z| state.tick_count - z.death_at > 30 }
end
# Uses input from the user to move the player around the screen.
def input
# If the "a" key or left key is pressed, the x position of the player decreases.
# Otherwise, if the "d" key or right key is pressed, the x position of the player increases.
if inputs.keyboard.key_held.a || inputs.keyboard.key_held.left
state.player.x -= 5
elsif inputs.keyboard.key_held.d || inputs.keyboard.key_held.right
state.player.x += 5
end
# If the "w" or up key is pressed, the y position of the player increases.
# Otherwise, if the "s" or down key is pressed, the y position of the player decreases.
if inputs.keyboard.key_held.w || inputs.keyboard.key_held.up
state.player.y += 5
elsif inputs.keyboard.key_held.s || inputs.keyboard.key_held.down
state.player.y -= 5
end
# Sets the attack angle so the player can move and attack in the precise direction it wants to go.
# If the mouse is moved, the attack angle is changed (based on the player's position and mouse position).
# Attack angle also contributes to the position of red square.
if inputs.mouse.moved
state.player.attack_angle = inputs.mouse.position.angle_from [state.player.x, state.player.y]
end
if inputs.mouse.click && state.player.dx < 0.5 && state.player.dy < 0.5
state.player.attack_angle_on_click = inputs.mouse.position.angle_from [state.player.x, state.player.y]
state.player.attack_angle = state.player.attack_angle_on_click # player's attack angle is set
state.player.dx = state.player.attack_angle.vector_x(25) # change in player's position
state.player.dy = state.player.attack_angle.vector_y(25)
end
end
# Sets the zombie spawn's countdown to a random number.
# How fast zombies appear (change the 60 to 6 and too many zombies will appear at once!)
def random_spawn_countdown minimum
10.randomize(:ratio, :sign).to_i + 60
end
# Helps to iterate through the images in the sprites folder by setting the animation index.
# 3 frames is how long to show an image, and 6 is how many images to flip through.
def animation_index at
at.idiv(3).mod(6)
end
# Animates the zombies by using the animation index to go through the images in the sprites folder.
def animation_sprite zombie, at = nil
at ||= zombie.created_at_elapsed # how long it is has been since a zombie was created
index = animation_index at
"sprites/zombie-#{index}.png" # string interpolation to iterate through images
end
end
$protect_the_puppies_from_the_zombies = ProtectThePuppiesFromTheZombies.new
def tick args
$protect_the_puppies_from_the_zombies.grid = args.grid
$protect_the_puppies_from_the_zombies.inputs = args.inputs
$protect_the_puppies_from_the_zombies.state = args.state
$protect_the_puppies_from_the_zombies.outputs = args.outputs
$protect_the_puppies_from_the_zombies.tick
tick_instructions args, "How to get the mouse position and translate it to an x, y position using .vector_x and .vector_y. CLICK to play."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Mouse - Mouse Move Paint App - main.rb
# ./samples/05_mouse/03_mouse_move_paint_app/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- Floor: Method that returns an integer number smaller than or equal to the original with no decimal.
For example, if we have a variable, a = 13.7, and we called floor on it, it would look like this...
puts a.floor()
which would print out 13.
(There is also a ceil method, which returns an integer number greater than or equal to the original
with no decimal. If we had called ceil on the variable a, the result would have been 14.)
Reminders:
- Hashes: Collection of unique keys and their corresponding values. The value can be found
using their keys.
For example, if we have a "numbers" hash that stores numbers in English as the
key and numbers in Spanish as the value, we'd have a hash that looks like this...
numbers = { "one" => "uno", "two" => "dos", "three" => "tres" }
and on it goes.
Now if we wanted to find the corresponding value of the "one" key, we could say
puts numbers["one"]
which would print "uno" to the console.
- args.state.new_entity: Used when we want to create a new object, like a sprite or button.
In this sample app, new_entity is used to create a new button that clears the grid.
(Remember, you can use state to define ANY property and it will be retained across frames.)
- args.inputs.mouse.click.point.(x|y): The x and y location of the mouse.
- args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in.
- args.outputs.labels: An array. The values in the array generate a label.
The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.md.
- ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect.
=end
# This sample app shows an empty grid that the user can paint on.
# To paint, the user must keep their mouse presssed and drag it around the grid.
# The "clear" button allows users to clear the grid so they can start over.
class PaintApp
attr_accessor :inputs, :state, :outputs, :grid, :args
# Runs methods necessary for the game to function properly.
def tick
print_title
add_grid
check_click
draw_buttons
end
# Prints the title onto the screen by using a label.
# Also separates the title from the grid with a line as a horizontal separator.
def print_title
args.outputs.labels << [ 640, 700, 'Paint!', 0, 1 ]
outputs.lines << horizontal_separator(660, 0, 1280)
end
# Sets the starting position, ending position, and color for the horizontal separator.
# The starting and ending positions have the same y values.
def horizontal_separator y, x, x2
[x, y, x2, y, 150, 150, 150]
end
# Sets the starting position, ending position, and color for the vertical separator.
# The starting and ending positions have the same x values.
def vertical_separator x, y, y2
[x, y, x, y2, 150, 150, 150]
end
# Outputs a border and a grid containing empty squares onto the screen.
def add_grid
# Sets the x, y, height, and width of the grid.
# There are 31 horizontal lines and 31 vertical lines in the grid.
# Feel free to count them yourself before continuing!
x, y, h, w = 640 - 500/2, 640 - 500, 500, 500 # calculations done so the grid appears in screen's center
lines_h = 31
lines_v = 31
# Sets values for the grid's border, grid lines, and filled squares.
# The filled_squares variable is initially set to an empty array.
state.grid_border ||= [ x, y, h, w ] # definition of grid's outer border
state.grid_lines ||= draw_grid(x, y, h, w, lines_h, lines_v) # calls draw_grid method
state.filled_squares ||= [] # there are no filled squares until the user fills them in
# Outputs the grid lines, border, and filled squares onto the screen.
outputs.lines.concat state.grid_lines
outputs.borders << state.grid_border
outputs.solids << state.filled_squares
end
# Draws the grid by adding in vertical and horizontal separators.
def draw_grid x, y, h, w, lines_h, lines_v
# The grid starts off empty.
grid = []
# Calculates the placement and adds horizontal lines or separators into the grid.
curr_y = y # start at the bottom of the box
dist_y = h / (lines_h + 1) # finds distance to place horizontal lines evenly throughout 500 height of grid
lines_h.times do
curr_y += dist_y # increment curr_y by the distance between the horizontal lines
grid << horizontal_separator(curr_y, x, x + w - 1) # add a separator into the grid
end
# Calculates the placement and adds vertical lines or separators into the grid.
curr_x = x # now start at the left of the box
dist_x = w / (lines_v + 1) # finds distance to place vertical lines evenly throughout 500 width of grid
lines_v.times do
curr_x += dist_x # increment curr_x by the distance between the vertical lines
grid << vertical_separator(curr_x, y + 1, y + h) # add separator
end
# paint_grid uses a hash to assign values to keys.
state.paint_grid ||= {"x" => x, "y" => y, "h" => h, "w" => w, "lines_h" => lines_h,
"lines_v" => lines_v, "dist_x" => dist_x,
"dist_y" => dist_y }
return grid
end
# Checks if the user is keeping the mouse pressed down and sets the mouse_hold variable accordingly using boolean values.
# If the mouse is up, the user cannot drag the mouse.
def check_click
if inputs.mouse.down #is mouse up or down?
state.mouse_held = true # mouse is being held down
elsif inputs.mouse.up # if mouse is up
state.mouse_held = false # mouse is not being held down or dragged
state.mouse_dragging = false
end
if state.mouse_held && # mouse needs to be down
!inputs.mouse.click && # must not be first click
((inputs.mouse.previous_click.point.x - inputs.mouse.position.x).abs > 15) # Need to move 15 pixels before "drag"
state.mouse_dragging = true
end
# If the user clicks their mouse inside the grid, the search_lines method is called with a click input type.
if ((inputs.mouse.click) && (inputs.mouse.click.point.inside_rect? state.grid_border))
search_lines(inputs.mouse.click.point, :click)
# If the user drags their mouse inside the grid, the search_lines method is called with a drag input type.
elsif ((state.mouse_dragging) && (inputs.mouse.position.inside_rect? state.grid_border))
search_lines(inputs.mouse.position, :drag)
end
end
# Sets the definition of a grid box and handles user input to fill in or clear grid boxes.
def search_lines (point, input_type)
point.x -= state.paint_grid["x"] # subtracts the value assigned to the "x" key in the paint_grid hash
point.y -= state.paint_grid["y"] # subtracts the value assigned to the "y" key in the paint_grid hash
# Remove code following the .floor and see what happens when you try to fill in grid squares
point.x = (point.x / state.paint_grid["dist_x"]).floor * state.paint_grid["dist_x"]
point.y = (point.y / state.paint_grid["dist_y"]).floor * state.paint_grid["dist_y"]
point.x += state.paint_grid["x"]
point.y += state.paint_grid["y"]
# Sets definition of a grid box, meaning its x, y, width, and height.
# Floor is called on the point.x and point.y variables.
# Ceil method is called on values of the distance hash keys, setting the width and height of a box.
grid_box = [ point.x.floor, point.y.floor, state.paint_grid["dist_x"].ceil, state.paint_grid["dist_y"].ceil ]
if input_type == :click # if user clicks their mouse
if state.filled_squares.include? grid_box # if grid box is already filled in
state.filled_squares.delete grid_box # box is cleared and removed from filled_squares
else
state.filled_squares << grid_box # otherwise, box is filled in and added to filled_squares
end
elsif input_type == :drag # if user drags mouse
unless state.filled_squares.include? grid_box # unless the grid box dragged over is already filled in
state.filled_squares << grid_box # the box is filled in and added to filled_squares
end
end
end
# Creates and outputs a "Clear" button on the screen using a label and a border.
# If the button is clicked, the filled squares are cleared, making the filled_squares collection empty.
def draw_buttons
x, y, w, h = 390, 50, 240, 50
state.clear_button ||= state.new_entity(:button_with_fade)
# The x and y positions are set to display the label in the center of the button.
# Try changing the first two parameters to simply x, y and see what happens to the text placement!
state.clear_button.label ||= [x + w.half, y + h.half + 10, "Clear", 0, 1] # placed in center of border
state.clear_button.border ||= [x, y, w, h]
# If the mouse is clicked inside the borders of the clear button,
# the filled_squares collection is emptied and the squares are cleared.
if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.clear_button.border)
state.clear_button.clicked_at = inputs.mouse.click.created_at # time (frame) the click occurred
state.filled_squares.clear
inputs.mouse.previous_click = nil
end
outputs.labels << state.clear_button.label
outputs.borders << state.clear_button.border
# When the clear button is clicked, the color of the button changes
# and the transparency changes, as well. If you change the time from
# 0.25.seconds to 1.25.seconds or more, the change will last longer.
if state.clear_button.clicked_at
outputs.solids << [x, y, w, h, 0, 180, 80, 255 * state.clear_button.clicked_at.ease(0.25.seconds, :flip)]
end
end
end
$paint_app = PaintApp.new
def tick args
$paint_app.inputs = args.inputs
$paint_app.state = args.state
$paint_app.grid = args.grid
$paint_app.args = args
$paint_app.outputs = args.outputs
$paint_app.tick
tick_instructions args, "How to create a simple paint app. CLICK and HOLD to draw."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Mouse - Coordinate Systems - main.rb
# ./samples/05_mouse/04_coordinate_systems/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- args.inputs.mouse.click.position: Coordinates of the mouse's position on the screen.
Unlike args.inputs.mouse.click.point, the mouse does not need to be pressed down for
position to know the mouse's coordinates.
For more information about the mouse, go to mygame/documentation/07-mouse.md.
Reminders:
- args.inputs.mouse.click: This property will be set if the mouse was clicked.
- args.inputs.mouse.click.point.(x|y): The x and y location of the mouse.
- String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
In this sample app, string interpolation is used to show the current position of the mouse
in a label.
- args.outputs.labels: An array that generates a label.
The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.md.
- args.outputs.solids: An array that generates a solid.
The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA]
For more information about solids, go to mygame/documentation/03-solids-and-borders.md.
- args.outputs.lines: An array that generates a line.
The parameters are [X, Y, X2, Y2, RED, GREEN, BLUE, ALPHA]
For more information about lines, go to mygame/documentation/04-lines.md.
=end
# This sample app shows a coordinate system or grid. The user can move their mouse around the screen and the
# coordinates of their position on the screen will be displayed. Users can choose to view one quadrant or
# four quadrants by pressing the button.
def tick args
# The addition and subtraction in the first two parameters of the label and solid
# ensure that the outputs don't overlap each other. Try removing them and see what happens.
pos = args.inputs.mouse.position # stores coordinates of mouse's position
args.outputs.labels << [pos.x + 10, pos.y + 10, "#{pos}"] # outputs label of coordinates
args.outputs.solids << [pos.x - 2, pos.y - 2, 5, 5] # outputs small blackk box placed where mouse is hovering
button = [0, 0, 370, 50] # sets definition of toggle button
args.outputs.borders << button # outputs button as border (not filled in)
args.outputs.labels << [10, 35, "click here toggle coordinate system"] # label of button
args.outputs.lines << [ 0, -720, 0, 720] # vertical line dividing quadrants
args.outputs.lines << [-1280, 0, 1280, 0] # horizontal line dividing quadrants
if args.inputs.mouse.click # if the user clicks the mouse
pos = args.inputs.mouse.click.point # pos's value is point where user clicked (coordinates)
if pos.inside_rect? button # if the click occurred inside the button
if args.grid.name == :bottom_left # if the grid shows bottom left as origin
args.grid.origin_center! # origin will be shown in center
else
args.grid.origin_bottom_left! # otherwise, the view will change to show bottom left as origin
end
end
end
tick_instructions args, "Sample app shows the two supported coordinate systems in Game Toolkit."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Mouse - Clicking Buttons - main.rb
# ./samples/05_mouse/05_clicking_buttons/app/main.rb
def tick args
# create buttons
args.state.buttons ||= [
create_button(args, id: :button_1, row: 0, col: 0, text: "button 1"),
create_button(args, id: :button_2, row: 1, col: 0, text: "button 2"),
create_button(args, id: :clear, row: 2, col: 0, text: "clear")
]
# render button's border and label
args.outputs.primitives << args.state.buttons.map do |b|
b.primitives
end
# render center label if the text is set
if args.state.center_label_text
args.outputs.labels << { x: 640,
y: 360,
text: args.state.center_label_text,
alignment_enum: 1,
vertical_alignment_enum: 1 }
end
# if the mouse is clicked, see if the mouse click intersected
# with a button
if args.inputs.mouse.click
button = args.state.buttons.find do |b|
args.inputs.mouse.intersect_rect? b
end
# update the center label text based on button clicked
case button.id
when :button_1
args.state.center_label_text = "button 1 was clicked"
when :button_2
args.state.center_label_text = "button 2 was clicked"
when :clear
args.state.center_label_text = nil
end
end
end
def create_button args, id:, row:, col:, text:;
# args.layout.rect(row:, col:, w:, h:) is method that will
# return a rectangle inside of a grid with 12 rows and 24 columns
rect = args.layout.rect row: row, col: col, w: 3, h: 1
# get senter of rect for label
center = args.geometry.rect_center_point rect
{
id: id,
x: rect.x,
y: rect.y,
w: rect.w,
h: rect.h,
primitives: [
{
x: rect.x,
y: rect.y,
w: rect.w,
h: rect.h,
primitive_marker: :border
},
{
x: center.x,
y: center.y,
text: text,
size_enum: -1,
alignment_enum: 1,
vertical_alignment_enum: 1,
primitive_marker: :label
}
]
}
end
$gtk.reset
Save Load - Reading Writing Files - main.rb
# ./samples/06_save_load/00_reading_writing_files/app/main.rb
# APIs covered:
# args.gtk.write_file "file-1.txt", args.state.tick_count.to_s
# args.gtk.append_file "file-1.txt", args.state.tick_count.to_s
# stat = args.gtk.stat_file "file-1.txt"
# contents = args.gtk.read_file "file-1.txt"
# args.gtk.delete_file "file-1.txt"
# args.gtk.delete_file_if_exist "file-1.txt"
# root_files = args.gtk.list_files ""
# app_files = args.gtk.list_files "app"
def tick args
# create buttons
args.state.buttons ||= [
create_button(args, id: :write_file_1, row: 0, col: 0, text: "write file-1.txt"),
create_button(args, id: :append_file_1, row: 1, col: 0, text: "append file-1.txt"),
create_button(args, id: :delete_file_1, row: 2, col: 0, text: "delete file-1.txt"),
create_button(args, id: :read_file_1, row: 0, col: 3, text: "read file-1.txt"),
create_button(args, id: :stat_file_1, row: 1, col: 3, text: "stat file-1.txt"),
create_button(args, id: :list_files, row: 2, col: 3, text: "list files"),
]
# render button's border and label
args.outputs.primitives << args.state.buttons.map do |b|
b.primitives
end
# render center label if the text is set
if args.state.center_label_text
long_string = args.state.center_label_text
max_character_length = 80
long_strings_split = args.string.wrapped_lines long_string, max_character_length
line_height = 23
offset = (long_strings_split.length / 2) * line_height
args.outputs.labels << long_strings_split.map_with_index do |s, i|
{
x: 400,
y: 60.from_top - (i * line_height),
text: s
}
end
end
# if the mouse is clicked, see if the mouse click intersected
# with a button
if args.inputs.mouse.click
button = args.state.buttons.find do |b|
args.inputs.mouse.intersect_rect? b
end
# update the center label text based on button clicked
case button.id
when :write_file_1
args.gtk.write_file("file-1.txt", args.state.tick_count.to_s + "\n")
args.state.center_label_text = ""
args.state.center_label_text += "* Success (#{args.state.tick_count}):\n"
args.state.center_label_text += " Click \"read file-1.txt\" to see the contents.\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " args.gtk.write_file(\"file-1.txt\", args.state.tick_count.to_s + \"\\n\")\n"
when :append_file_1
args.gtk.append_file("file-1.txt", args.state.tick_count.to_s + "\n")
args.state.center_label_text = ""
args.state.center_label_text += "* Success (#{args.state.tick_count}):\n"
args.state.center_label_text += " Click \"read file-1.txt\" to see the contents.\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " args.gtk.append_file(\"file-1.txt\", args.state.tick_count.to_s + \"\\n\")\n"
when :stat_file_1
stat = args.gtk.stat_file "file-1.txt"
args.state.center_label_text = ""
args.state.center_label_text += "* Stat File (#{args.state.tick_count})\n"
args.state.center_label_text += "#{stat || "nil (file does not exist)"}"
args.state.center_label_text += "\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " args.gtk.stat_files(\"file-1.txt\")\n"
when :read_file_1
contents = args.gtk.read_file("file-1.txt")
args.state.center_label_text = ""
if contents
args.state.center_label_text += "* Contents (#{args.state.tick_count}):\n"
args.state.center_label_text += contents
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " contents = args.gtk.read_file(\"file-1.txt\")\n"
else
args.state.center_label_text += "* Contents (#{args.state.tick_count}):\n"
args.state.center_label_text += "Contents of file was nil. Click stat file-1.txt for file information."
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " contents = args.gtk.read_file(\"file-1.txt\")\n"
end
when :delete_file_1
args.state.center_label_text = ""
if args.gtk.stat_file "file-1.txt"
args.gtk.delete_file "file-1.txt"
args.state.center_label_text += "* Delete File\n"
args.state.center_label_text += "file-1.txt was deleted. Click \"list files\" or \"stat file-1.txt\" for more info."
args.state.center_label_text += "\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " args.gtk.delete_file(\"file-1.txt\")\n"
else
args.state.center_label_text = ""
args.state.center_label_text += "* Delete File\n"
args.state.center_label_text += "File does not exist. Click \"write file-1.txt\" or \"append file-1.txt\" to create file."
args.state.center_label_text += "\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " if args.gtk.stat_file(\"file-1.txt\") ...\n"
end
when :list_files
root_files = args.gtk.list_files ""
app_files = args.gtk.list_files "app"
args.state.center_label_text = ""
args.state.center_label_text += "** Root Files (#{args.state.tick_count}):\n"
args.state.center_label_text += root_files.join "\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "** App Files (#{args.state.tick_count}):\n"
args.state.center_label_text += app_files.join "\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "\n"
args.state.center_label_text += "** Sample Code\n"
args.state.center_label_text += " root_files = args.gtk.list_files(\"\")\n"
args.state.center_label_text += " app_files = args.gtk.list_files(\"app\")\n"
end
end
end
def create_button args, id:, row:, col:, text:;
# args.layout.rect(row:, col:, w:, h:) is method that will
# return a rectangle inside of a grid with 12 rows and 24 columns
rect = args.layout.rect row: row, col: col, w: 3, h: 1
# get senter of rect for label
center = args.geometry.rect_center_point rect
{
id: id,
x: rect.x,
y: rect.y,
w: rect.w,
h: rect.h,
primitives: [
{
x: rect.x,
y: rect.y,
w: rect.w,
h: rect.h,
primitive_marker: :border
},
{
x: center.x,
y: center.y,
text: text,
size_enum: -2,
alignment_enum: 1,
vertical_alignment_enum: 1,
primitive_marker: :label
}
]
}
end
$gtk.reset
Save Load - Save Load Game - main.rb
# ./samples/06_save_load/01_save_load_game/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- Symbol (:): Ruby object with a name and an internal ID. Symbols are useful
because with a given symbol name, you can refer to the same object throughout
a Ruby program.
In this sample app, we're using symbols for our buttons. We have buttons that
light fires, save, load, etc. Each of these buttons has a distinct symbol like
:light_fire, :save_game, :load_game, etc.
- to_sym: Returns the symbol corresponding to the given string; creates the symbol
if it does not already exist.
For example,
'car'.to_sym
would return the symbol :car.
- last: Returns the last element of an array.
Reminders:
- num1.lesser(num2): finds the lower value of the given options.
For example, in the statement
a = 4.lesser(3)
3 has a lower value than 4, which means that the value of a would be set to 3,
but if the statement had been
a = 4.lesser(5)
4 has a lower value than 5, which means that the value of a would be set to 4.
- num1.fdiv(num2): returns the float division (will have a decimal) of the two given numbers.
For example, 5.fdiv(2) = 2.5 and 5.fdiv(5) = 1.0
- String interpolation: uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
- args.outputs.labels: An array. Values generate a label.
Parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information, go to mygame/documentation/02-labels.md.
- ARRAY#inside_rect?: An array with at least two values is considered a point. An array
with at least four values is considered a rect. The inside_rect? function returns true
or false depending on if the point is inside the rect.
=end
# This code allows users to perform different tasks, such as saving and loading the game.
# Users also have options to reset the game and light a fire.
class TextedBasedGame
# Contains methods needed for game to run properly.
# Increments tick count by 1 each time it runs (60 times in a single second)
def tick
default
show_intro
state.engine_tick_count += 1
tick_fire
end
# Sets default values.
# The ||= ensures that a variable's value is only set to the value following the = sign
# if the value has not already been set before. Intialization happens only in the first frame.
def default
state.engine_tick_count ||= 0
state.active_module ||= :room
state.fire_progress ||= 0
state.fire_ready_in ||= 10
state.previous_fire ||= :dead
state.fire ||= :dead
end
def show_intro
return unless state.engine_tick_count == 0 # return unless the game just started
set_story_line "awake." # calls set_story_line method, sets to "awake"
end
# Sets story line.
def set_story_line story_line
state.story_line = story_line # story line set to value of parameter
state.active_module = :alert # active module set to alert
end
# Clears story line.
def clear_storyline
state.active_module = :none # active module set to none
state.story_line = nil # story line is cleared, set to nil (or empty)
end
# Determines fire progress (how close the fire is to being ready to light).
def tick_fire
return if state.active_module == :alert # return if active module is alert
state.fire_progress += 1 # increment fire progress
# fire_ready_in is 10. The fire_progress is either the current value or 10, whichever has a lower value.
state.fire_progress = state.fire_progress.lesser(state.fire_ready_in)
end
# Sets the value of fire (whether it is dead or roaring), and the story line
def light_fire
return unless fire_ready? # returns unless the fire is ready to be lit
state.fire = :roaring # fire is lit, set to roaring
state.fire_progress = 0 # the fire progress returns to 0, since the fire has been lit
if state.fire != state.previous_fire
set_story_line "the fire is #{state.fire}." # the story line is set using string interpolation
state.previous_fire = state.fire
end
end
# Checks if the fire is ready to be lit. Returns a boolean value.
def fire_ready?
# If fire_progress (value between 0 and 10) is equal to fire_ready_in (value of 10),
# the fire is ready to be lit.
state.fire_progress == state.fire_ready_in
end
# Divides the value of the fire_progress variable by 10 to determine how close the user is to
# being able to light a fire.
def light_fire_progress
state.fire_progress.fdiv(10) # float division
end
# Defines fire as the state.fire variable.
def fire
state.fire
end
# Sets the title of the room.
def room_title
return "a room that is dark" if state.fire == :dead # room is dark if the fire is dead
return "a room that is lit" # room is lit if the fire is not dead
end
# Sets the active_module to room.
def go_to_room
state.active_module = :room
end
# Defines active_module as the state.active_module variable.
def active_module
state.active_module
end
# Defines story_line as the state.story_line variable.
def story_line
state.story_line
end
# Update every 60 frames (or every second)
def should_tick?
state.tick_count.mod_zero?(60)
end
# Sets the value of the game state provider.
def initialize game_state_provider
@game_state_provider = game_state_provider
end
# Defines the game state.
# Any variable prefixed with an @ symbol is an instance variable.
def state
@game_state_provider.state
end
# Saves the state of the game in a text file called game_state.txt.
def save
$gtk.serialize_state('game_state.txt', state)
end
# Loads the game state from the game_state.txt text file.
# If the load is unsuccessful, the user is informed since the story line indicates the failure.
def load
parsed_state = $gtk.deserialize_state('game_state.txt')
if !parsed_state
set_story_line "no game to load. press save first."
else
$gtk.args.state = parsed_state
end
end
# Resets the game.
def reset
$gtk.reset
end
end
class TextedBasedGamePresenter
attr_accessor :state, :outputs, :inputs
# Creates empty collection called highlights.
# Calls methods necessary to run the game.
def tick
state.layout.highlights ||= []
game.tick if game.should_tick?
render
process_input
end
# Outputs a label of the tick count (passage of time) and calls all render methods.
def render
outputs.labels << [10, 30, state.tick_count]
render_alert
render_room
render_highlights
end
# Outputs a label onto the screen that shows the story line, and also outputs a "close" button.
def render_alert
return unless game.active_module == :alert
outputs.labels << [640, 480, game.story_line, 5, 1] # outputs story line label
outputs.primitives << button(:alert_dismiss, 490, 380, "close") # positions "close" button under story line
end
def render_room
return unless game.active_module == :room
outputs.labels << [640, 700, game.room_title, 4, 1] # outputs room title label at top of screen
# The parameters for these outputs are (symbol, x, y, text, value/percentage) and each has a y value
# that positions it 60 pixels lower than the previous output.
# outputs the light_fire_progress bar, uses light_fire_progress for its percentage (which changes bar's appearance)
outputs.primitives << progress_bar(:light_fire, 490, 600, "light fire", game.light_fire_progress)
outputs.primitives << button( :save_game, 490, 540, "save") # outputs save button
outputs.primitives << button( :load_game, 490, 480, "load") # outputs load button
outputs.primitives << button( :reset_game, 490, 420, "reset") # outputs reset button
outputs.labels << [640, 30, "the fire is #{game.fire}", 0, 1] # outputs fire label at bottom of screen
end
# Outputs a collection of highlights using an array to set their values, and also rejects certain values from the collection.
def render_highlights
state.layout.highlights.each do |h| # for each highlight in the collection
h.lifetime -= 1 # decrease the value of its lifetime
end
outputs.solids << state.layout.highlights.map do |h| # outputs highlights collection
[h.x, h.y, h.w, h.h, h.color, 255 * h.lifetime / h.max_lifetime] # sets definition for each highlight
# transparency changes; divide lifetime by max_lifetime, multiply result by 255
end
# reject highlights from collection that have no remaining lifetime
state.layout.highlights = state.layout.highlights.reject { |h| h.lifetime <= 0 }
end
# Checks whether or not a button was clicked.
# Returns a boolean value.
def process_input
button = button_clicked? # calls button_clicked? method
end
# Returns a boolean value.
# Finds the button that was clicked from the button list and determines what method to call.
# Adds a highlight to the highlights collection.
def button_clicked?
return nil unless click_pos # return nil unless click_pos holds coordinates of mouse click
button = @button_list.find do |k, v| # goes through button_list to find button clicked
click_pos.inside_rect? v[:primitives].last.rect # was the mouse clicked inside the rect of button?
end
return unless button # return unless a button was clicked
method_to_call = "#{button[0]}_clicked".to_sym # sets method_to_call to symbol (like :save_game or :load_game)
if self.respond_to? method_to_call # returns true if self responds to the given method (method actually exists)
border = button[1][:primitives].last # sets border definition using value of last key in button list hash
# declares each highlight as a new entity, sets properties
state.layout.highlights << state.new_entity(:highlight) do |h|
h.x = border.x
h.y = border.y
h.w = border.w
h.h = border.h
h.max_lifetime = 10
h.lifetime = h.max_lifetime
h.color = [120, 120, 180] # sets color to shade of purple
end
self.send method_to_call # invoke method identified by symbol
else # otherwise, if self doesn't respond to given method
border = button[1][:primitives].last # sets border definition using value of last key in hash
# declares each highlight as a new entity, sets properties
state.layout.highlights << state.new_entity(:highlight) do |h|
h.x = border.x
h.y = border.y
h.w = border.w
h.h = border.h
h.max_lifetime = 4 # different max_lifetime than the one set if respond_to? had been true
h.lifetime = h.max_lifetime
h.color = [120, 80, 80] # sets color to dark color
end
# instructions for users on how to add the missing method_to_call to the code
puts "It looks like #{method_to_call} doesn't exists on TextedBasedGamePresenter. Please add this method:"
puts "Just copy the code below and put it in the #{TextedBasedGamePresenter} class definition."
puts ""
puts "```"
puts "class TextedBasedGamePresenter <--- find this class and put the method below in it"
puts ""
puts " def #{method_to_call}"
puts " puts 'Yay that worked!'"
puts " end"
puts ""
puts "end <-- make sure to put the #{method_to_call} method in between the `class` word and the final `end` statement."
puts "```"
puts ""
end
end
# Returns the position of the mouse when it is clicked.
def click_pos
return nil unless inputs.mouse.click # returns nil unless the mouse was clicked
return inputs.mouse.click.point # returns location of mouse click (coordinates)
end
# Creates buttons for the button_list and sets their values using a hash (uses symbols as keys)
def button id, x, y, text
@button_list[id] ||= { # assigns values to hash keys
id: id,
text: text,
primitives: [
[x + 10, y + 30, text, 2, 0].label, # positions label inside border
[x, y, 300, 50].border, # sets definition of border
]
}
@button_list[id][:primitives] # returns label and border for buttons
end
# Creates a progress bar (used for lighting the fire) and sets its values.
def progress_bar id, x, y, text, percentage
@button_list[id] = { # assigns values to hash keys
id: id,
text: text,
primitives: [
[x, y, 300, 50, 100, 100, 100].solid, # sets definition for solid (which fills the bar with gray)
[x + 10, y + 30, text, 2, 0].label, # sets definition for label, positions inside border
[x, y, 300, 50].border, # sets definition of border
]
}
# Fills progress bar based on percentage. If the fire was ready to be lit (100%) and we multiplied by
# 100, only 1/3 of the bar would only be filled in. 200 would cause only 2/3 to be filled in.
@button_list[id][:primitives][0][2] = 300 * percentage
@button_list[id][:primitives]
end
# Defines the game.
def game
@game
end
# Initalizes the game and creates an empty list of buttons.
def initialize
@game = TextedBasedGame.new self
@button_list ||= {}
end
# Clears the storyline and takes the user to the room.
def alert_dismiss_clicked
game.clear_storyline
game.go_to_room
end
# Lights the fire when the user clicks the "light fire" option.
def light_fire_clicked
game.light_fire
end
# Saves the game when the user clicks the "save" option.
def save_game_clicked
game.save
end
# Resets the game when the user clicks the "reset" option.
def reset_game_clicked
game.reset
end
# Loads the game when the user clicks the "load" option.
def load_game_clicked
game.load
end
end
$text_based_rpg = TextedBasedGamePresenter.new
def tick args
$text_based_rpg.state = args.state
$text_based_rpg.outputs = args.outputs
$text_based_rpg.inputs = args.inputs
$text_based_rpg.tick
end
Advanced Audio - Audio Mixer - main.rb
# ./samples/07_advanced_audio/01_audio_mixer/app/main.rb
# these are the properties that you can sent on args.audio
def spawn_new_sound args, name, path
# Spawn randomly in an area that won't be covered by UI.
screenx = (rand * 600.0) + 200.0
screeny = (rand * 400.0) + 100.0
id = new_sound_id! args
# you can hang anything on the audio hashes you want, so we store the
# actual screen position in here for convenience.
args.audio[id] = {
name: name,
input: path,
screenx: screenx,
screeny: screeny,
x: ((screenx / 1279.0) * 2.0) - 1.0, # scale to -1.0 - 1.0 range
y: ((screeny / 719.0) * 2.0) - 1.0, # scale to -1.0 - 1.0 range
z: 0.0,
gain: 1.0,
pitch: 1.0,
looping: true,
paused: false
}
args.state.selected = id
end
# these are values you can change on the ~args.audio~ data structure
def input_panel args
return unless args.state.panel
return if args.state.dragging
audio_entry = args.audio[args.state.selected]
results = args.state.panel
if args.state.mouse_state == :held && args.inputs.mouse.position.inside_rect?(results.pitch_slider_rect.rect)
audio_entry.pitch = 2.0 * ((args.inputs.mouse.x - results.pitch_slider_rect.x).to_f / (results.pitch_slider_rect.w - 1.0))
elsif args.state.mouse_state == :held && args.inputs.mouse.position.inside_rect?(results.playtime_slider_rect.rect)
audio_entry.playtime = audio_entry.length_ * ((args.inputs.mouse.x - results.playtime_slider_rect.x).to_f / (results.playtime_slider_rect.w - 1.0))
elsif args.state.mouse_state == :held && args.inputs.mouse.position.inside_rect?(results.gain_slider_rect.rect)
audio_entry.gain = (args.inputs.mouse.x - results.gain_slider_rect.x).to_f / (results.gain_slider_rect.w - 1.0)
elsif args.inputs.mouse.click && args.inputs.mouse.position.inside_rect?(results.looping_checkbox_rect.rect)
audio_entry.looping = !audio_entry.looping
elsif args.inputs.mouse.click && args.inputs.mouse.position.inside_rect?(results.paused_checkbox_rect.rect)
audio_entry.paused = !audio_entry.paused
elsif args.inputs.mouse.click && args.inputs.mouse.position.inside_rect?(results.delete_button_rect.rect)
args.audio.delete args.state.selected
end
end
def render_sources args
args.outputs.primitives << args.audio.keys.map do |k|
s = args.audio[k]
isselected = (k == args.state.selected)
color = isselected ? [ 0, 255, 0, 255 ] : [ 0, 0, 255, 255 ]
[
[s.screenx, s.screeny, args.state.boxsize, args.state.boxsize, *color].solid,
{
x: s.screenx + args.state.boxsize.half,
y: s.screeny,
text: s.name,
r: 255,
g: 255,
b: 255,
alignment_enum: 1
}.label!
]
end
end
def playtime_str t
return "" unless t
minutes = (t / 60.0).floor
seconds = t - (minutes * 60.0).to_f
return minutes.to_s + ':' + seconds.floor.to_s + ((seconds - seconds.floor).to_s + "000")[1..3]
end
def label_with_drop_shadow x, y, text
[
{ x: x + 1, y: y + 1, text: text, vertical_alignment_enum: 1, alignment_enum: 1, r: 0, g: 0, b: 0 }.label!,
{ x: x + 2, y: y + 0, text: text, vertical_alignment_enum: 1, alignment_enum: 1, r: 0, g: 0, b: 0 }.label!,
{ x: x + 0, y: y + 1, text: text, vertical_alignment_enum: 1, alignment_enum: 1, r: 200, g: 200, b: 200 }.label!
]
end
def check_box opts = {}
checkbox_template = opts.args.layout.rect(w: 0.5, h: 0.5, col: 2)
final_rect = checkbox_template.center_inside_rect_y(opts.args.layout.rect(row: opts.row, col: opts.col))
color = { r: 0, g: 0, b: 0 }
color = { r: 255, g: 255, b: 255 } if opts.checked
{
rect: final_rect,
primitives: [
(final_rect.to_solid color)
]
}
end
def progress_bar opts = {}
outer_rect = opts.args.layout.rect(row: opts.row, col: opts.col, w: 5, h: 1)
color = opts.percentage * 255
baseline_progress_bar = opts.args
.layout
.rect(w: 5, h: 0.5)
final_rect = baseline_progress_bar.center_inside_rect(outer_rect)
center = final_rect.rect_center_point
{
rect: final_rect,
primitives: [
final_rect.merge(r: color, g: color, b: color, a: 128).solid!,
label_with_drop_shadow(center.x, center.y, opts.text)
]
}
end
def panel_primitives args, audio_entry
results = { primitives: [] }
return results unless audio_entry
# this uses DRGTK's layout apis to layout the controls
# imagine the screen is split into equal cells (24 cells across, 12 cells up and down)
# args.layout.rect returns a hash which we merge values with to create primitives
# using args.layout.rect removes the need for pixel pushing
# args.outputs.debug << args.layout.debug_primitives(r: 255, g: 255, b: 255)
white_color = { r: 255, g: 255, b: 255 }
label_style = white_color.merge(vertical_alignment_enum: 1)
# panel background
results.primitives << args.layout.rect(row: 0, col: 0, w: 7, h: 6, include_col_gutter: true, include_row_gutter: true)
.border!(r: 255, g: 255, b: 255)
# title
results.primitives << args.layout.point(row: 0, col: 3.5, row_anchor: 0.5)
.merge(label_style)
.merge(text: "Source #{args.state.selected} (#{args.audio[args.state.selected].name})",
size_enum: 3,
alignment_enum: 1)
# seperator line
results.primitives << args.layout.rect(row: 1, col: 0, w: 7, h: 0)
.line!(white_color)
# screen location
results.primitives << args.layout.point(row: 1.0, col: 0, row_anchor: 0.5)
.merge(label_style)
.merge(text: "screen:")
results.primitives << args.layout.point(row: 1.0, col: 2, row_anchor: 0.5)
.merge(label_style)
.merge(text: "(#{audio_entry.screenx.to_i}, #{audio_entry.screeny.to_i})")
# position
results.primitives << args.layout.point(row: 1.5, col: 0, row_anchor: 0.5)
.merge(label_style)
.merge(text: "position:")
results.primitives << args.layout.point(row: 1.5, col: 2, row_anchor: 0.5)
.merge(label_style)
.merge(text: "(#{audio_entry[:x].round(5).to_s[0..6]}, #{audio_entry[:y].round(5).to_s[0..6]})")
results.primitives << args.layout.point(row: 2.0, col: 0, row_anchor: 0.5)
.merge(label_style)
.merge(text: "pitch:")
results.pitch_slider_rect = progress_bar(row: 2.0, col: 2,
percentage: audio_entry.pitch / 2.0,
text: "#{audio_entry.pitch.to_sf}",
args: args)
results.primitives << results.pitch_slider_rect.primitives
results.primitives << args.layout.point(row: 2.5, col: 0, row_anchor: 0.5)
.merge(label_style)
.merge(text: "playtime:")
results.playtime_slider_rect = progress_bar(args: args,
row: 2.5,
col: 2,
percentage: (audio_entry.playtime || 1) / (audio_entry.length_ || 1),
text: "#{playtime_str(audio_entry.playtime)} / #{playtime_str(audio_entry.length_)}")
results.primitives << results.playtime_slider_rect.primitives
results.primitives << args.layout.point(row: 3.0, col: 0, row_anchor: 0.5)
.merge(label_style)
.merge(text: "gain:")
results.gain_slider_rect = progress_bar(args: args,
row: 3.0,
col: 2,
percentage: audio_entry.gain,
text: "#{audio_entry.gain.to_sf}")
results.primitives << results.gain_slider_rect.primitives
results.primitives << args.layout.point(row: 3.5, col: 0, row_anchor: 0.5)
.merge(label_style)
.merge(text: "looping:")
checkbox_template = args.layout.rect(w: 0.5, h: 0.5, col: 2)
results.looping_checkbox_rect = check_box(args: args, row: 3.5, col: 2, checked: audio_entry.looping)
results.primitives << results.looping_checkbox_rect.primitives
results.primitives << args.layout.point(row: 4.0, col: 0, row_anchor: 0.5)
.merge(label_style)
.merge(text: "paused:")
checkbox_template = args.layout.rect(w: 0.5, h: 0.5, col: 2)
results.paused_checkbox_rect = check_box(args: args, row: 4.0, col: 2, checked: !audio_entry.paused)
results.primitives << results.paused_checkbox_rect.primitives
results.delete_button_rect = { rect: args.layout.rect(row: 5, col: 0, w: 7, h: 1) }
results.primitives << results.delete_button_rect.to_solid(r: 180)
results.primitives << args.layout.point(row: 5, col: 3.5, row_anchor: 0.5)
.merge(label_style)
.merge(text: "DELETE", alignment_enum: 1)
return results
end
def render_panel args
args.state.panel = nil
audio_entry = args.audio[args.state.selected]
return unless audio_entry
mouse_down = (args.state.mouse_held >= 0)
args.state.panel = panel_primitives args, audio_entry
args.outputs.primitives << args.state.panel.primitives
end
def new_sound_id! args
args.state.sound_id ||= 0
args.state.sound_id += 1
args.state.sound_id
end
def render_launcher args
args.outputs.primitives << args.state.spawn_sound_buttons.map(&:primitives)
end
def render_ui args
render_launcher args
render_panel args
end
def tick args
defaults args
render args
input args
end
def input args
if !args.audio[args.state.selected]
args.state.selected = nil
args.state.dragging = nil
end
# spawn button and node interaction
if args.inputs.mouse.click
spawn_sound_button = args.state.spawn_sound_buttons.find { |b| args.inputs.mouse.inside_rect? b.rect }
audio_click_key, audio_click_value = args.audio.find do |k, v|
args.inputs.mouse.inside_rect? [v.screenx, v.screeny, args.state.boxsize, args.state.boxsize]
end
if spawn_sound_button
args.state.selected = nil
spawn_new_sound args, spawn_sound_button.name, spawn_sound_button.path
elsif audio_click_key
args.state.selected = audio_click_key
end
end
if args.state.mouse_state == :held && args.state.selected
v = args.audio[args.state.selected]
if args.inputs.mouse.inside_rect? [v.screenx, v.screeny, args.state.boxsize, args.state.boxsize]
args.state.dragging = args.state.selected
end
if args.state.dragging
s = args.audio[args.state.selected]
# you can hang anything on the audio hashes you want, so we store the
# actual screen position so it doesn't scale weirdly vs your mouse.
s.screenx = args.inputs.mouse.x - (args.state.boxsize / 2)
s.screeny = args.inputs.mouse.y - (args.state.boxsize / 2)
s.screeny = 50 if s.screeny < 50
s.screeny = (719 - args.state.boxsize) if s.screeny > (719 - args.state.boxsize)
s.screenx = 0 if s.screenx < 0
s.screenx = (1279 - args.state.boxsize) if s.screenx > (1279 - args.state.boxsize)
s.x = ((s.screenx / 1279.0) * 2.0) - 1.0 # scale to -1.0 - 1.0 range
s.y = ((s.screeny / 719.0) * 2.0) - 1.0 # scale to -1.0 - 1.0 range
end
elsif args.state.mouse_state == :released
args.state.dragging = nil
end
input_panel args
end
def defaults args
args.state.mouse_state ||= :released
args.state.dragging_source ||= false
args.state.selected ||= 0
args.state.next_sound_index ||= 0
args.state.boxsize ||= 30
args.state.sound_files ||= [
{ name: :tada, path: "sounds/tada.wav" },
{ name: :splash, path: "sounds/splash.wav" },
{ name: :drum, path: "sounds/drum.mp3" },
{ name: :spring, path: "sounds/spring.wav" },
{ name: :music, path: "sounds/music.ogg" }
]
# generate buttons based off the sound collection above
args.state.spawn_sound_buttons ||= begin
# create a group of buttons
# column centered (using col_offset to calculate the column offset)
# where each item is 2 columns apart
rects = args.layout.rect_group row: 11,
col_offset: {
count: args.state.sound_files.length,
w: 2
},
dcol: 2,
w: 2,
h: 1,
group: args.state.sound_files
# now that you have the rects
# construct the metadata for the buttons
rects.map do |rect|
{
rect: rect,
name: rect.name,
path: rect.path,
primitives: [
rect.to_border(r: 255, g: 255, b: 255),
rect.to_label(x: rect.center_x,
y: rect.center_y,
text: "#{rect.name}",
alignment_enum: 1,
vertical_alignment_enum: 1,
r: 255, g: 255, b: 255)
]
}
end
end
if args.inputs.mouse.up
args.state.mouse_state = :released
args.state.dragging_source = false
elsif args.inputs.mouse.down
args.state.mouse_state = :held
end
args.outputs.background_color = [ 0, 0, 0, 255 ]
end
def render args
render_ui args
render_sources args
end
Advanced Audio - Audio Mixer - server_ip_address.txt
# ./samples/07_advanced_audio/01_audio_mixer/app/server_ip_address.txt
192.168.1.65
Advanced Audio - Sound Synthesis - main.rb
# ./samples/07_advanced_audio/02_sound_synthesis/app/main.rb
begin # region: top level tick methods
def tick args
defaults args
render args
input args
process_audio_queue args
end
def defaults args
args.state.sine_waves ||= {}
args.state.square_waves ||= {}
args.state.saw_tooth_waves ||= {}
args.state.triangle_waves ||= {}
args.state.audio_queue ||= []
args.state.buttons ||= [
(frequency_buttons args),
(sine_wave_note_buttons args),
(bell_buttons args),
(square_wave_note_buttons args),
(saw_tooth_wave_note_buttons args),
(triangle_wave_note_buttons args),
].flatten
end
def render args
args.outputs.borders << args.state.buttons.map { |b| b[:border] }
args.outputs.labels << args.state.buttons.map { |b| b[:label] }
args.outputs.labels << args.layout
.rect(row: 0, col: 11.5)
.yield_self { |r| r.merge y: r.y + r.h }
.merge(text: "This is a Pro only feature. Click here to watch the YouTube video if you are on the Standard License.",
alignment_enum: 1)
end
def input args
args.state.buttons.each do |b|
if args.inputs.mouse.click && (args.inputs.mouse.click.inside_rect? b[:rect])
parameter_string = (b.slice :frequency, :note, :octave).map { |k, v| "#{k}: #{v}" }.join ", "
args.gtk.notify! "#{b[:method_to_call]} #{parameter_string}"
send b[:method_to_call], args, b
end
end
if args.inputs.mouse.click && (args.inputs.mouse.click.inside_rect? (args.layout.rect(row: 0).yield_self { |r| r.merge y: r.y + r.h.half, h: r.h.half }))
args.gtk.openurl 'https://www.youtube.com/watch?v=zEzovM5jT-k&ab_channel=AmirRajan'
end
end
def process_audio_queue args
to_queue = args.state.audio_queue.find_all { |v| v[:queue_at] <= args.tick_count }
args.state.audio_queue -= to_queue
to_queue.each { |a| args.audio[a[:id]] = a }
args.audio.find_all { |k, v| v[:decay_rate] }
.each { |k, v| v[:gain] -= v[:decay_rate] }
sounds_to_stop = args.audio
.find_all { |k, v| v[:stop_at] && args.state.tick_count >= v[:stop_at] }
.map { |k, v| k }
sounds_to_stop.each { |k| args.audio.delete k }
end
end
begin # region: button definitions, ui layout, callback functions
def button args, opts
button_def = opts.merge rect: (args.layout.rect (opts.merge w: 2, h: 1))
button_def[:border] = button_def[:rect].merge r: 0, g: 0, b: 0
label_offset_x = 5
label_offset_y = 30
button_def[:label] = button_def[:rect].merge text: opts[:text],
size_enum: -2.5,
x: button_def[:rect].x + label_offset_x,
y: button_def[:rect].y + label_offset_y
button_def
end
def play_sine_wave args, sender
queue_sine_wave args,
frequency: sender[:frequency],
duration: 1.seconds,
fade_out: true
end
def play_note args, sender
method_to_call = :queue_sine_wave
method_to_call = :queue_square_wave if sender[:type] == :square
method_to_call = :queue_saw_tooth_wave if sender[:type] == :saw_tooth
method_to_call = :queue_triangle_wave if sender[:type] == :triangle
method_to_call = :queue_bell if sender[:type] == :bell
send method_to_call, args,
frequency: (frequency_for note: sender[:note], octave: sender[:octave]),
duration: 1.seconds,
fade_out: true
end
def frequency_buttons args
[
(button args,
row: 4.0, col: 0, text: "300hz",
frequency: 300,
method_to_call: :play_sine_wave),
(button args,
row: 5.0, col: 0, text: "400hz",
frequency: 400,
method_to_call: :play_sine_wave),
(button args,
row: 6.0, col: 0, text: "500hz",
frequency: 500,
method_to_call: :play_sine_wave),
]
end
def sine_wave_note_buttons args
[
(button args,
row: 1.5, col: 2, text: "Sine C4",
note: :c, octave: 4, type: :sine, method_to_call: :play_note),
(button args,
row: 2.5, col: 2, text: "Sine D4",
note: :d, octave: 4, type: :sine, method_to_call: :play_note),
(button args,
row: 3.5, col: 2, text: "Sine E4",
note: :e, octave: 4, type: :sine, method_to_call: :play_note),
(button args,
row: 4.5, col: 2, text: "Sine F4",
note: :f, octave: 4, type: :sine, method_to_call: :play_note),
(button args,
row: 5.5, col: 2, text: "Sine G4",
note: :g, octave: 4, type: :sine, method_to_call: :play_note),
(button args,
row: 6.5, col: 2, text: "Sine A5",
note: :a, octave: 5, type: :sine, method_to_call: :play_note),
(button args,
row: 7.5, col: 2, text: "Sine B5",
note: :b, octave: 5, type: :sine, method_to_call: :play_note),
(button args,
row: 8.5, col: 2, text: "Sine C5",
note: :c, octave: 5, type: :sine, method_to_call: :play_note),
]
end
def square_wave_note_buttons args
[
(button args,
row: 1.5, col: 6, text: "Square C4",
note: :c, octave: 4, type: :square, method_to_call: :play_note),
(button args,
row: 2.5, col: 6, text: "Square D4",
note: :d, octave: 4, type: :square, method_to_call: :play_note),
(button args,
row: 3.5, col: 6, text: "Square E4",
note: :e, octave: 4, type: :square, method_to_call: :play_note),
(button args,
row: 4.5, col: 6, text: "Square F4",
note: :f, octave: 4, type: :square, method_to_call: :play_note),
(button args,
row: 5.5, col: 6, text: "Square G4",
note: :g, octave: 4, type: :square, method_to_call: :play_note),
(button args,
row: 6.5, col: 6, text: "Square A5",
note: :a, octave: 5, type: :square, method_to_call: :play_note),
(button args,
row: 7.5, col: 6, text: "Square B5",
note: :b, octave: 5, type: :square, method_to_call: :play_note),
(button args,
row: 8.5, col: 6, text: "Square C5",
note: :c, octave: 5, type: :square, method_to_call: :play_note),
]
end
def saw_tooth_wave_note_buttons args
[
(button args,
row: 1.5, col: 8, text: "Saw C4",
note: :c, octave: 4, type: :saw_tooth, method_to_call: :play_note),
(button args,
row: 2.5, col: 8, text: "Saw D4",
note: :d, octave: 4, type: :saw_tooth, method_to_call: :play_note),
(button args,
row: 3.5, col: 8, text: "Saw E4",
note: :e, octave: 4, type: :saw_tooth, method_to_call: :play_note),
(button args,
row: 4.5, col: 8, text: "Saw F4",
note: :f, octave: 4, type: :saw_tooth, method_to_call: :play_note),
(button args,
row: 5.5, col: 8, text: "Saw G4",
note: :g, octave: 4, type: :saw_tooth, method_to_call: :play_note),
(button args,
row: 6.5, col: 8, text: "Saw A5",
note: :a, octave: 5, type: :saw_tooth, method_to_call: :play_note),
(button args,
row: 7.5, col: 8, text: "Saw B5",
note: :b, octave: 5, type: :saw_tooth, method_to_call: :play_note),
(button args,
row: 8.5, col: 8, text: "Saw C5",
note: :c, octave: 5, type: :saw_tooth, method_to_call: :play_note),
]
end
def triangle_wave_note_buttons args
[
(button args,
row: 1.5, col: 10, text: "Triangle C4",
note: :c, octave: 4, type: :triangle, method_to_call: :play_note),
(button args,
row: 2.5, col: 10, text: "Triangle D4",
note: :d, octave: 4, type: :triangle, method_to_call: :play_note),
(button args,
row: 3.5, col: 10, text: "Triangle E4",
note: :e, octave: 4, type: :triangle, method_to_call: :play_note),
(button args,
row: 4.5, col: 10, text: "Triangle F4",
note: :f, octave: 4, type: :triangle, method_to_call: :play_note),
(button args,
row: 5.5, col: 10, text: "Triangle G4",
note: :g, octave: 4, type: :triangle, method_to_call: :play_note),
(button args,
row: 6.5, col: 10, text: "Triangle A5",
note: :a, octave: 5, type: :triangle, method_to_call: :play_note),
(button args,
row: 7.5, col: 10, text: "Triangle B5",
note: :b, octave: 5, type: :triangle, method_to_call: :play_note),
(button args,
row: 8.5, col: 10, text: "Triangle C5",
note: :c, octave: 5, type: :triangle, method_to_call: :play_note),
]
end
def bell_buttons args
[
(button args,
row: 1.5, col: 4, text: "Bell C4",
note: :c, octave: 4, type: :bell, method_to_call: :play_note),
(button args,
row: 2.5, col: 4, text: "Bell D4",
note: :d, octave: 4, type: :bell, method_to_call: :play_note),
(button args,
row: 3.5, col: 4, text: "Bell E4",
note: :e, octave: 4, type: :bell, method_to_call: :play_note),
(button args,
row: 4.5, col: 4, text: "Bell F4",
note: :f, octave: 4, type: :bell, method_to_call: :play_note),
(button args,
row: 5.5, col: 4, text: "Bell G4",
note: :g, octave: 4, type: :bell, method_to_call: :play_note),
(button args,
row: 6.5, col: 4, text: "Bell A5",
note: :a, octave: 5, type: :bell, method_to_call: :play_note),
(button args,
row: 7.5, col: 4, text: "Bell B5",
note: :b, octave: 5, type: :bell, method_to_call: :play_note),
(button args,
row: 8.5, col: 4, text: "Bell C5",
note: :c, octave: 5, type: :bell, method_to_call: :play_note),
]
end
end
begin # region: wave generation
begin # sine wave
def defaults_sine_wave_for
{ frequency: 440, sample_rate: 48000 }
end
def sine_wave_for opts = {}
opts = defaults_sine_wave_for.merge opts
frequency = opts[:frequency]
sample_rate = opts[:sample_rate]
period_size = (sample_rate.fdiv frequency).ceil
period_size.map_with_index do |i|
Math::sin((2.0 * Math::PI) / (sample_rate.to_f / frequency.to_f) * i)
end.to_a
end
def defaults_queue_sine_wave
{ frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 }
end
def queue_sine_wave args, opts = {}
opts = defaults_queue_sine_wave.merge opts
frequency = opts[:frequency]
sample_rate = 48000
sine_wave = sine_wave_for frequency: frequency, sample_rate: sample_rate
args.state.sine_waves[frequency] ||= sine_wave_for frequency: frequency, sample_rate: sample_rate
proc = lambda do
generate_audio_data args.state.sine_waves[frequency], sample_rate
end
audio_state = new_audio_state args, opts
audio_state[:input] = [1, sample_rate, proc]
queue_audio args, audio_state: audio_state, wave: sine_wave
end
end
begin # region: square wave
def defaults_square_wave_for
{ frequency: 440, sample_rate: 48000 }
end
def square_wave_for opts = {}
opts = defaults_square_wave_for.merge opts
sine_wave = sine_wave_for opts
sine_wave.map do |v|
if v >= 0
1.0
else
-1.0
end
end.to_a
end
def defaults_queue_square_wave
{ frequency: 440, duration: 60, gain: 0.3, fade_out: false, queue_in: 0 }
end
def queue_square_wave args, opts = {}
opts = defaults_queue_square_wave.merge opts
frequency = opts[:frequency]
sample_rate = 48000
square_wave = square_wave_for frequency: frequency, sample_rate: sample_rate
args.state.square_waves[frequency] ||= square_wave_for frequency: frequency, sample_rate: sample_rate
proc = lambda do
generate_audio_data args.state.square_waves[frequency], sample_rate
end
audio_state = new_audio_state args, opts
audio_state[:input] = [1, sample_rate, proc]
queue_audio args, audio_state: audio_state, wave: square_wave
end
end
begin # region: saw tooth wave
def defaults_saw_tooth_wave_for
{ frequency: 440, sample_rate: 48000 }
end
def saw_tooth_wave_for opts = {}
opts = defaults_saw_tooth_wave_for.merge opts
sine_wave = sine_wave_for opts
period_size = sine_wave.length
sine_wave.map_with_index do |v, i|
(((i % period_size).fdiv period_size) * 2) - 1
end
end
def defaults_queue_saw_tooth_wave
{ frequency: 440, duration: 60, gain: 0.3, fade_out: false, queue_in: 0 }
end
def queue_saw_tooth_wave args, opts = {}
opts = defaults_queue_saw_tooth_wave.merge opts
frequency = opts[:frequency]
sample_rate = 48000
saw_tooth_wave = saw_tooth_wave_for frequency: frequency, sample_rate: sample_rate
args.state.saw_tooth_waves[frequency] ||= saw_tooth_wave_for frequency: frequency, sample_rate: sample_rate
proc = lambda do
generate_audio_data args.state.saw_tooth_waves[frequency], sample_rate
end
audio_state = new_audio_state args, opts
audio_state[:input] = [1, sample_rate, proc]
queue_audio args, audio_state: audio_state, wave: saw_tooth_wave
end
end
begin # region: triangle wave
def defaults_triangle_wave_for
{ frequency: 440, sample_rate: 48000 }
end
def triangle_wave_for opts = {}
opts = defaults_saw_tooth_wave_for.merge opts
sine_wave = sine_wave_for opts
period_size = sine_wave.length
sine_wave.map_with_index do |v, i|
ratio = (i.fdiv period_size)
if ratio <= 0.5
(ratio * 4) - 1
else
ratio -= 0.5
1 - (ratio * 4)
end
end
end
def defaults_queue_triangle_wave
{ frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 }
end
def queue_triangle_wave args, opts = {}
opts = defaults_queue_triangle_wave.merge opts
frequency = opts[:frequency]
sample_rate = 48000
triangle_wave = triangle_wave_for frequency: frequency, sample_rate: sample_rate
args.state.triangle_waves[frequency] ||= triangle_wave_for frequency: frequency, sample_rate: sample_rate
proc = lambda do
generate_audio_data args.state.triangle_waves[frequency], sample_rate
end
audio_state = new_audio_state args, opts
audio_state[:input] = [1, sample_rate, proc]
queue_audio args, audio_state: audio_state, wave: triangle_wave
end
end
begin # region: bell
def defaults_queue_bell
{ frequency: 440, duration: 1.seconds, queue_in: 0 }
end
def queue_bell args, opts = {}
(bell_to_sine_waves (defaults_queue_bell.merge opts)).each { |b| queue_sine_wave args, b }
end
def bell_harmonics
[
{ frequency_ratio: 0.5, duration_ratio: 1.00 },
{ frequency_ratio: 1.0, duration_ratio: 0.80 },
{ frequency_ratio: 2.0, duration_ratio: 0.60 },
{ frequency_ratio: 3.0, duration_ratio: 0.40 },
{ frequency_ratio: 4.2, duration_ratio: 0.25 },
{ frequency_ratio: 5.4, duration_ratio: 0.20 },
{ frequency_ratio: 6.8, duration_ratio: 0.15 }
]
end
def defaults_bell_to_sine_waves
{ frequency: 440, duration: 1.seconds, queue_in: 0 }
end
def bell_to_sine_waves opts = {}
opts = defaults_bell_to_sine_waves.merge opts
bell_harmonics.map do |b|
{
frequency: opts[:frequency] * b[:frequency_ratio],
duration: opts[:duration] * b[:duration_ratio],
queue_in: opts[:queue_in],
gain: (1.fdiv bell_harmonics.length),
fade_out: true
}
end
end
end
begin # audio entity construction
def generate_audio_data sine_wave, sample_rate
sample_size = (sample_rate.fdiv (1000.fdiv 60)).ceil
copy_count = (sample_size.fdiv sine_wave.length).ceil
sine_wave * copy_count
end
def defaults_new_audio_state
{ frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 }
end
def new_audio_state args, opts = {}
opts = defaults_new_audio_state.merge opts
decay_rate = 0
decay_rate = 1.fdiv(opts[:duration]) * opts[:gain] if opts[:fade_out]
frequency = opts[:frequency]
sample_rate = 48000
{
id: (new_id! args),
frequency: frequency,
sample_rate: 48000,
stop_at: args.tick_count + opts[:queue_in] + opts[:duration],
gain: opts[:gain].to_f,
queue_at: args.state.tick_count + opts[:queue_in],
decay_rate: decay_rate,
pitch: 1.0,
looping: true,
paused: false
}
end
def queue_audio args, opts = {}
graph_wave args, opts[:wave], opts[:audio_state][:frequency]
args.state.audio_queue << opts[:audio_state]
end
def new_id! args
args.state.audio_id ||= 0
args.state.audio_id += 1
end
def graph_wave args, wave, frequency
if args.state.tick_count != args.state.graphed_at
args.outputs.static_lines.clear
args.outputs.static_sprites.clear
end
wave = wave
r, g, b = frequency.to_i % 85,
frequency.to_i % 170,
frequency.to_i % 255
starting_rect = args.layout.rect(row: 5, col: 13)
x_scale = 10
y_scale = 100
max_points = 25
points = wave
if wave.length > max_points
resolution = wave.length.idiv max_points
points = wave.find_all.with_index { |y, i| (i % resolution == 0) }
end
args.outputs.static_lines << points.map_with_index do |y, x|
next_y = points[x + 1]
if next_y
{
x: starting_rect.x + (x * x_scale),
y: starting_rect.y + starting_rect.h.half + y_scale * y,
x2: starting_rect.x + ((x + 1) * x_scale),
y2: starting_rect.y + starting_rect.h.half + y_scale * next_y,
r: r,
g: g,
b: b
}
end
end
args.outputs.static_sprites << points.map_with_index do |y, x|
{
x: (starting_rect.x + (x * x_scale)) - 2,
y: (starting_rect.y + starting_rect.h.half + y_scale * y) - 2,
w: 4,
h: 4,
path: 'sprites/square-white.png',
r: r,
g: g,
b: b
}
end
args.state.graphed_at = args.state.tick_count
end
end
begin # region: musical note mapping
def defaults_frequency_for
{ note: :a, octave: 5, sharp: false, flat: false }
end
def frequency_for opts = {}
opts = defaults_frequency_for.merge opts
octave_offset_multiplier = opts[:octave] - 5
note = note_frequencies_octave_5[opts[:note]]
if octave_offset_multiplier < 0
note = note * 1 / (octave_offset_multiplier.abs + 1)
elsif octave_offset_multiplier > 0
note = note * (octave_offset_multiplier.abs + 1) / 1
end
note
end
def note_frequencies_octave_5
{
a: 440.0,
a_sharp: 466.16, b_flat: 466.16,
b: 493.88,
c: 523.25,
c_sharp: 554.37, d_flat: 587.33,
d: 587.33,
d_sharp: 622.25, e_flat: 659.25,
e: 659.25,
f: 698.25,
f_sharp: 739.99, g_flat: 739.99,
g: 783.99,
g_sharp: 830.61, a_flat: 830.61
}
end
end
end
$gtk.reset
Advanced Rendering - Labels With Wrapped Text - main.rb
# ./samples/07_advanced_rendering/00_labels_with_wrapped_text/app/main.rb
def tick args
# defaults
args.state.scroll_location ||= 0
args.state.textbox.messages ||= []
args.state.textbox.scroll ||= 0
# render
args.outputs.background_color = [0, 0, 0, 255]
render_messages args
render_instructions args
# inputs
if args.inputs.keyboard.key_down.one
queue_message args, "Hello there neighbour! my name is mark, how is your day today?"
end
if args.inputs.keyboard.key_down.two
queue_message args, "I'm doing great sir, actually I'm having a picnic today"
end
if args.inputs.keyboard.key_down.three
queue_message args, "Well that sounds wonderful!"
end
if args.inputs.keyboard.key_down.home
args.state.scroll_location = 1
end
if args.inputs.keyboard.key_down.delete
clear_message_queue args
end
end
def queue_message args, msg
args.state.textbox.messages.concat msg.wrapped_lines 50
end
def clear_message_queue args
args.state.textbox.messages = nil
args.state.textbox.scroll = 0
end
def render_messages args
args.outputs[:textbox].w = 400
args.outputs[:textbox].h = 720
args.outputs.primitives << args.state.textbox.messages.each_with_index.map do |s, idx|
{
x: 0,
y: 20 * (args.state.textbox.messages.size - idx) + args.state.textbox.scroll * 20,
text: s,
size_enum: -3,
alignment_enum: 0,
r: 255, g:255, b: 255, a: 255
}
end
args.outputs[:textbox].labels << args.state.textbox.messages.each_with_index.map do |s, idx|
{
x: 0,
y: 20 * (args.state.textbox.messages.size - idx) + args.state.textbox.scroll * 20,
text: s,
size_enum: -3,
alignment_enum: 0,
r: 255, g:255, b: 255, a: 255
}
end
args.outputs[:textbox].borders << [0, 0, args.outputs[:textbox].w, 720]
args.state.textbox.scroll += args.inputs.mouse.wheel.y unless args.inputs.mouse.wheel.nil?
if args.state.scroll_location > 0
args.state.textbox.scroll = 0
args.state.scroll_location = 0
end
args.outputs.sprites << [900, 0, args.outputs[:textbox].w, 720, :textbox]
end
def render_instructions args
args.outputs.labels << [30,
30.from_top,
"press 1, 2, 3 to display messages, MOUSE WHEEL to scroll, HOME to go to top, BACKSPACE to delete.",
0, 255, 255]
args.outputs.primitives << [0, 55.from_top, 1280, 30, :pixel, 0, 255, 0, 0, 0].sprite
end
Advanced Rendering - Rotating Label - main.rb
# ./samples/07_advanced_rendering/00_rotating_label/app/main.rb
def tick args
# set the render target width and height to match the label
args.outputs[:scene].w = 220
args.outputs[:scene].h = 30
# make the background transparent
args.outputs[:scene].background_color = [255, 255, 255, 0]
# set the blendmode of the label to 0 (no blending)
# center it inside of the scene
# set the vertical_alignment_enum to 1 (center)
args.outputs[:scene].labels << { x: 0,
y: 15,
text: "label in render target",
blendmode_enum: 0,
vertical_alignment_enum: 1 }
# add a border to the render target
args.outputs[:scene].borders << { x: 0,
y: 0,
w: args.outputs[:scene].w,
h: args.outputs[:scene].h }
# add the rendertarget to the main output as a sprite
args.outputs.sprites << { x: 640 - args.outputs[:scene].w.half,
y: 360 - args.outputs[:scene].h.half,
w: args.outputs[:scene].w,
h: args.outputs[:scene].h,
angle: args.state.tick_count,
path: :scene }
end
Advanced Rendering - Simple Render Targets - main.rb
# ./samples/07_advanced_rendering/01_simple_render_targets/app/main.rb
def tick args
# args.outputs.render_targets are really really powerful.
# They essentially allow you to create a sprite programmatically and cache the result.
# Create a render_target of a :block and a :gradient on tick zero.
if args.state.tick_count == 0
args.render_target(:block).solids << [0, 0, 1280, 100]
# The gradient is actually just a collection of black solids with increasing
# opacities.
args.render_target(:gradient).solids << 90.map_with_index do |x|
50.map_with_index do |y|
[x * 15, y * 15, 15, 15, 0, 0, 0, (x * 3).fdiv(255) * 255]
end
end
end
# Take the :block render_target and present it horizontally centered.
# Use a subsection of the render_targetd specified by source_x,
# source_y, source_w, source_h.
args.outputs.sprites << { x: 0,
y: 310,
w: 1280,
h: 100,
path: :block,
source_x: 0,
source_y: 0,
source_w: 1280,
source_h: 100 }
# After rendering :block, render gradient on top of :block.
args.outputs.sprites << [0, 0, 1280, 720, :gradient]
args.outputs.labels << [1270, 710, args.gtk.current_framerate, 0, 2, 255, 255, 255]
tick_instructions args, "Sample app shows how to use render_targets (programmatically create cached sprites)."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
$gtk.reset
Advanced Rendering - Render Targets With Tile Manipulation - main.rb
# ./samples/07_advanced_rendering/02_render_targets_with_tile_manipulation/app/main.rb
# This sample is meant to show you how to do that dripping transition thing
# at the start of the original Doom. Most of this file is here to animate
# a scene to wipe away; the actual wipe effect is in the last 20 lines or
# so.
$gtk.reset # reset all game state if reloaded.
def circle_of_blocks pass, xoffset, yoffset, angleoffset, blocksize, distance
numblocks = 10
for i in 1..numblocks do
angle = ((360 / numblocks) * i) + angleoffset
radians = angle * (Math::PI / 180)
x = (xoffset + (distance * Math.cos(radians))).round
y = (yoffset + (distance * Math.sin(radians))).round
pass.solids << [ x, y, blocksize, blocksize, 255, 255, 0 ]
end
end
def draw_scene args, pass
pass.solids << [0, 360, 1280, 360, 0, 0, 200]
pass.solids << [0, 0, 1280, 360, 0, 127, 0]
blocksize = 100
angleoffset = args.state.tick_count * 2.5
centerx = (1280 - blocksize) / 2
centery = (720 - blocksize) / 2
circle_of_blocks pass, centerx, centery, angleoffset, blocksize * 2, 500
circle_of_blocks pass, centerx, centery, angleoffset, blocksize, 325
circle_of_blocks pass, centerx, centery, angleoffset, blocksize / 2, 200
circle_of_blocks pass, centerx, centery, angleoffset, blocksize / 4, 100
end
def tick args
segments = 160
# On the first tick, initialize some stuff.
if !args.state.yoffsets
args.state.baseyoff = 0
args.state.yoffsets = []
for i in 0..segments do
args.state.yoffsets << rand * 100
end
end
# Just draw some random stuff for a few seconds.
args.state.static_debounce ||= 60 * 2.5
if args.state.static_debounce > 0
last_frame = args.state.static_debounce == 1
target = last_frame ? args.render_target(:last_frame) : args.outputs
draw_scene args, target
args.state.static_debounce -= 1
return unless last_frame
end
# build up the wipe...
# this is the thing we're wiping to.
args.outputs.sprites << [ 0, 0, 1280, 720, 'dragonruby.png' ]
return if (args.state.baseyoff > (1280 + 100)) # stop when done sliding
segmentw = 1280 / segments
x = 0
for i in 0..segments do
yoffset = 0
if args.state.yoffsets[i] < args.state.baseyoff
yoffset = args.state.baseyoff - args.state.yoffsets[i]
end
# (720 - yoffset) flips the coordinate system, (- 720) adjusts for the height of the segment.
args.outputs.sprites << [ x, (720 - yoffset) - 720, segmentw, 720, 'last_frame', 0, 255, 255, 255, 255, x, 0, segmentw, 720 ]
x += segmentw
end
args.state.baseyoff += 4
tick_instructions args, "Sample app shows an advanced usage of render_target."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Advanced Rendering - Render Target Viewports - main.rb
# ./samples/07_advanced_rendering/03_render_target_viewports/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- args.state.new_entity: Used when we want to create a new object, like a sprite or button.
For example, if we want to create a new button, we would declare it as a new entity and
then define its properties. (Remember, you can use state to define ANY property and it will
be retained across frames.)
If you have a solar system and you're creating args.state.sun and setting its image path to an
image in the sprites folder, you would do the following:
(See samples/99_sample_nddnug_workshop for more details.)
args.state.sun ||= args.state.new_entity(:sun) do |s|
s.path = 'sprites/sun.png'
end
- String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated
as Ruby code, and the placeholder is replaced with its corresponding value or result.
For example, if we have a variable
name = "Ruby"
then the line
puts "How are you, #{name}?"
would print "How are you, Ruby?" to the console.
(Remember, string interpolation only works with double quotes!)
- Ternary operator (?): Similar to if statement; first evalulates whether a statement is
true or false, and then executes a command depending on that result.
For example, if we had a variable
grade = 75
and used the ternary operator in the command
pass_or_fail = grade > 65 ? "pass" : "fail"
then the value of pass_or_fail would be "pass" since grade's value was greater than 65.
Reminders:
- args.grid.(left|right|top|bottom): Pixel value for the boundaries of the virtual
720 p screen (Dragon Ruby Game Toolkits's virtual resolution is always 1280x720).
- Numeric#shift_(left|right|up|down): Shifts the Numeric in the correct direction
by adding or subracting.
- ARRAY#inside_rect?: An array with at least two values is considered a point. An array
with at least four values is considered a rect. The inside_rect? function returns true
or false depending on if the point is inside the rect.
- ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect.
- args.inputs.mouse.click: This property will be set if the mouse was clicked.
For more information about the mouse, go to mygame/documentation/07-mouse.md.
- args.inputs.keyboard.key_up.KEY: The value of the properties will be set
to the frame that the key_up event occurred (the frame correlates
to args.state.tick_count).
For more information about the keyboard, go to mygame/documentation/06-keyboard.md.
- args.state.labels:
The parameters for a label are
1. the position (x, y)
2. the text
3. the size
4. the alignment
5. the color (red, green, and blue saturations)
6. the alpha (or transparency)
For more information about labels, go to mygame/documentation/02-labels.md.
- args.state.lines:
The parameters for a line are
1. the starting position (x, y)
2. the ending position (x2, y2)
3. the color (red, green, and blue saturations)
4. the alpha (or transparency)
For more information about lines, go to mygame/documentation/04-lines.md.
- args.state.solids (and args.state.borders):
The parameters for a solid (or border) are
1. the position (x, y)
2. the width (w)
3. the height (h)
4. the color (r, g, b)
5. the alpha (or transparency)
For more information about solids and borders, go to mygame/documentation/03-solids-and-borders.md.
- args.state.sprites:
The parameters for a sprite are
1. the position (x, y)
2. the width (w)
3. the height (h)
4. the image path
5. the angle
6. the alpha (or transparency)
For more information about sprites, go to mygame/documentation/05-sprites.md.
=end
# This sample app shows different objects that can be used when making games, such as labels,
# lines, sprites, solids, buttons, etc. Each demo section shows how these objects can be used.
# Also note that state.tick_count refers to the passage of time, or current frame.
class TechDemo
attr_accessor :inputs, :state, :outputs, :grid, :args
# Calls all methods necessary for the app to run properly.
def tick
labels_tech_demo
lines_tech_demo
solids_tech_demo
borders_tech_demo
sprites_tech_demo
keyboards_tech_demo
controller_tech_demo
mouse_tech_demo
point_to_rect_tech_demo
rect_to_rect_tech_demo
button_tech_demo
export_game_state_demo
window_state_demo
render_seperators
end
# Shows output of different kinds of labels on the screen
def labels_tech_demo
outputs.labels << [grid.left.shift_right(5), grid.top.shift_down(5), "This is a label located at the top left."]
outputs.labels << [grid.left.shift_right(5), grid.bottom.shift_up(30), "This is a label located at the bottom left."]
outputs.labels << [ 5, 690, "Labels (x, y, text, size, align, r, g, b, a)"]
outputs.labels << [ 5, 660, "Smaller label.", -2]
outputs.labels << [ 5, 630, "Small label.", -1]
outputs.labels << [ 5, 600, "Medium label.", 0]
outputs.labels << [ 5, 570, "Large label.", 1]
outputs.labels << [ 5, 540, "Larger label.", 2]
outputs.labels << [300, 660, "Left aligned.", 0, 2]
outputs.labels << [300, 640, "Center aligned.", 0, 1]
outputs.labels << [300, 620, "Right aligned.", 0, 0]
outputs.labels << [175, 595, "Red Label.", 0, 0, 255, 0, 0]
outputs.labels << [175, 575, "Green Label.", 0, 0, 0, 255, 0]
outputs.labels << [175, 555, "Blue Label.", 0, 0, 0, 0, 255]
outputs.labels << [175, 535, "Faded Label.", 0, 0, 0, 0, 0, 128]
end
# Shows output of lines on the screen
def lines_tech_demo
outputs.labels << [5, 500, "Lines (x, y, x2, y2, r, g, b, a)"]
outputs.lines << [5, 450, 100, 450]
outputs.lines << [5, 430, 300, 430]
outputs.lines << [5, 410, 300, 410, state.tick_count % 255, 0, 0, 255] # red saturation changes
outputs.lines << [5, 390 - state.tick_count % 25, 300, 390, 0, 0, 0, 255] # y position changes
outputs.lines << [5 + state.tick_count % 200, 360, 300, 360, 0, 0, 0, 255] # x position changes
end
# Shows output of different kinds of solids on the screen
def solids_tech_demo
outputs.labels << [ 5, 350, "Solids (x, y, w, h, r, g, b, a)"]
outputs.solids << [ 10, 270, 50, 50]
outputs.solids << [ 70, 270, 50, 50, 0, 0, 0]
outputs.solids << [130, 270, 50, 50, 255, 0, 0]
outputs.solids << [190, 270, 50, 50, 255, 0, 0, 128]
outputs.solids << [250, 270, 50, 50, 0, 0, 0, 128 + state.tick_count % 128] # transparency changes
end
# Shows output of different kinds of borders on the screen
# The parameters for a border are the same as the parameters for a solid
def borders_tech_demo
outputs.labels << [ 5, 260, "Borders (x, y, w, h, r, g, b, a)"]
outputs.borders << [ 10, 180, 50, 50]
outputs.borders << [ 70, 180, 50, 50, 0, 0, 0]
outputs.borders << [130, 180, 50, 50, 255, 0, 0]
outputs.borders << [190, 180, 50, 50, 255, 0, 0, 128]
outputs.borders << [250, 180, 50, 50, 0, 0, 0, 128 + state.tick_count % 128] # transparency changes
end
# Shows output of different kinds of sprites on the screen
def sprites_tech_demo
outputs.labels << [ 5, 170, "Sprites (x, y, w, h, path, angle, a)"]
outputs.sprites << [ 10, 40, 128, 101, 'dragonruby.png']
outputs.sprites << [ 150, 40, 128, 101, 'dragonruby.png', state.tick_count % 360] # angle changes
outputs.sprites << [ 300, 40, 128, 101, 'dragonruby.png', 0, state.tick_count % 255] # transparency changes
end
# Holds size, alignment, color (black), and alpha (transparency) parameters
# Using small_font as a parameter accounts for all remaining parameters
# so they don't have to be repeatedly typed
def small_font
[-2, 0, 0, 0, 0, 255]
end
# Sets position of each row
# Converts given row value to pixels that DragonRuby understands
def row_to_px row_number
# Row 0 starts 5 units below the top of the grid.
# Each row afterward is 20 units lower.
grid.top.shift_down(5).shift_down(20 * row_number)
end
# Uses labels to output current game time (passage of time), and whether or not "h" was pressed
# If "h" is pressed, the frame is output when the key_up event occurred
def keyboards_tech_demo
outputs.labels << [460, row_to_px(0), "Current game time: #{state.tick_count}", small_font]
outputs.labels << [460, row_to_px(2), "Keyboard input: inputs.keyboard.key_up.h", small_font]
outputs.labels << [460, row_to_px(3), "Press \"h\" on the keyboard.", small_font]
if inputs.keyboard.key_up.h # if "h" key_up event occurs
state.h_pressed_at = state.tick_count # frame it occurred is stored
end
# h_pressed_at is initially set to false, and changes once the user presses the "h" key.
state.h_pressed_at ||= false
if state.h_pressed_at # if h is pressed (pressed_at has a frame number and is no longer false)
outputs.labels << [460, row_to_px(4), "\"h\" was pressed at time: #{state.h_pressed_at}", small_font]
else # otherwise, label says "h" was never pressed
outputs.labels << [460, row_to_px(4), "\"h\" has never been pressed.", small_font]
end
# border around keyboard input demo section
outputs.borders << [455, row_to_px(5), 360, row_to_px(2).shift_up(5) - row_to_px(5)]
end
# Sets definition for a small label
# Makes it easier to position labels in respect to the position of other labels
def small_label x, row, message
[x, row_to_px(row), message, small_font]
end
# Uses small labels to show whether the "a" button on the controller is down, held, or up.
# y value of each small label is set by calling the row_to_px method
def controller_tech_demo
x = 460
outputs.labels << small_label(x, 6, "Controller one input: inputs.controller_one")
outputs.labels << small_label(x, 7, "Current state of the \"a\" button.")
outputs.labels << small_label(x, 8, "Check console window for more info.")
if inputs.controller_one.key_down.a # if "a" is in "down" state
outputs.labels << small_label(x, 9, "\"a\" button down: #{inputs.controller_one.key_down.a}")
puts "\"a\" button down at #{inputs.controller_one.key_down.a}" # prints frame the event occurred
elsif inputs.controller_one.key_held.a # if "a" is held down
outputs.labels << small_label(x, 9, "\"a\" button held: #{inputs.controller_one.key_held.a}")
elsif inputs.controller_one.key_up.a # if "a" is in up state
outputs.labels << small_label(x, 9, "\"a\" button up: #{inputs.controller_one.key_up.a}")
puts "\"a\" key up at #{inputs.controller_one.key_up.a}"
else # if no event has occurred
outputs.labels << small_label(x, 9, "\"a\" button state is nil.")
end
# border around controller input demo section
outputs.borders << [455, row_to_px(10), 360, row_to_px(6).shift_up(5) - row_to_px(10)]
end
# Outputs when the mouse was clicked, as well as the coordinates on the screen
# of where the click occurred
def mouse_tech_demo
x = 460
outputs.labels << small_label(x, 11, "Mouse input: inputs.mouse")
if inputs.mouse.click # if click has a value and is not nil
state.last_mouse_click = inputs.mouse.click # coordinates of click are stored
end
if state.last_mouse_click # if mouse is clicked (has coordinates as value)
# outputs the time (frame) the click occurred, as well as how many frames have passed since the event
outputs.labels << small_label(x, 12, "Mouse click happened at: #{state.last_mouse_click.created_at}, #{state.last_mouse_click.created_at_elapsed}")
# outputs coordinates of click
outputs.labels << small_label(x, 13, "Mouse click location: #{state.last_mouse_click.point.x}, #{state.last_mouse_click.point.y}")
else # otherwise if the mouse has not been clicked
outputs.labels << small_label(x, 12, "Mouse click has not occurred yet.")
outputs.labels << small_label(x, 13, "Please click mouse.")
end
end
# Outputs whether a mouse click occurred inside or outside of a box
def point_to_rect_tech_demo
x = 460
outputs.labels << small_label(x, 15, "Click inside the blue box maybe ---->")
box = [765, 370, 50, 50, 0, 0, 170] # blue box
outputs.borders << box
if state.last_mouse_click # if the mouse was clicked
if state.last_mouse_click.point.inside_rect? box # if mouse clicked inside box
outputs.labels << small_label(x, 16, "Mouse click happened inside the box.")
else # otherwise, if mouse was clicked outside the box
outputs.labels << small_label(x, 16, "Mouse click happened outside the box.")
end
else # otherwise, if was not clicked at all
outputs.labels << small_label(x, 16, "Mouse click has not occurred yet.") # output if the mouse was not clicked
end
# border around mouse input demo section
outputs.borders << [455, row_to_px(14), 360, row_to_px(11).shift_up(5) - row_to_px(14)]
end
# Outputs a red box onto the screen. A mouse click from the user inside of the red box will output
# a smaller box. If two small boxes are inside of the red box, it will be determined whether or not
# they intersect.
def rect_to_rect_tech_demo
x = 460
outputs.labels << small_label(x, 17.5, "Click inside the red box below.") # label with instructions
red_box = [460, 250, 355, 90, 170, 0, 0] # definition of the red box
outputs.borders << red_box # output as a border (not filled in)
# If the mouse is clicked inside the red box, two collision boxes are created.
if inputs.mouse.click
if inputs.mouse.click.point.inside_rect? red_box
if !state.box_collision_one # if the collision_one box does not yet have a definition
# Subtracts 25 from the x and y positions of the click point in order to make the click point the center of the box.
# You can try deleting the subtraction to see how it impacts the box placement.
state.box_collision_one = [inputs.mouse.click.point.x - 25, inputs.mouse.click.point.y - 25, 50, 50, 180, 0, 0, 180] # sets definition
elsif !state.box_collision_two # if collision_two does not yet have a definition
state.box_collision_two = [inputs.mouse.click.point.x - 25, inputs.mouse.click.point.y - 25, 50, 50, 0, 0, 180, 180] # sets definition
else
state.box_collision_one = nil # both boxes are empty
state.box_collision_two = nil
end
end
end
# If collision boxes exist, they are output onto screen inside the red box as solids
if state.box_collision_one
outputs.solids << state.box_collision_one
end
if state.box_collision_two
outputs.solids << state.box_collision_two
end
# Outputs whether or not the two collision boxes intersect.
if state.box_collision_one && state.box_collision_two # if both collision_boxes are defined (and not nil or empty)
if state.box_collision_one.intersect_rect? state.box_collision_two # if the two boxes intersect
outputs.labels << small_label(x, 23.5, 'The boxes intersect.')
else # otherwise, if the two boxes do not intersect
outputs.labels << small_label(x, 23.5, 'The boxes do not intersect.')
end
else
outputs.labels << small_label(x, 23.5, '--') # if the two boxes are not defined (are nil or empty), this label is output
end
end
# Creates a button and outputs it onto the screen using labels and borders.
# If the button is clicked, the color changes to make it look faded.
def button_tech_demo
x, y, w, h = 460, 160, 300, 50
state.button ||= state.new_entity(:button_with_fade)
# Adds w.half to x and h.half + 10 to y in order to display the text inside the button's borders.
state.button.label ||= [x + w.half, y + h.half + 10, "click me and watch me fade", 0, 1]
state.button.border ||= [x, y, w, h]
if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.button.border) # if mouse is clicked, and clicked inside button's border
state.button.clicked_at = inputs.mouse.click.created_at # stores the time the click occurred
end
outputs.labels << state.button.label
outputs.borders << state.button.border
if state.button.clicked_at # if button was clicked (variable has a value and is not nil)
# The appearance of the button changes for 0.25 seconds after the time the button is clicked at.
# The color changes (rgb is set to 0, 180, 80) and the transparency gradually changes.
# Change 0.25 to 1.25 and notice that the transparency takes longer to return to normal.
outputs.solids << [x, y, w, h, 0, 180, 80, 255 * state.button.clicked_at.ease(0.25.seconds, :flip)]
end
end
# Creates a new button by declaring it as a new entity, and sets values.
def new_button_prefab x, y, message
w, h = 300, 50
button = state.new_entity(:button_with_fade)
button.label = [x + w.half, y + h.half + 10, message, 0, 1] # '+ 10' keeps label's text within button's borders
button.border = [x, y, w, h] # sets border definition
button
end
# If the mouse has been clicked and the click's location is inside of the button's border, that means
# that the button has been clicked. This method returns a boolean value.
def button_clicked? button
inputs.mouse.click && inputs.mouse.click.point.inside_rect?(button.border)
end
# Determines if button was clicked, and changes its appearance if it is clicked
def tick_button_prefab button
outputs.labels << button.label # outputs button's label and border
outputs.borders << button.border
if button_clicked? button # if button is clicked
button.clicked_at = inputs.mouse.click.created_at # stores the time that the button was clicked
end
if button.clicked_at # if clicked_at has a frame value and is not nil
# button is output; color changes and transparency changes for 0.25 seconds after click occurs
outputs.solids << [button.border.x, button.border.y, button.border.w, button.border.h,
0, 180, 80, 255 * button.clicked_at.ease(0.25.seconds, :flip)] # transparency changes for 0.25 seconds
end
end
# Exports the app's game state if the export button is clicked.
def export_game_state_demo
state.export_game_state_button ||= new_button_prefab(460, 100, "click to export app state")
tick_button_prefab(state.export_game_state_button) # calls method to output button
if button_clicked? state.export_game_state_button # if the export button is clicked
args.gtk.export! "Exported from clicking the export button in the tech demo." # the export occurs
end
end
# The mouse and keyboard focus are set to "yes" when the Dragonruby window is the active window.
def window_state_demo
m = $gtk.args.inputs.mouse.has_focus ? 'Y' : 'N' # ternary operator (similar to if statement)
k = $gtk.args.inputs.keyboard.has_focus ? 'Y' : 'N'
outputs.labels << [460, 20, "mouse focus: #{m} keyboard focus: #{k}", small_font]
end
#Sets values for the horizontal separator (divides demo sections)
def horizontal_seperator y, x, x2
[x, y, x2, y, 150, 150, 150]
end
#Sets the values for the vertical separator (divides demo sections)
def vertical_seperator x, y, y2
[x, y, x, y2, 150, 150, 150]
end
# Outputs vertical and horizontal separators onto the screen to separate each demo section.
def render_seperators
outputs.lines << horizontal_seperator(505, grid.left, 445)
outputs.lines << horizontal_seperator(353, grid.left, 445)
outputs.lines << horizontal_seperator(264, grid.left, 445)
outputs.lines << horizontal_seperator(174, grid.left, 445)
outputs.lines << vertical_seperator(445, grid.top, grid.bottom)
outputs.lines << horizontal_seperator(690, 445, 820)
outputs.lines << horizontal_seperator(426, 445, 820)
outputs.lines << vertical_seperator(820, grid.top, grid.bottom)
end
end
$tech_demo = TechDemo.new
def tick args
$tech_demo.inputs = args.inputs
$tech_demo.state = args.state
$tech_demo.grid = args.grid
$tech_demo.args = args
$tech_demo.outputs = args.render_target(:mini_map)
$tech_demo.tick
args.outputs.labels << [830, 715, "Render target:", [-2, 0, 0, 0, 0, 255]]
args.outputs.sprites << [0, 0, 1280, 720, :mini_map]
args.outputs.sprites << [830, 300, 675, 379, :mini_map]
tick_instructions args, "Sample app shows all the rendering apis available."
end
def tick_instructions args, text, y = 715
return if args.state.key_event_occurred
if args.inputs.mouse.click ||
args.inputs.keyboard.directional_vector ||
args.inputs.keyboard.key_down.enter ||
args.inputs.keyboard.key_down.escape
args.state.key_event_occurred = true
end
args.outputs.debug << [0, y - 50, 1280, 60].solid
args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label
args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label
end
Advanced Rendering - Render Primitive Hierarchies - main.rb
# ./samples/07_advanced_rendering/04_render_primitive_hierarchies/app/main.rb
=begin
APIs listing that haven't been encountered in previous sample apps:
- Nested array: An array whose individual elements are also arrays; useful for
storing groups of similar data. Also called multidimensional arrays.
In this sample app, we see nested arrays being used in object definitions.
Notice the parameters for solids, listed below. Parameters 1-3 set the
definition for the rect, and parameter 4 sets the definition of the color.
Instead of having a solid definition that looks like this,
[X, Y, W, H, R, G, B]
we can separate it into two separate array definitions in one, like this
[[X, Y, W, H], [R, G, B]]
and both options work fine in defining our solid (or any object).
- Collections: Lists of data; useful for organizing large amounts of data.
One element of a collection could be an array (which itself contains many elements).
For example, a collection that stores two solid objects would look like this:
[
[100, 100, 50, 50, 0, 0, 0],
[100, 150, 50, 50, 255, 255, 255]
]
If this collection was added to args.outputs.solids, two solids would be output
next to each other, one black and one white.
Nested arrays can be used in collections, as you will see in this sample app.
Reminders:
- args.outputs.solids: An array. The values generate a solid.
The parameters for a solid are
1. The position on the screen (x, y)
2. The width (w)
3. The height (h)
4. The color (r, g, b) (if a color is not assigned, the object's default color will be black)
NOTE: THE PARAMETERS ARE THE SAME FOR BORDERS!
Here is an example of a (red) border or solid definition:
[100, 100, 400, 500, 255, 0, 0]
It will be a solid or border depending on if it is added to args.outputs.solids or args.outputs.borders.
For more information about solids and borders, go to mygame/documentation/03-solids-and-borders.md.
- args.outputs.sprites: An array. The values generate a sprite.
The parameters for sprites are
1. The position on the screen (x, y)
2. The width (w)
3. The height (h)
4. The image path (p)
Here is an example of a sprite definition:
[100, 100, 400, 500, 'sprites/dragonruby.png']
For more information about sprites, go to mygame/documentation/05-sprites.md.
=end
# This code demonstrates the creation and output of objects like sprites, borders, and solids
# If filled in, they are solids
# If hollow, they are borders
# If images, they are sprites
# Solids are added to args.outputs.solids
# Borders are added to args.outputs.borders
# Sprites are added to args.outputs.sprites
# The tick method runs 60 frames every second.
# Your game is going to happen under this one function.
def tick args
border_as_solid_and_solid_as_border args
sprite_as_border_or_solids args
collection_of_borders_and_solids args
collection_of_sprites args
end
# Shows a border being output onto the screen as a border and a solid
# Also shows how colors can be set
def border_as_solid_and_solid_as_border args
border = [0, 0, 50, 50]
args.outputs.borders << border
args.outputs.solids << border
# Red, green, blue saturations (last three parameters) can be any number between 0 and 255
border_with_color = [0, 100, 50, 50, 255, 0, 0]
args.outputs.borders << border_with_color
args.outputs.solids << border_with_color
border_with_nested_color = [0, 200, 50, 50, [0, 255, 0]] # nested color
args.outputs.borders << border_with_nested_color
args.outputs.solids << border_with_nested_color
border_with_nested_rect = [[0, 300, 50, 50], 0, 0, 255] # nested rect
args.outputs.borders << border_with_nested_rect
args.outputs.solids << border_with_nested_rect
border_with_nested_color_and_rect = [[0, 400, 50, 50], [255, 0, 255]] # nested rect and color
args.outputs.borders << border_with_nested_color_and_rect
args.outputs.solids << border_with_nested_color_and_rect
end
# Shows a sprite output onto the screen as a sprite, border, and solid
# Demonstrates that all three outputs appear differently on screen
def sprite_as_border_or_solids args
sprite = [100, 0, 50, 50, 'sprites/ship.png']
args.outputs.sprites << sprite
# Sprite_as_border variable has same parameters (excluding position) as above object,
# but will appear differently on screen because it is added to args.outputs.borders
sprite_as_border = [100, 100, 50, 50, 'sprites/ship.png']
args.outputs.borders << sprite_as_border
# Sprite_as_solid variable has same parameters (excluding position) as above object,
# but will appear differently on screen because it is added to args.outputs.solids
sprite_as_solid = [100, 200, 50, 50, 'sprites/ship.png']
args.outputs.solids << sprite_as_solid
end
# Holds and outputs a collection of borders and a collection of solids
# Collections are created by using arrays to hold parameters of each individual object
def collection_of_borders_and_solids args
collection_borders = [
[
[200, 0, 50, 50], # black border
[200, 100, 50, 50, 255, 0, 0], # red border
[200, 200, 50, 50, [0, 255, 0]], # nested color
],
[[200, 300, 50, 50], 0, 0, 255], # nested rect
[[200, 400, 50, 50], [255, 0, 255]] # nested rect and nested color
]
args.outputs.borders << collection_borders
collection_solids = [
[
[[300, 300, 50, 50], 0, 0, 255], # nested rect
[[300, 400, 50, 50], [255, 0, 255]] # nested rect and nested color
],
[300, 0, 50, 50],
[300, 100, 50, 50, 255, 0, 0],
[300, 200, 50, 50, [0, 255, 0]], # nested color
]
args.outputs.solids << collection_solids
end
# Holds and outputs a collection of sprites by adding it to args.outputs.sprites
# Also outputs a collection with same parameters (excluding position) by adding
# it to args.outputs.solids and another to args.outputs.borders
def collection_of_sprites args
sprites_collection = [
[
[400, 0, 50, 50, 'sprites/ship.png'],
[400, 100, 50, 50, 'sprites/ship.png'],
],
[400, 200, 50, 50, 'sprites/ship.png']
]
args.outputs.sprites << sprites_collection
args.outputs.solids << [
[500, 0, 50, 50, 'sprites/ship.png'],
[500, 100, 50, 50, 'sprites/ship.png'],
[[[500, 200, 50, 50, 'sprites/ship.png']]]
]
args.outputs.borders << [
[
[600, 0, 50, 50, 'sprites/ship.png'],
[600, 100, 50, 50, 'sprites/ship.png'],
],
[600, 200, 50, 50, 'sprites/ship.png']
]
end
Advanced Rendering - Render Primitives As Hash - main.rb
# ./samples/07_advanced_rendering/05_render_primitives_as_hash/app/main.rb
=begin
Reminders:
- Hashes: Collection of unique keys and their corresponding values. The value can be found
using their keys.
For example, if we have a "numbers" hash that stores numbers in English as the
key and numbers in Spanish as the value, we'd have a hash that looks like this...
numbers = { "one" => "uno", "two" => "dos", "three" => "tres" }
and on it goes.
Now if we wanted to find the corresponding value of the "one" key, we could say
puts numbers["one"]
which would print "uno" to the console.
- args.outputs.sprites: An array. The values generate a sprite.
The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE]
For more information about sprites, go to mygame/documentation/05-sprites.md.
- args.outputs.labels: An array. The values generate a label.
The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.md.
- args.outputs.solids: An array. The values generate a solid.
The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA]
For more information about solids, go to mygame/documentation/03-solids-and-borders.md.
- args.outputs.borders: An array. The values generate a border.
The parameters are the same as a solid.
For more information about borders, go to mygame/documentation/03-solids-and-borders.md.
- args.outputs.lines: An array. The values generate a line.
The parameters are [X1, Y1, X2, Y2, RED, GREEN, BLUE]
For more information about labels, go to mygame/documentation/02-labels.md.
=end
# This sample app demonstrates how hashes can be used to output different kinds of objects.
def tick args
args.state.angle ||= 0 # initializes angle to 0
args.state.angle += 1 # increments angle by 1 every frame (60 times a second)
# Outputs sprite using a hash
args.outputs.sprites << {
x: 30, # sprite position
y: 550,
w: 128, # sprite size
h: 101,
path: "dragonruby.png", # image path
angle: args.state.angle, # angle
a: 255, # alpha (transparency)
r: 255, # color saturation
g: 255,
b: 255,
tile_x: 0, # sprite sub division/tile
tile_y: 0,
tile_w: -1,
tile_h: -1,
flip_vertically: false, # don't flip sprite
flip_horizontally: false,
angle_anchor_x: 0.5, # rotation center set to middle
angle_anchor_y: 0.5
}
# Outputs label using a hash
args.outputs.labels << {
x: 200, # label position
y: 550,
text: "dragonruby", # label text
size_enum: 2,
alignment_enum: 1,
r: 155, # color saturation
g: 50,
b: 50,
a: 255, # transparency
font: "fonts/manaspc.ttf" # font style; without mentioned file, label won't output correctly
}
# Outputs solid using a hash
# [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA]
args.outputs.solids << {
x: 400, # position
y: 550,
w: 160, # size
h: 90,
r: 120, # color saturation
g: 50,
b: 50,
a: 255 # transparency
}
# Outputs border using a hash
# Same parameters as a solid
args.outputs.borders << {
x: 600,
y: 550,
w: 160,
h: 90,
r: 120,
g: 50,
b: 50,
a: 255
}
# Outputs line using a hash
args.outputs.lines << {
x: 900, # starting position
y: 550,
x2: 1200, # ending position
y2: 550,
r: 120, # color saturation
g: 50,
b: 50,
a: 255 # transparency
}
# Outputs sprite as a primitive using a hash
args.outputs.primitives << {
x: 30, # position
y: 200,
w: 128, # size
h: 101,
path: "dragonruby.png", # image path
angle: args.state.angle, # angle
a: 255, # transparency
r: 255, # color saturation
g: 255,
b: 255,
tile_x: 0, # sprite sub division/tile
tile_y: 0,
tile_w: -1,
tile_h: -1,
flip_vertically: false, # don't flip
flip_horizontally: false,
angle_anchor_x: 0.5, # rotation center set to middle
angle_anchor_y: 0.5
}.sprite!
# Outputs label as primitive using a hash
args.outputs.primitives << {
x: 200, # position
y: 200,
text: "dragonruby", # text
size: 2,
alignment: 1,
r: 155, # color saturation
g: 50,
b: 50,
a: 255, # transparency
font: "fonts/manaspc.ttf" # font style
}.label!
# Outputs solid as primitive using a hash
args.outputs.primitives << {
x: 400, # position
y: 200,
w: 160, # size
h: 90,
r: 120, # color saturation
g: 50,
b: 50,
a: 255 # transparency
}.solid!
# Outputs border as primitive using a hash
# Same parameters as solid
args.outputs.primitives << {
x: 600, # position
y: 200,
w: 160, # size
h: 90,
r: 120, # color saturation
g: 50,
b: 50,
a: 255 # transparency
}.border!
# Outputs line as primitive using a hash
args.outputs.primitives << {
x: 900, # starting position
y: 200,
x2: 1200, # ending position
y2: 200,
r: 120, # color saturation
g: 50,
b: 50,
a: 255 # transparency
}.line!
end
Advanced Rendering - Pixel Arrays - main.rb
# ./samples/07_advanced_rendering/06_pixel_arrays/app/main.rb
def tick args
args.state.posinc ||= 1
args.state.pos ||= 0
args.state.rotation ||= 0
dimension = 10 # keep it small and let the GPU scale it when rendering the sprite.
# Set up our "scanner" pixel array and fill it with black pixels.
args.pixel_array(:scanner).width = dimension
args.pixel_array(:scanner).height = dimension
args.pixel_array(:scanner).pixels.fill(0xFF000000, 0, dimension * dimension) # black, full alpha
# Draw a green line that bounces up and down the sprite.
args.pixel_array(:scanner).pixels.fill(0xFF00FF00, dimension * args.state.pos, dimension) # green, full alpha
# Adjust position for next frame.
args.state.pos += args.state.posinc
if args.state.posinc > 0 && args.state.pos >= dimension
args.state.posinc = -1
args.state.pos = dimension - 1
elsif args.state.posinc < 0 && args.state.pos < 0
args.state.posinc = 1
args.state.pos = 1
end
# New/changed pixel arrays get uploaded to the GPU before we render
# anything. At that point, they can be scaled, rotated, and otherwise
# used like any other sprite.
w = 100
h = 100
x = (1280 - w) / 2
y = (720 - h) / 2
args.outputs.background_color = [64, 0, 128]
args.outputs.primitives << [x, y, w, h, :scanner, args.state.rotation].sprite
args.state.rotation += 1
args.outputs.primitives << args.gtk.current_framerate_primitives
end
$gtk.reset
Advanced Rendering - Pixel Arrays From File - main.rb
# ./samples/07_advanced_rendering/06_pixel_arrays_from_file/app/main.rb
def tick args
args.state.rotation ||= 0
# on load, get pixels from png and load it into a pixel array
if args.state.tick_count == 0
pixel_array = args.gtk.get_pixels 'sprites/square/blue.png'
args.pixel_array(:square).w = pixel_array.w
args.pixel_array(:square).h = pixel_array.h
pixel_array.pixels.each_with_index do |p, i|
args.pixel_array(:square).pixels[i] = p
end
end
w = 100
h = 100
x = (1280 - w) / 2
y = (720 - h) / 2
args.outputs.background_color = [64, 0, 128]
# render the pixel array by name
args.outputs.primitives << { x: x, y: y, w: w, h: h, path: :square, angle: args.state.rotation }
args.state.rotation += 1
args.outputs.primitives << args.gtk.current_framerate_primitives
end
$gtk.reset
Advanced Rendering - Shake Camera - main.rb
# ./samples/07_advanced_rendering/07_shake_camera/app/main.rb
# Demo of camera shake
# Hold space to shake and release to stop
class ScreenShake
attr_gtk
def tick
defaults
calc_camera
outputs.labels << { x: 600, y: 400, text: "Hold Space!" }
# Add outputs to :scene
outputs[:scene].sprites << { x: 100, y: 100, w: 80, h: 80, path: 'sprites/square/blue.png' }
outputs[:scene].sprites << { x: 200, y: 300.from_top, w: 80, h: 80, path: 'sprites/square/blue.png' }
outputs[:scene].sprites << { x: 900, y: 200, w: 80, h: 80, path: 'sprites/square/blue.png' }
# Describe how to render :scene
outputs.sprites << { x: 0 - state.camera.x_offset,
y: 0 - state.camera.y_offset,
w: 1280,
h: 720,
angle: state.camera.angle,
path: :scene }
end
def defaults
state.camera.trauma ||= 0
state.camera.angle ||= 0
state.camera.x_offset ||= 0
state.camera.y_offset ||= 0
end
def calc_camera
if inputs.keyboard.key_held.space
state.camera.trauma += 0.02
end
next_camera_angle = 180.0 / 20.0 * state.camera.trauma**2
next_offset = 100.0 * state.camera.trauma**2
# Ensure that the camera angle always switches from
# positive to negative and vice versa
# which gives the effect of shaking back and forth
state.camera.angle = state.camera.angle > 0 ?
next_camera_angle * -1 :
next_camera_angle
state.camera.x_offset = next_offset.randomize(:sign, :ratio)
state.camera.y_offset = next_offset.randomize(:sign, :ratio)
# Gracefully degrade trauma
state.camera.trauma *= 0.95
end
end
def tick args
$screen_shake ||= ScreenShake.new
$screen_shake.args = args
$screen_shake.tick
end
Advanced Rendering - Simple Camera - main.rb
# ./samples/07_advanced_rendering/07_simple_camera/app/main.rb
def tick args
# variables you can play around with
args.state.world.w ||= 1280
args.state.world.h ||= 720
args.state.player.x ||= 0
args.state.player.y ||= 0
args.state.player.size ||= 32
args.state.enemy.x ||= 700
args.state.enemy.y ||= 700
args.state.enemy.size ||= 16
args.state.camera.x ||= 640
args.state.camera.y ||= 300
args.state.camera.scale ||= 1.0
args.state.camera.show_empty_space ||= :yes
# instructions
args.outputs.primitives << { x: 0, y: 80.from_top, w: 360, h: 80, r: 0, g: 0, b: 0, a: 128 }.solid!
args.outputs.primitives << { x: 10, y: 10.from_top, text: "arrow keys to move around", r: 255, g: 255, b: 255}.label!
args.outputs.primitives << { x: 10, y: 30.from_top, text: "+/- to change zoom of camera", r: 255, g: 255, b: 255}.label!
args.outputs.primitives << { x: 10, y: 50.from_top, text: "tab to change camera edge behavior", r: 255, g: 255, b: 255}.label!
# render scene
args.outputs[:scene].w = args.state.world.w
args.outputs[:scene].h = args.state.world.h
args.outputs[:scene].solids << { x: 0, y: 0, w: args.state.world.w, h: args.state.world.h, r: 20, g: 60, b: 80 }
args.outputs[:scene].solids << { x: args.state.player.x, y: args.state.player.y,
w: args.state.player.size, h: args.state.player.size, r: 80, g: 155, b: 80 }
args.outputs[:scene].solids << { x: args.state.enemy.x, y: args.state.enemy.y,
w: args.state.enemy.size, h: args.state.enemy.size, r: 155, g: 80, b: 80 }
# render camera
scene_position = calc_scene_position args
args.outputs.sprites << { x: scene_position.x,
y: scene_position.y,
w: scene_position.w,
h: scene_position.h,
path: :scene }
# move player
if args.inputs.directional_angle
args.state.player.x += args.inputs.directional_angle.vector_x * 5
args.state.player.y += args.inputs.directional_angle.vector_y * 5
args.state.player.x = args.state.player.x.clamp(0, args.state.world.w - args.state.player.size)
args.state.player.y = args.state.player.y.clamp(0, args.state.world.h - args.state.player.size)
end
# +/- to zoom in and out
if args.inputs.keyboard.plus && args.state.tick_count.zmod?(3)
args.state.camera.scale += 0.05
elsif args.inputs.keyboard.hyphen && args.state.tick_count.zmod?(3)
args.state.camera.scale -= 0.05
elsif args.inputs.keyboard.key_down.tab
if args.state.camera.show_empty_space == :yes
args.state.camera.show_empty_space = :no
else
args.state.camera.show_empty_space = :yes
end
end
args.state.camera.scale = args.state.camera.scale.greater(0.1)
end
def calc_scene_position args
result = { x: args.state.camera.x - (args.state.player.x * args.state.camera.scale),
y: args.state.camera.y - (args.state.player.y * args.state.camera.scale),
w: args.state.world.w * args.state.camera.scale,
h: args.state.world.h * args.state.camera.scale,
scale: args.state.camera.scale }
return result if args.state.camera.show_empty_space == :yes
if result.w < args.grid.w
result.merge!(x: (args.grid.w - result.w).half)
elsif (args.state.player.x * result.scale) < args.grid.w.half
result.merge!(x: 10)
elsif (result.x + result.w) < args.grid.w
result.merge!(x: - result.w + (args.grid.w - 10))
end
if result.h < args.grid.h
result.merge!(y: (args.grid.h - result.h).half)
elsif (result.y) > 10
result.merge!(y: 10)
elsif (result.y + result.h) < args.grid.h
result.merge!(y: - result.h + (args.grid.h - 10))
end
result
end
Advanced Rendering - Splitscreen Camera - main.rb
# ./samples/07_advanced_rendering/08_splitscreen_camera/app/main.rb
class CameraMovement
attr_accessor :state, :inputs, :outputs, :grid
#==============================================================================================
#Serialize
def serialize
{state: state, inputs: inputs, outputs: outputs, grid: grid }
end
def inspect
serialize.to_s
end
def to_s
serialize.to_s
end
#==============================================================================================
#Tick
def tick
defaults
calc
render
input
end
#==============================================================================================
#Default functions
def defaults
outputs[:scene].background_color = [0,0,0]
state.trauma ||= 0.0
state.trauma_power ||= 2
state.player_cyan ||= new_player_cyan
state.player_magenta ||= new_player_magenta
state.camera_magenta ||= new_camera_magenta
state.camera_cyan ||= new_camera_cyan
state.camera_center ||= new_camera_center
state.room ||= new_room
end
def default_player x, y, w, h, sprite_path
state.new_entity(:player,
{ x: x,
y: y,
dy: 0,
dx: 0,
w: w,
h: h,
damage: 0,
dead: false,
orientation: "down",
max_alpha: 255,
sprite_path: sprite_path})
end
def default_floor_tile x, y, w, h, sprite_path
state.new_entity(:room,
{ x: x,
y: y,
w: w,
h: h,
sprite_path: sprite_path})
end
def default_camera x, y, w, h
state.new_entity(:camera,
{ x: x,
y: y,
dx: 0,
dy: 0,
w: w,
h: h})
end
def new_player_cyan
default_player(0, 0, 64, 64,
"sprites/player/player_#{state.player_cyan.orientation}_standing.png")
end
def new_player_magenta
default_player(64, 0, 64, 64,
"sprites/player/player_#{state.player_magenta.orientation}_standing.png")
end
def new_camera_magenta
default_camera(0,0,720,720)
end
def new_camera_cyan
default_camera(0,0,720,720)
end
def new_camera_center
default_camera(0,0,1280,720)
end
def new_room
default_floor_tile(0,0,1024,1024,'sprites/rooms/camera_room.png')
end
#==============================================================================================
#Calculation functions
def calc
calc_camera_magenta
calc_camera_cyan
calc_camera_center
calc_player_cyan
calc_player_magenta
calc_trauma_decay
end
def center_camera_tolerance
return Math.sqrt(((state.player_magenta.x - state.player_cyan.x) ** 2) +
((state.player_magenta.y - state.player_cyan.y) ** 2)) > 640
end
def calc_player_cyan
state.player_cyan.x += state.player_cyan.dx
state.player_cyan.y += state.player_cyan.dy
end
def calc_player_magenta
state.player_magenta.x += state.player_magenta.dx
state.player_magenta.y += state.player_magenta.dy
end
def calc_camera_center
timeScale = 1
midX = (state.player_magenta.x + state.player_cyan.x)/2
midY = (state.player_magenta.y + state.player_cyan.y)/2
targetX = midX - state.camera_center.w/2
targetY = midY - state.camera_center.h/2
state.camera_center.x += (targetX - state.camera_center.x) * 0.1 * timeScale
state.camera_center.y += (targetY - state.camera_center.y) * 0.1 * timeScale
end
def calc_camera_magenta
timeScale = 1
targetX = state.player_magenta.x + state.player_magenta.w - state.camera_magenta.w/2
targetY = state.player_magenta.y + state.player_magenta.h - state.camera_magenta.h/2
state.camera_magenta.x += (targetX - state.camera_magenta.x) * 0.1 * timeScale
state.camera_magenta.y += (targetY - state.camera_magenta.y) * 0.1 * timeScale
end
def calc_camera_cyan
timeScale = 1
targetX = state.player_cyan.x + state.player_cyan.w - state.camera_cyan.w/2
targetY = state.player_cyan.y + state.player_cyan.h - state.camera_cyan.h/2
state.camera_cyan.x += (targetX - state.camera_cyan.x) * 0.1 * timeScale
state.camera_cyan.y += (targetY - state.camera_cyan.y) * 0.1 * timeScale
end
def calc_player_quadrant angle
if angle < 45 and angle > -45 and state.player_cyan.x < state.player_magenta.x
return 1
elsif angle < 45 and angle > -45 and state.player_cyan.x > state.player_magenta.x
return 3
elsif (angle > 45 or angle < -45) and state.player_cyan.y < state.player_magenta.y
return 2
elsif (angle > 45 or angle < -45) and state.player_cyan.y > state.player_magenta.y
return 4
end
end
def calc_camera_shake
state.trauma
end
def calc_trauma_decay
state.trauma = state.trauma * 0.9
end
def calc_random_float_range(min, max)
rand * (max-min) + min
end
#==============================================================================================
#Render Functions
def render
render_floor
render_player_cyan
render_player_magenta
if center_camera_tolerance
render_split_camera_scene
else
render_camera_center_scene
end
end
def render_player_cyan
outputs[:scene].sprites << {x: state.player_cyan.x,
y: state.player_cyan.y,
w: state.player_cyan.w,
h: state.player_cyan.h,
path: "sprites/player/player_#{state.player_cyan.orientation}_standing.png",
r: 0,
g: 255,
b: 255}
end
def render_player_magenta
outputs[:scene].sprites << {x: state.player_magenta.x,
y: state.player_magenta.y,
w: state.player_magenta.w,
h: state.player_magenta.h,
path: "sprites/player/player_#{state.player_magenta.orientation}_standing.png",
r: 255,
g: 0,
b: 255}
end
def render_floor
outputs[:scene].sprites << [state.room.x, state.room.y,
state.room.w, state.room.h,
state.room.sprite_path]
end
def render_camera_center_scene
zoomFactor = 1
outputs[:scene].width = state.room.w
outputs[:scene].height = state.room.h
maxAngle = 10.0
maxOffset = 20.0
angle = maxAngle * calc_camera_shake * calc_random_float_range(-1,1)
offsetX = 32 - (maxOffset * calc_camera_shake * calc_random_float_range(-1,1))
offsetY = 32 - (maxOffset * calc_camera_shake * calc_random_float_range(-1,1))
outputs.sprites << {x: (-state.camera_center.x - offsetX)/zoomFactor,
y: (-state.camera_center.y - offsetY)/zoomFactor,
w: outputs[:scene].width/zoomFactor,
h: outputs[:scene].height/zoomFactor,
path: :scene,
angle: angle,
source_w: -1,
source_h: -1}
outputs.labels << [128,64,"#{state.trauma.round(1)}",8,2,255,0,255,255]
end
def render_split_camera_scene
outputs[:scene].width = state.room.w
outputs[:scene].height = state.room.h
render_camera_magenta_scene
render_camera_cyan_scene
angle = Math.atan((state.player_magenta.y - state.player_cyan.y)/(state.player_magenta.x- state.player_cyan.x)) * 180/Math::PI
output_split_camera angle
end
def render_camera_magenta_scene
zoomFactor = 1
offsetX = 32
offsetY = 32
outputs[:scene_magenta].sprites << {x: (-state.camera_magenta.x*2),
y: (-state.camera_magenta.y),
w: outputs[:scene].width*2,
h: outputs[:scene].height,
path: :scene}
end
def render_camera_cyan_scene
zoomFactor = 1
offsetX = 32
offsetY = 32
outputs[:scene_cyan].sprites << {x: (-state.camera_cyan.x*2),
y: (-state.camera_cyan.y),
w: outputs[:scene].width*2,
h: outputs[:scene].height,
path: :scene}
end
def output_split_camera angle
#TODO: Clean this up!
quadrant = calc_player_quadrant angle
outputs.labels << [128,64,"#{quadrant}",8,2,255,0,255,255]
if quadrant == 1
set_camera_attributes(w: 640, h: 720, m_x: 640, m_y: 0, c_x: 0, c_y: 0)
elsif quadrant == 2
set_camera_attributes(w: 1280, h: 360, m_x: 0, m_y: 360, c_x: 0, c_y: 0)
elsif quadrant == 3
set_camera_attributes(w: 640, h: 720, m_x: 0, m_y: 0, c_x: 640, c_y: 0)
elsif quadrant == 4
set_camera_attributes(w: 1280, h: 360, m_x: 0, m_y: 0, c_x: 0, c_y: 360)
end
end
def set_camera_attributes(w: 0, h: 0, m_x: 0, m_y: 0, c_x: 0, c_y: 0)
state.camera_cyan.w = w + 64
state.camera_cyan.h = h + 64
outputs[:scene_cyan].width = (w) * 2
outputs[:scene_cyan].height = h
state.camera_magenta.w = w + 64
state.camera_magenta.h = h + 64
outputs[:scene_magenta].width = (w) * 2
outputs[:scene_magenta].height = h
outputs.sprites << {x: m_x,
y: m_y,
w: w,
h: h,
path: :scene_magenta}
outputs.sprites << {x: c_x,
y: c_y,
w: w,
h: h,
path: :scene_cyan}
end
def add_trauma amount
state.trauma = [state.trauma + amount, 1.0].min
end
def remove_trauma amount
state.trauma = [state.trauma - amount, 0.0].max
end
#==============================================================================================
#Input functions
def input
input_move_cyan
input_move_magenta
if inputs.keyboard.key_down.t
add_trauma(0.5)
elsif inputs.keyboard.key_down.y
remove_trauma(0.1)
end
end
def input_move_cyan
if inputs.keyboard.key_held.up
state.player_cyan.dy = 5
state.player_cyan.orientation = "up"
elsif inputs.keyboard.key_held.down
state.player_cyan.dy = -5
state.player_cyan.orientation = "down"
else
state.player_cyan.dy *= 0.8
end
if inputs.keyboard.key_held.left
state.player_cyan.dx = -5
state.player_cyan.orientation = "left"
elsif inputs.keyboard.key_held.right
state.player_cyan.dx = 5
state.player_cyan.orientation = "right"
else
state.player_cyan.dx *= 0.8
end
outputs.labels << [128,512,"#{state.player_cyan.x.round()}",8,2,0,255,255,255]
outputs.labels << [128,480,"#{state.player_cyan.y.round()}",8,2,0,255,255,255]
end
def input_move_magenta
if inputs.keyboard.key_held.w
state.player_magenta.dy = 5
state.player_magenta.orientation = "up"
elsif inputs.keyboard.key_held.s
state.player_magenta.dy = -5
state.player_magenta.orientation = "down"
else
state.player_magenta.dy *= 0.8
end
if inputs.keyboard.key_held.a
state.player_magenta.dx = -5
state.player_magenta.orientation = "left"
elsif inputs.keyboard.key_held.d
state.player_magenta.dx = 5
state.player_magenta.orientation = "right"
else
state.player_magenta.dx *= 0.8
end
outputs.labels << [128,360,"#{state.player_magenta.x.round()}",8,2,255,0,255,255]
outputs.labels << [128,328,"#{state.player_magenta.y.round()}",8,2,255,0,255,255]
end
end
$camera_movement = CameraMovement.new
def tick args
args.outputs.background_color = [0,0,0]
$camera_movement.inputs = args.inputs
$camera_movement.outputs = args.outputs
$camera_movement.state = args.state
$camera_movement.grid = args.grid
$camera_movement.tick
end
Advanced Rendering - Z Targeting Camera - main.rb
# ./samples/07_advanced_rendering/09_z_targeting_camera/app/main.rb
class Game
attr_gtk
def tick
defaults
render
input
calc
end
def defaults
outputs.background_color = [219, 208, 191]
player.x ||= 634
player.y ||= 153
player.angle ||= 90
player.distance ||= arena_radius
target.x ||= 634
target.y ||= 359
end
def render
outputs[:scene].sprites << ([0, 0, 933, 700, 'sprites/arena.png'].center_inside_rect grid.rect)
outputs[:scene].sprites << target_sprite
outputs[:scene].sprites << player_sprite
outputs.sprites << scene
end
def target_sprite
{
x: target.x, y: target.y,
w: 10, h: 10,
path: 'sprites/square/black.png'
}.anchor_rect 0.5, 0.5
end
def input
if inputs.up && player.distance > 30
player.distance -= 2
elsif inputs.down && player.distance < 200
player.distance += 2
end
player.angle += inputs.left_right * -1
end
def calc
player.x = target.x + ((player.angle * 1).vector_x player.distance)
player.y = target.y + ((player.angle * -1).vector_y player.distance)
end
def player_sprite
{
x: player.x,
y: player.y,
w: 50,
h: 100,
path: 'sprites/player.png',
angle: (player.angle * -1) + 90
}.anchor_rect 0.5, 0
end
def center_map
{ x: 634, y: 359 }
end
def zoom_factor_single
2 - ((args.geometry.distance player, center_map).fdiv arena_radius)
end
def zoom_factor
zoom_factor_single ** 2
end
def arena_radius
206
end
def scene
{
x: (640 - player.x) + (640 - (640 * zoom_factor)),
y: (360 - player.y - (75 * zoom_factor)) + (320 - (320 * zoom_factor)),
w: 1280 * zoom_factor,
h: 720 * zoom_factor,
path: :scene,
angle: player.angle - 90,
angle_anchor_x: (player.x.fdiv 1280),
angle_anchor_y: (player.y.fdiv 720)
}
end
def player
state.player
end
def target
state.target
end
end
def tick args
$game ||= Game.new
$game.args = args
$game.tick
end
$gtk.reset
Advanced Rendering - Blend Modes - main.rb
# ./samples/07_advanced_rendering/10_blend_modes/app/main.rb
$gtk.reset
def draw_blendmode args, mode
w = 160
h = w
args.state.x += (1280-w) / (args.state.blendmodes.length + 1)
x = args.state.x
y = (720 - h) / 2
s = 'sprites/blue-feathered.png'
args.outputs.sprites << { blendmode_enum: mode.value, x: x, y: y, w: w, h: h, path: s }
args.outputs.labels << [x + (w/2), y, mode.name.to_s, 1, 1, 255, 255, 255]
end
def tick args
# Different blend modes do different things, depending on what they
# blend against (in this case, the pixels of the background color).
args.state.bg_element ||= 1
args.state.bg_color ||= 255
args.state.bg_color_direction ||= 1
bg_r = (args.state.bg_element == 1) ? args.state.bg_color : 0
bg_g = (args.state.bg_element == 2) ? args.state.bg_color : 0
bg_b = (args.state.bg_element == 3) ? args.state.bg_color : 0
args.state.bg_color += args.state.bg_color_direction
if (args.state.bg_color_direction > 0) && (args.state.bg_color >= 255)
args.state.bg_color_direction = -1
args.state.bg_color = 255
elsif (args.state.bg_color_direction < 0) && (args.state.bg_color <= 0)
args.state.bg_color_direction = 1
args.state.bg_color = 0
args.state.bg_element += 1
if args.state.bg_element >= 4
args.state.bg_element = 1
end
end
args.outputs.background_color = [ bg_r, bg_g, bg_b, 255 ]
args.state.blendmodes ||= [
{ name: :none, value: 0 },
{ name: :blend, value: 1 },
{ name: :add, value: 2 },
{ name: :mod, value: 3 },
{ name: :mul, value: 4 }
]
args.state.x = 0 # reset this, draw_blendmode will increment it.
args.state.blendmodes.each { |blendmode| draw_blendmode args, blendmode }
end
Advanced Rendering - Render Target Noclear - main.rb
# ./samples/07_advanced_rendering/11_render_target_noclear/app/main.rb
def tick args
args.state.x ||= 500
args.state.y ||= 350
args.state.xinc ||= 7
args.state.yinc ||= 7
args.state.bgcolor ||= 1
args.state.bginc ||= 1
# clear the render target on the first tick, and then never again. Draw
# another box to it every tick, accumulating over time.
clear_target = (args.state.tick_count == 0) || (args.inputs.keyboard.key_down.space)
args.render_target(:accumulation).background_color = [ 0, 0, 0, 0 ];
args.render_target(:accumulation).clear_before_render = clear_target
args.render_target(:accumulation).solids << [args.state.x, args.state.y, 25, 25, 255, 0, 0, 255];
args.state.x += args.state.xinc
args.state.y += args.state.yinc
args.state.bgcolor += args.state.bginc
# animation upkeep...change where we draw the next box and what color the
# window background will be.
if args.state.xinc > 0 && args.state.x >= 1280
args.state.xinc = -7
elsif args.state.xinc < 0 && args.state.x < 0
args.state.xinc = 7
end
if args.state.yinc > 0 && args.state.y >= 720
args.state.yinc = -7
elsif args.state.yinc < 0 && args.state.y < 0
args.state.yinc = 7
end
if args.state.bginc > 0 && args.state.bgcolor >= 255
args.state.bginc = -1
elsif args.state.bginc < 0 && args.state.bgcolor <= 0
args.state.bginc = 1
end
# clear the screen to a shade of blue and draw the render target, which
# is not clearing every frame, on top of it. Note that you can NOT opt to
# skip clearing the screen, only render targets. The screen clears every
# frame; double-buffering would prevent correct updates between frames.
args.outputs.background_color = [ 0, 0, args.state.bgcolor, 255 ]
args.outputs.sprites << [ 0, 0, 1280, 720, :accumulation ]
end
$gtk.reset
Advanced Rendering - Lighting - main.rb
# ./samples/07_advanced_rendering/12_lighting/app/main.rb
def calc args
args.state.swinging_light_sign ||= 1
args.state.swinging_light_start_at ||= 0
args.state.swinging_light_duration ||= 300
args.state.swinging_light_perc = args.state
.swinging_light_start_at
.ease_spline_extended args.state.tick_count,
args.state.swinging_light_duration,
[
[0.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 0.0]
]
args.state.max_swing_angle ||= 45
if args.state.swinging_light_start_at.elapsed_time > args.state.swinging_light_duration
args.state.swinging_light_start_at = args.state.tick_count
args.state.swinging_light_sign *= -1
end
args.state.swinging_light_angle = 360 + ((args.state.max_swing_angle * args.state.swinging_light_perc) * args.state.swinging_light_sign)
end
def render args
args.outputs.background_color = [0, 0, 0]
# render scene
args.outputs[:scene].sprites << { x: 0, y: 0, w: 1280, h: 720, path: :pixel }
args.outputs[:scene].sprites << { x: 640 - 40, y: 100, w: 80, h: 80, path: 'sprites/square/blue.png' }
args.outputs[:scene].sprites << { x: 640 - 40, y: 200, w: 80, h: 80, path: 'sprites/square/blue.png' }
args.outputs[:scene].sprites << { x: 640 - 40, y: 300, w: 80, h: 80, path: 'sprites/square/blue.png' }
args.outputs[:scene].sprites << { x: 640 - 40, y: 400, w: 80, h: 80, path: 'sprites/square/blue.png' }
args.outputs[:scene].sprites << { x: 640 - 40, y: 500, w: 80, h: 80, path: 'sprites/square/blue.png' }
# render light
swinging_light_w = 1100
args.outputs[:lights].background_color = [0, 0, 0, 0]
args.outputs[:lights].sprites << { x: 640 - swinging_light_w.half,
y: -1300,
w: swinging_light_w,
h: 3000,
angle_anchor_x: 0.5,
angle_anchor_y: 1.0,
path: "sprites/lights/mask.png",
angle: args.state.swinging_light_angle }
args.outputs[:lights].sprites << { x: args.inputs.mouse.x - 400,
y: args.inputs.mouse.y - 400,
w: 800,
h: 800,
path: "sprites/lights/mask.png" }
# merge unlighted scene with lights
args.outputs[:lighted_scene].sprites << { x: 0, y: 0, w: 1280, h: 720, path: :lights, blendmode_enum: 0 }
args.outputs[:lighted_scene].sprites << { blendmode_enum: 2, x: 0, y: 0, w: 1280, h: 720, path: :scene }
# output lighted scene to main canvas
args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :lighted_scene }
# render lights and scene render_targets as a mini map
args.outputs.debug << { x: 16, y: (16 + 90).from_top, w: 160, h: 90, r: 255, g: 255, b: 255 }.solid!
args.outputs.debug << { x: 16, y: (16 + 90).from_top, w: 160, h: 90, path: :lights }
args.outputs.debug << { x: 16 + 80, y: (16 + 90 + 8).from_top, text: ":lights render_target", r: 255, g: 255, b: 255, size_enum: -3, alignment_enum: 1 }
args.outputs.debug << { x: 16 + 160 + 16, y: (16 + 90).from_top, w: 160, h: 90, r: 255, g: 255, b: 255 }.solid!
args.outputs.debug << { x: 16 + 160 + 16, y: (16 + 90).from_top, w: 160, h: 90, path: :scene }
args.outputs.debug << { x: 16 + 160 + 16 + 80, y: (16 + 90 + 8).from_top, text: ":scene render_target", r: 255, g: 255, b: 255, size_enum: -3, alignment_enum: 1 }
end
def tick args
render args
calc args
end
$gtk.reset
Advanced Rendering - Triangles - main.rb
# ./samples/07_advanced_rendering/13_triangles/app/main.rb
def tick args
args.outputs.labels << {
x: 640,
y: 30.from_top,
text: "Triangle rendering is available in Indie and Pro versions (ignored in Standard Edition).",
alignment_enum: 1
}
dragonruby_logo_width = 128
dragonruby_logo_height = 101
row_0 = 400
row_1 = 250
col_0 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 0
col_1 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 1
col_2 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 2
col_3 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 3
col_4 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 4
# row 0
args.outputs.solids << make_triangle(
col_0,
row_0,
col_0 + dragonruby_logo_width.half,
row_0 + dragonruby_logo_height,
col_0 + dragonruby_logo_width.half + dragonruby_logo_width.half,
row_0,
0, 128, 128,
128
)
args.outputs.solids << {
x: col_1,
y: row_0,
x2: col_1 + dragonruby_logo_width.half,
y2: row_0 + dragonruby_logo_height,
x3: col_1 + dragonruby_logo_width,
y3: row_0,
}
args.outputs.sprites << {
x: col_2,
y: row_0,
w: dragonruby_logo_width,
h: dragonruby_logo_height,
path: 'dragonruby.png'
}
args.outputs.sprites << {
x: col_3,
y: row_0,
x2: col_3 + dragonruby_logo_width.half,
y2: row_0 + dragonruby_logo_height,
x3: col_3 + dragonruby_logo_width,
y3: row_0,
path: 'dragonruby.png',
source_x: 0,
source_y: 0,
source_x2: dragonruby_logo_width.half,
source_y2: dragonruby_logo_height,
source_x3: dragonruby_logo_width,
source_y3: 0
}
args.outputs.sprites << TriangleLogo.new(x: col_4,
y: row_0,
x2: col_4 + dragonruby_logo_width.half,
y2: row_0 + dragonruby_logo_height,
x3: col_4 + dragonruby_logo_width,
y3: row_0,
path: 'dragonruby.png',
source_x: 0,
source_y: 0,
source_x2: dragonruby_logo_width.half,
source_y2: dragonruby_logo_height,
source_x3: dragonruby_logo_width,
source_y3: 0)
# row 1
args.outputs.primitives << make_triangle(
col_0,
row_1,
col_0 + dragonruby_logo_width.half,
row_1 + dragonruby_logo_height,
col_0 + dragonruby_logo_width,
row_1,
0, 128, 128,
args.state.tick_count.to_radians.sin_r.abs * 255
)
args.outputs.primitives << {
x: col_1,
y: row_1,
x2: col_1 + dragonruby_logo_width.half,
y2: row_1 + dragonruby_logo_height,
x3: col_1 + dragonruby_logo_width,
y3: row_1,
r: 0, g: 0, b: 0, a: args.state.tick_count.to_radians.sin_r.abs * 255
}
args.outputs.sprites << {
x: col_2,
y: row_1,
w: dragonruby_logo_width,
h: dragonruby_logo_height,
path: 'dragonruby.png',
source_x: 0,
source_y: 0,
source_w: dragonruby_logo_width,
source_h: dragonruby_logo_height.half +
dragonruby_logo_height.half * Math.sin(args.state.tick_count.to_radians).abs,
}
args.outputs.primitives << {
x: col_3,
y: row_1,
x2: col_3 + dragonruby_logo_width.half,
y2: row_1 + dragonruby_logo_height,
x3: col_3 + dragonruby_logo_width,
y3: row_1,
path: 'dragonruby.png',
source_x: 0,
source_y: 0,
source_x2: dragonruby_logo_width.half,
source_y2: dragonruby_logo_height.half +
dragonruby_logo_height.half * Math.sin(args.state.tick_count.to_radians).abs,
source_x3: dragonruby_logo_width,
source_y3: 0
}
args.outputs.primitives << TriangleLogo.new(x: col_4,
y: row_1,
x2: col_4 + dragonruby_logo_width.half,
y2: row_1 + dragonruby_logo_height,
x3: col_4 + dragonruby_logo_width,
y3: row_1,
path: 'dragonruby.png',
source_x: 0,
source_y: 0,
source_x2: dragonruby_logo_width.half,
source_y2: dragonruby_logo_height.half +
dragonruby_logo_height.half * Math.sin(args.state.tick_count.to_radians).abs,
source_x3: dragonruby_logo_width,
source_y3: 0)
end
def make_triangle *opts
x, y, x2, y2, x3, y3, r, g, b, a = opts
{
x: x, y: y, x2: x2, y2: y2, x3: x3, y3: y3,
r: r || 0,
g: g || 0,
b: b || 0,
a: a || 255
}
end
class TriangleLogo
attr_sprite
def initialize x:, y:, x2:, y2:, x3:, y3:, path:, source_x:, source_y:, source_x2:, source_y2:, source_x3:, source_y3:;
@x = x
@y = y
@x2 = x2
@y2 = y2
@x3 = x3
@y3 = y3
@path = path
@source_x = source_x
@source_y = source_y
@source_x2 = source_x2
@source_y2 = source_y2
@source_x3 = source_x3
@source_y3 = source_y3
end
end
Advanced Rendering - 14 Triangles Trapezoid - main.rb
# ./samples/07_advanced_rendering/14_triangles_trapezoid/app/main.rb
def tick args
args.outputs.labels << {
x: 640,
y: 30.from_top,
text: "Triangle rendering is available in Indie and Pro versions (ignored in Standard Edition).",
alignment_enum: 1
}
transform_scale = ((args.state.tick_count / 3).sin.abs ** 5).half
args.outputs.sprites << [
{ x: 600,
y: 320,
x2: 600,
y2: 400,
x3: 640,
y3: 360,
path: "sprites/square/blue.png",
source_x: 0,
source_y: 0,
source_x2: 0,
source_y2: 80,
source_x3: 40,
source_y3: 40 },
{ x: 600,
y: 400,
x2: 680,
y2: (400 - 80 * transform_scale).round,
x3: 640,
y3: 360,
path: "sprites/square/blue.png",
source_x: 0,
source_y: 80,
source_x2: 80,
source_y2: 80,
source_x3: 40,
source_y3: 40 },
{ x: 640,
y: 360,
x2: 680,
y2: (400 - 80 * transform_scale).round,
x3: 680,
y3: (320 + 80 * transform_scale).round,
path: "sprites/square/blue.png",
source_x: 40,
source_y: 40,
source_x2: 80,
source_y2: 80,
source_x3: 80,
source_y3: 0 },
{ x: 600,
y: 320,
x2: 640,
y2: 360,
x3: 680,
y3: (320 + 80 * transform_scale).round,
path: "sprites/square/blue.png",
source_x: 0,
source_y: 0,
source_x2: 40,
source_y2: 40,
source_x3: 80,
source_y3: 0 }
]
end
Advanced Rendering - 15 Matrix And Triangles 2d - main.rb
# ./samples/07_advanced_rendering/15_matrix_and_triangles_2d/app/main.rb
include MatrixFunctions
def tick args
args.state.square_one_sprite = { x: 0,
y: 0,
w: 100,
h: 100,
path: "sprites/square/blue.png",
source_x: 0,
source_y: 0,
source_w: 80,
source_h: 80 }
args.state.square_two_sprite = { x: 0,
y: 0,
w: 100,
h: 100,
path: "sprites/square/red.png",
source_x: 0,
source_y: 0,
source_w: 80,
source_h: 80 }
args.state.square_one = sprite_to_triangles args.state.square_one_sprite
args.state.square_two = sprite_to_triangles args.state.square_two_sprite
args.state.camera.x ||= 0
args.state.camera.y ||= 0
args.state.camera.zoom ||= 1
args.state.camera.rotation ||= 0
zmod = 1
move_multiplier = 1
dzoom = 0.01
if args.state.tick_count.zmod? zmod
args.state.camera.x += args.inputs.left_right * -1 * move_multiplier
args.state.camera.y += args.inputs.up_down * -1 * move_multiplier
end
if args.inputs.keyboard.i
args.state.camera.zoom += dzoom
elsif args.inputs.keyboard.o
args.state.camera.zoom -= dzoom
end
args.state.camera.zoom = args.state.camera.zoom.clamp(0.25, 10)
args.outputs.sprites << triangles_mat3_mul(args.state.square_one,
mat3_translate(-50, -50),
mat3_rotate(args.state.tick_count),
mat3_translate(0, 0),
mat3_translate(args.state.camera.x, args.state.camera.y),
mat3_scale(args.state.camera.zoom),
mat3_translate(640, 360))
args.outputs.sprites << triangles_mat3_mul(args.state.square_two,
mat3_translate(-50, -50),
mat3_rotate(args.state.tick_count),
mat3_translate(100, 100),
mat3_translate(args.state.camera.x, args.state.camera.y),
mat3_scale(args.state.camera.zoom),
mat3_translate(640, 360))
mouse_coord = vec3 args.inputs.mouse.x,
args.inputs.mouse.y,
1
mouse_coord = mul mouse_coord,
mat3_translate(-640, -360),
mat3_scale(args.state.camera.zoom),
mat3_translate(-args.state.camera.x, -args.state.camera.y)
args.outputs.lines << { x: 640, y: 0, h: 720 }
args.outputs.lines << { x: 0, y: 360, w: 1280 }
args.outputs.labels << { x: 30, y: 60.from_top, text: "x: #{args.state.camera.x.to_sf} y: #{args.state.camera.y.to_sf} z: #{args.state.camera.zoom.to_sf}" }
args.outputs.labels << { x: 30, y: 90.from_top, text: "Mouse: #{mouse_coord.x.to_sf} #{mouse_coord.y.to_sf}" }
args.outputs.labels << { x: 30,
y: 30.from_top,
text: "W,A,S,D to move. I, O to zoom. Triangles is a Indie/Pro Feature and will be ignored in Standard." }
end
def sprite_to_triangles sprite
[
{
x: sprite.x, y: sprite.y,
x2: sprite.x, y2: sprite.y + sprite.h,
x3: sprite.x + sprite.w, y3: sprite.y + sprite.h,
source_x: sprite.source_x, source_y: sprite.source_y,
source_x2: sprite.source_x, source_y2: sprite.source_y + sprite.source_h,
source_x3: sprite.source_x + sprite.source_w, source_y3: sprite.source_y + sprite.source_h,
path: sprite.path
},
{
x: sprite.x, y: sprite.y,
x2: sprite.x + sprite.w, y2: sprite.y + sprite.h,
x3: sprite.x + sprite.w, y3: sprite.y,
source_x: sprite.source_x, source_y: sprite.source_y,
source_x2: sprite.source_x + sprite.source_w, source_y2: sprite.source_y + sprite.source_h,
source_x3: sprite.source_x + sprite.source_w, source_y3: sprite.source_y,
path: sprite.path
}
]
end
def mat3_translate dx, dy
mat3 1, 0, dx,
0, 1, dy,
0, 0, 1
end
def mat3_rotate angle_d
angle_r = angle_d.to_radians
mat3 Math.cos(angle_r), -Math.sin(angle_r), 0,
Math.sin(angle_r), Math.cos(angle_r), 0,
0, 0, 1
end
def mat3_scale scale
mat3 scale, 0, 0,
0, scale, 0,
0, 0, 1
end
def triangles_mat3_mul triangles, *matrices
triangles.map { |triangle| triangle_mat3_mul triangle, *matrices }
end
def triangle_mat3_mul triangle, *matrices
result = [
(vec3 triangle.x, triangle.y, 1),
(vec3 triangle.x2, triangle.y2, 1),
(vec3 triangle.x3, triangle.y3, 1)
].map do |coord|
mul coord, *matrices
end
{
**triangle,
x: result[0].x,
y: result[0].y,
x2: result[1].x,
y2: result[1].y,
x3: result[2].x,
y3: result[2].y,
}
rescue Exception => e
pretty_print triangle
pretty_print result
pretty_print matrices
puts "#{matrices}"
raise e
end
Advanced Rendering - 15 Matrix And Triangles 3d - main.rb
# ./samples/07_advanced_rendering/15_matrix_and_triangles_3d/app/main.rb
include MatrixFunctions
def tick args
args.outputs.labels << { x: 0,
y: 30.from_top,
text: "W,A,S,D to move. Q,E,U,O to turn, I,K for elevation. Triangles is a Indie/Pro Feature and will be ignored in Standard.",
alignment_enum: 1 }
args.grid.origin_center!
args.state.cam_x ||= 0.00
if args.inputs.keyboard.left
args.state.cam_x += 0.01
elsif args.inputs.keyboard.right
args.state.cam_x -= 0.01
end
args.state.cam_y ||= 0.00
if args.inputs.keyboard.i
args.state.cam_y += 0.01
elsif args.inputs.keyboard.k
args.state.cam_y -= 0.01
end
args.state.cam_z ||= 6.5
if args.inputs.keyboard.s
args.state.cam_z += 0.1
elsif args.inputs.keyboard.w
args.state.cam_z -= 0.1
end
args.state.cam_angle_y ||= 0
if args.inputs.keyboard.q
args.state.cam_angle_y += 0.25
elsif args.inputs.keyboard.e
args.state.cam_angle_y -= 0.25
end
args.state.cam_angle_x ||= 0
if args.inputs.keyboard.u
args.state.cam_angle_x += 0.1
elsif args.inputs.keyboard.o
args.state.cam_angle_x -= 0.1
end
# model A
args.state.a = [
[vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)],
[vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)]
]
# model to world
args.state.a_world = mul_world args,
args.state.a,
(translate -0.25, -0.25, 0),
(translate 0, 0, 0.25),
(rotate_x args.state.tick_count)
args.state.a_camera = mul_cam args, args.state.a_world
args.state.a_projected = mul_perspective args, args.state.a_camera
render_projection args, args.state.a_projected
# model B
args.state.b = [
[vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)],
[vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)]
]
# model to world
args.state.b_world = mul_world args,
args.state.b,
(translate -0.25, -0.25, 0),
(translate 0, 0, -0.25),
(rotate_x args.state.tick_count)
args.state.b_camera = mul_cam args, args.state.b_world
args.state.b_projected = mul_perspective args, args.state.b_camera
render_projection args, args.state.b_projected
# model C
args.state.c = [
[vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)],
[vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)]
]
# model to world
args.state.c_world = mul_world args,
args.state.c,
(translate -0.25, -0.25, 0),
(rotate_y 90),
(translate -0.25, 0, 0),
(rotate_x args.state.tick_count)
args.state.c_camera = mul_cam args, args.state.c_world
args.state.c_projected = mul_perspective args, args.state.c_camera
render_projection args, args.state.c_projected
# model D
args.state.d = [
[vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)],
[vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)]
]
# model to world
args.state.d_world = mul_world args,
args.state.d,
(translate -0.25, -0.25, 0),
(rotate_y 90),
(translate 0.25, 0, 0),
(rotate_x args.state.tick_count)
args.state.d_camera = mul_cam args, args.state.d_world
args.state.d_projected = mul_perspective args, args.state.d_camera
render_projection args, args.state.d_projected
# model E
args.state.e = [
[vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)],
[vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)]
]
# model to world
args.state.e_world = mul_world args,
args.state.e,
(translate -0.25, -0.25, 0),
(rotate_x 90),
(translate 0, 0.25, 0),
(rotate_x args.state.tick_count)
args.state.e_camera = mul_cam args, args.state.e_world
args.state.e_projected = mul_perspective args, args.state.e_camera
render_projection args, args.state.e_projected
# model E
args.state.f = [
[vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)],
[vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)]
]
# model to world
args.state.f_world = mul_world args,
args.state.f,
(translate -0.25, -0.25, 0),
(rotate_x 90),
(translate 0, -0.25, 0),
(rotate_x args.state.tick_count)
args.state.f_camera = mul_cam args, args.state.f_world
args.state.f_projected = mul_perspective args, args.state.f_camera
render_projection args, args.state.f_projected
# render_debug args, args.state.a, args.state.a_transform, args.state.a_projected
# args.outputs.labels << { x: -630, y: 10.from_top, text: "x: #{args.state.cam_x.to_sf} -> #{( args.state.cam_x * 1000 ).to_sf}" }
# args.outputs.labels << { x: -630, y: 30.from_top, text: "y: #{args.state.cam_y.to_sf} -> #{( args.state.cam_y * 1000 ).to_sf}" }
# args.outputs.labels << { x: -630, y: 50.from_top, text: "z: #{args.state.cam_z.fdiv(10).to_sf} -> #{( args.state.cam_z * 100 ).to_sf}" }
end
def mul_world args, model, *mul_def
model.map do |vecs|
vecs.map do |vec|
mul vec,
*mul_def
end
end
end
def mul_cam args, world_vecs
world_vecs.map do |vecs|
vecs.map do |vec|
mul vec,
(translate -args.state.cam_x, args.state.cam_y, -args.state.cam_z),
(rotate_y args.state.cam_angle_y),
(rotate_x args.state.cam_angle_x)
end
end
end
def mul_perspective args, camera_vecs
camera_vecs.map do |vecs|
vecs.map do |vec|
perspective vec
end
end
end
def render_debug args, model, transform, projected
args.outputs.labels << { x: -630, y: 10.from_top, text: "model: #{vecs_to_s model[0]}" }
args.outputs.labels << { x: -630, y: 30.from_top, text: " #{vecs_to_s model[1]}" }
args.outputs.labels << { x: -630, y: 50.from_top, text: "transform: #{vecs_to_s transform[0]}" }
args.outputs.labels << { x: -630, y: 70.from_top, text: " #{vecs_to_s transform[1]}" }
args.outputs.labels << { x: -630, y: 90.from_top, text: "projected: #{vecs_to_s projected[0]}" }
args.outputs.labels << { x: -630, y: 110.from_top, text: " #{vecs_to_s projected[1]}" }
end
def render_projection args, projection
p0 = projection[0]
args.outputs.sprites << {
x: p0[0].x, y: p0[0].y,
x2: p0[1].x, y2: p0[1].y,
x3: p0[2].x, y3: p0[2].y,
source_x: 0, source_y: 0,
source_x2: 80, source_y2: 0,
source_x3: 0, source_y3: 80,
a: 40,
# r: 128, g: 128, b: 128,
path: 'sprites/square/blue.png'
}
p1 = projection[1]
args.outputs.sprites << {
x: p1[0].x, y: p1[0].y,
x2: p1[1].x, y2: p1[1].y,
x3: p1[2].x, y3: p1[2].y,
source_x: 80, source_y: 0,
source_x2: 80, source_y2: 80,
source_x3: 0, source_y3: 80,
a: 40,
# r: 128, g: 128, b: 128,
path: 'sprites/square/blue.png'
}
end
def perspective vec
left = -1.0
right = 1.0
bottom = -1.0
top = 1.0
near = 300.0
far = 1000.0
sx = 2 * near / (right - left)
sy = 2 * near / (top - bottom)
c2 = - (far + near) / (far - near)
c1 = 2 * near * far / (near - far)
tx = -near * (left + right) / (right - left)
ty = -near * (bottom + top) / (top - bottom)
p = mat4 sx, 0, 0, tx,
0, sy, 0, ty,
0, 0, c2, c1,
0, 0, -1, 0
r = mul vec, p
r.x *= r.z / r.w / 100
r.y *= r.z / r.w / 100
r
end
def mat_scale scale
mat4 scale, 0, 0, 0,
0, scale, 0, 0,
0, 0, scale, 0,
0, 0, 0, 1
end
def rotate_y angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 cos_t, 0, sin_t, 0,
0, 1, 0, 0,
-sin_t, 0, cos_t, 0,
0, 0, 0, 1)
end
def rotate_z angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 cos_t, -sin_t, 0, 0,
sin_t, cos_t, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1)
end
def translate dx, dy, dz
mat4 1, 0, 0, dx,
0, 1, 0, dy,
0, 0, 1, dz,
0, 0, 0, 1
end
def rotate_x angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 1, 0, 0, 0,
0, cos_t, -sin_t, 0,
0, sin_t, cos_t, 0,
0, 0, 0, 1)
end
def vecs_to_s vecs
vecs.map do |vec|
"[#{vec.x.to_sf} #{vec.y.to_sf} #{vec.z.to_sf}]"
end.join " "
end
Advanced Rendering - 15 Matrix Cubeworld - main.rb
# ./samples/07_advanced_rendering/15_matrix_cubeworld/app/main.rb
require 'app/modeling-api.rb'
include MatrixFunctions
def tick args
args.outputs.labels << { x: 0,
y: 30.from_top,
text: "W,A,S,D to move. Mouse to look. Triangles is a Indie/Pro Feature and will be ignored in Standard.",
alignment_enum: 1 }
args.grid.origin_center!
args.state.cam_y ||= 0.00
if args.inputs.keyboard.i
args.state.cam_y += 0.01
elsif args.inputs.keyboard.k
args.state.cam_y -= 0.01
end
args.state.cam_angle_y ||= 0
if args.inputs.keyboard.q
args.state.cam_angle_y += 0.25
elsif args.inputs.keyboard.e
args.state.cam_angle_y -= 0.25
end
args.state.cam_angle_x ||= 0
if args.inputs.keyboard.u
args.state.cam_angle_x += 0.1
elsif args.inputs.keyboard.o
args.state.cam_angle_x -= 0.1
end
if args.inputs.mouse.has_focus
y_change_rate = (args.inputs.mouse.x / 640) ** 2
if args.inputs.mouse.x < 0
args.state.cam_angle_y -= 0.8 * y_change_rate
else
args.state.cam_angle_y += 0.8 * y_change_rate
end
x_change_rate = (args.inputs.mouse.y / 360) ** 2
if args.inputs.mouse.y < 0
args.state.cam_angle_x += 0.8 * x_change_rate
else
args.state.cam_angle_x -= 0.8 * x_change_rate
end
end
args.state.cam_z ||= 6.4
if args.inputs.keyboard.up
point_1 = { x: 0, y: 0.02 }
point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y
args.state.cam_x -= point_r.x
args.state.cam_z -= point_r.y
elsif args.inputs.keyboard.down
point_1 = { x: 0, y: -0.02 }
point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y
args.state.cam_x -= point_r.x
args.state.cam_z -= point_r.y
end
args.state.cam_x ||= 0.00
if args.inputs.keyboard.right
point_1 = { x: -0.02, y: 0 }
point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y
args.state.cam_x -= point_r.x
args.state.cam_z -= point_r.y
elsif args.inputs.keyboard.left
point_1 = { x: 0.02, y: 0 }
point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y
args.state.cam_x -= point_r.x
args.state.cam_z -= point_r.y
end
if args.inputs.keyboard.key_down.r || args.inputs.keyboard.key_down.zero
args.state.cam_x = 0.00
args.state.cam_y = 0.00
args.state.cam_z = 1.00
args.state.cam_angle_y = 0
args.state.cam_angle_x = 0
end
if !args.state.models
args.state.models = []
25.times do
args.state.models.concat new_random_cube
end
end
args.state.models.each do |m|
render_triangles args, m
end
args.outputs.lines << { x: 0, y: -50, h: 100, a: 80 }
args.outputs.lines << { x: -50, y: 0, w: 100, a: 80 }
end
def mul_triangles model, *mul_def
combined = mul mul_def
model.map do |vecs|
vecs.map do |vec|
mul vec, *combined
end
end
end
def mul_cam args, world_vecs
mul_triangles world_vecs,
(translate -args.state.cam_x, -args.state.cam_y, -args.state.cam_z),
(rotate_y args.state.cam_angle_y),
(rotate_x args.state.cam_angle_x)
end
def mul_perspective camera_vecs
camera_vecs.map do |vecs|
r = vecs.map do |vec|
perspective vec
end
r if r[0] && r[1] && r[2]
end.reject_nil
end
def render_debug args, model, transform, projected
args.outputs.labels << { x: -630, y: 10.from_top, text: "model: #{vecs_to_s model[0]}" }
args.outputs.labels << { x: -630, y: 30.from_top, text: " #{vecs_to_s model[1]}" }
args.outputs.labels << { x: -630, y: 50.from_top, text: "transform: #{vecs_to_s transform[0]}" }
args.outputs.labels << { x: -630, y: 70.from_top, text: " #{vecs_to_s transform[1]}" }
args.outputs.labels << { x: -630, y: 90.from_top, text: "projected: #{vecs_to_s projected[0]}" }
args.outputs.labels << { x: -630, y: 110.from_top, text: " #{vecs_to_s projected[1]}" }
end
def render_triangles args, triangles
camera_space = mul_cam args, triangles
projection = mul_perspective camera_space
args.outputs.sprites << projection.map_with_index do |i, index|
if i
{
x: i[0].x, y: i[0].y,
x2: i[1].x, y2: i[1].y,
x3: i[2].x, y3: i[2].y,
source_x: 0, source_y: 0,
source_x2: 80, source_y2: 0,
source_x3: 0, source_y3: 80,
r: 128, g: 128, b: 128,
a: 80 + 128 * 1 / (index + 1),
path: :pixel
}
end
end
end
def perspective vec
left = 100.0
right = -100.0
bottom = 100.0
top = -100.0
near = 3000.0
far = 8000.0
sx = 2 * near / (right - left)
sy = 2 * near / (top - bottom)
c2 = - (far + near) / (far - near)
c1 = 2 * near * far / (near - far)
tx = -near * (left + right) / (right - left)
ty = -near * (bottom + top) / (top - bottom)
p = mat4 sx, 0, 0, tx,
0, sy, 0, ty,
0, 0, c2, c1,
0, 0, -1, 0
r = mul vec, p
return nil if r.w < 0
r.x *= r.z / r.w / 100
r.y *= r.z / r.w / 100
r
end
def mat_scale scale
mat4 scale, 0, 0, 0,
0, scale, 0, 0,
0, 0, scale, 0,
0, 0, 0, 1
end
def rotate_y angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 cos_t, 0, sin_t, 0,
0, 1, 0, 0,
-sin_t, 0, cos_t, 0,
0, 0, 0, 1)
end
def rotate_z angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 cos_t, -sin_t, 0, 0,
sin_t, cos_t, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1)
end
def translate dx, dy, dz
mat4 1, 0, 0, dx,
0, 1, 0, dy,
0, 0, 1, dz,
0, 0, 0, 1
end
def rotate_x angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 1, 0, 0, 0,
0, cos_t, -sin_t, 0,
0, sin_t, cos_t, 0,
0, 0, 0, 1)
end
def vecs_to_s vecs
vecs.map do |vec|
"[#{vec.x.to_sf} #{vec.y.to_sf} #{vec.z.to_sf}]"
end.join " "
end
def new_random_cube
cube_w = rand * 0.2 + 0.1
cube_h = rand * 0.2 + 0.1
randx = rand * 2.0 * [1, -1].sample
randy = rand * 2.0
randz = rand * 5 * [1, -1].sample
cube = [
square do
scale x: cube_w, y: cube_h
translate x: -cube_w / 2, y: -cube_h / 2
rotate_x 90
translate y: -cube_h / 2
translate x: randx, y: randy, z: randz
end,
square do
scale x: cube_w, y: cube_h
translate x: -cube_w / 2, y: -cube_h / 2
rotate_x 90
translate y: cube_h / 2
translate x: randx, y: randy, z: randz
end,
square do
scale x: cube_h, y: cube_h
translate x: -cube_h / 2, y: -cube_h / 2
rotate_y 90
translate x: -cube_w / 2
translate x: randx, y: randy, z: randz
end,
square do
scale x: cube_h, y: cube_h
translate x: -cube_h / 2, y: -cube_h / 2
rotate_y 90
translate x: cube_w / 2
translate x: randx, y: randy, z: randz
end,
square do
scale x: cube_w, y: cube_h
translate x: -cube_w / 2, y: -cube_h / 2
translate z: -cube_h / 2
translate x: randx, y: randy, z: randz
end,
square do
scale x: cube_w, y: cube_h
translate x: -cube_w / 2, y: -cube_h / 2
translate z: cube_h / 2
translate x: randx, y: randy, z: randz
end
]
cube
end
$gtk.reset
Advanced Rendering - 15 Matrix Cubeworld - modeling-api.rb
# ./samples/07_advanced_rendering/15_matrix_cubeworld/app/modeling-api.rb
class ModelingApi
attr :matricies
def initialize
@matricies = []
end
def scale x: 1, y: 1, z: 1
@matricies << scale_matrix(x: x, y: y, z: z)
if block_given?
yield
@matricies << scale_matrix(x: -x, y: -y, z: -z)
end
end
def translate x: 0, y: 0, z: 0
@matricies << translate_matrix(x: x, y: y, z: z)
if block_given?
yield
@matricies << translate_matrix(x: -x, y: -y, z: -z)
end
end
def rotate_x x
@matricies << rotate_x_matrix(x)
if block_given?
yield
@matricies << rotate_x_matrix(-x)
end
end
def rotate_y y
@matricies << rotate_y_matrix(y)
if block_given?
yield
@matricies << rotate_y_matrix(-y)
end
end
def rotate_z z
@matricies << rotate_z_matrix(z)
if block_given?
yield
@matricies << rotate_z_matrix(-z)
end
end
def scale_matrix x:, y:, z:;
mat4 x, 0, 0, 0,
0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1
end
def translate_matrix x:, y:, z:;
mat4 1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1
end
def rotate_y_matrix angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 cos_t, 0, sin_t, 0,
0, 1, 0, 0,
-sin_t, 0, cos_t, 0,
0, 0, 0, 1)
end
def rotate_z_matrix angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 cos_t, -sin_t, 0, 0,
sin_t, cos_t, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1)
end
def rotate_x_matrix angle_d
cos_t = Math.cos angle_d.to_radians
sin_t = Math.sin angle_d.to_radians
(mat4 1, 0, 0, 0,
0, cos_t, -sin_t, 0,
0, sin_t, cos_t, 0,
0, 0, 0, 1)
end
def __mul_triangles__ model, *mul_def
model.map do |vecs|
vecs.map do |vec|
mul vec,
*mul_def
end
end
end
end
def square &block
square_verticies = [
[vec4(0, 0, 0, 1), vec4(1.0, 0, 0, 1), vec4(0, 1.0, 0, 1)],
[vec4(1.0, 0, 0, 1), vec4(1.0, 1.0, 0, 1), vec4(0, 1.0, 0, 1)]
]
m = ModelingApi.new
m.instance_eval &block if block
m.__mul_triangles__ square_verticies, *m.matricies
end
Advanced Rendering - 16 Override Core Rendering - main.rb
# ./samples/07_advanced_rendering/16_override_core_rendering/app/main.rb
class GTK::Runtime
# You can completely override how DR renders by defining this method
# It is strongly recommend that you do not do this unless you know what you're doing.
def primitives pass
# fn.each_send pass.solids, self, :draw_solid
# fn.each_send pass.static_solids, self, :draw_solid
# fn.each_send pass.sprites, self, :draw_sprite
# fn.each_send pass.static_sprites, self, :draw_sprite
# fn.each_send pass.primitives, self, :draw_primitive
# fn.each_send pass.static_primitives, self, :draw_primitive
fn.each_send pass.labels, self, :draw_label
fn.each_send pass.static_labels, self, :draw_label
# fn.each_send pass.lines, self, :draw_line
# fn.each_send pass.static_lines, self, :draw_line
# fn.each_send pass.borders, self, :draw_border
# fn.each_send pass.static_borders, self, :draw_border
# if !self.production
# fn.each_send pass.debug, self, :draw_primitive
# fn.each_send pass.static_debug, self, :draw_primitive
# end
# fn.each_send pass.reserved, self, :draw_primitive
# fn.each_send pass.static_reserved, self, :draw_primitive
end
end
def tick args
args.outputs.labels << { x: 30, y: 30, text: "primitives function defined, only labels rendered" }
args.outputs.sprites << { x: 100, y: 100, w: 100, h: 100, path: "dragonruby.png" }
end
Advanced Rendering Hd - Hd Labels - main.rb
# ./samples/07_advanced_rendering_hd/01_hd_labels/app/main.rb
def tick args
args.state.output_cycle ||= :top_level
args.outputs.background_color = [0, 0, 0]
args.outputs.solids << [0, 0, 1280, 720, 255, 255, 255]
if args.state.output_cycle == :top_level
render_main args
else
render_scene args
end
# cycle between labels in top level args.outputs
# and labels inside of render target
if args.state.tick_count.zmod? 300
if args.state.output_cycle == :top_level
args.state.output_cycle = :render_target
else
args.state.output_cycle = :top_level
end
end
end
def render_main args
# center line
args.outputs.lines << { x: 0, y: 360, x2: 1280, y2: 360 }
args.outputs.lines << { x: 640, y: 0, x2: 640, y2: 720 }
# horizontal ruler
args.outputs.lines << { x: 0, y: 370, x2: 1280, y2: 370 }
args.outputs.lines << { x: 0, y: 351, x2: 1280, y2: 351 }
# vertical ruler
args.outputs.lines << { x: 575, y: 0, x2: 575, y2: 720 }
args.outputs.lines << { x: 701, y: 0, x2: 701, y2: 720 }
args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square/blue.png", a: 128 }
args.outputs.labels << { x: 640, y: 0, text: "(bottom)", alignment_enum: 1, vertical_alignment_enum: 0 }
args.outputs.labels << { x: 640, y: 425, text: "top_level", alignment_enum: 1, vertical_alignment_enum: 1 }
args.outputs.labels << { x: 640, y: 720, text: "(top)", alignment_enum: 1, vertical_alignment_enum: 2 }
args.outputs.labels << { x: 0, y: 360, text: "(left)", alignment_enum: 0, vertical_alignment_enum: 1 }
args.outputs.labels << { x: 1280, y: 360, text: "(right)", alignment_enum: 2, vertical_alignment_enum: 1 }
end
def render_scene args
args.outputs[:scene].background_color = [255, 255, 255, 0]
# center line
args.outputs[:scene].lines << { x: 0, y: 360, x2: 1280, y2: 360 }
args.outputs[:scene].lines << { x: 640, y: 0, x2: 640, y2: 720 }
# horizontal ruler
args.outputs[:scene].lines << { x: 0, y: 370, x2: 1280, y2: 370 }
args.outputs[:scene].lines << { x: 0, y: 351, x2: 1280, y2: 351 }
# vertical ruler
args.outputs[:scene].lines << { x: 575, y: 0, x2: 575, y2: 720 }
args.outputs[:scene].lines << { x: 701, y: 0, x2: 701, y2: 720 }
args.outputs[:scene].sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square/blue.png", a: 128, blendmode_enum: 0 }
args.outputs[:scene].labels << { x: 640, y: 0, text: "(bottom)", alignment_enum: 1, vertical_alignment_enum: 0, blendmode_enum: 0 }
args.outputs[:scene].labels << { x: 640, y: 425, text: "render target", alignment_enum: 1, vertical_alignment_enum: 1, blendmode_enum: 0 }
args.outputs[:scene].labels << { x: 640, y: 720, text: "(top)", alignment_enum: 1, vertical_alignment_enum: 2, blendmode_enum: 0 }
args.outputs[:scene].labels << { x: 0, y: 360, text: "(left)", alignment_enum: 0, vertical_alignment_enum: 1, blendmode_enum: 0 }
args.outputs[:scene].labels << { x: 1280, y: 360, text: "(right)", alignment_enum: 2, vertical_alignment_enum: 1, blendmode_enum: 0 }
args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :scene }
end
Advanced Rendering Hd - Texture Atlases - main.rb
# ./samples/07_advanced_rendering_hd/02_texture_atlases/app/main.rb
# With HD mode enabled. DragonRuby will automatically use HD sprites given the following
# naming convention (assume we are using a sprite called =player.png=):
#
# | Name | Resolution | File Naming Convention |
# |-------+------------+-------------------------------|
# | 720p | 1280x720 | =player.png= |
# | HD+ | 1600x900 | =player@125.png= |
# | 1080p | 1920x1080 | =player@125.png= |
# | 1440p | 2560x1440 | =player@200.png= |
# | 1800p | 3200x1800 | =player@250.png= |
# | 4k | 3200x2160 | =player@300.png= |
# | 5k | 6400x2880 | =player@400.png= |
# Note: Review the sample app's game_metadata.txt file for what configurations are enabled.
def tick args
args.outputs.background_color = [0, 0, 0]
args.outputs.borders << { x: 0, y: 0, w: 1280, h: 720, r: 255, g: 255, b: 255 }
args.outputs.labels << { x: 30, y: 30.from_top, text: "render scale: #{args.grid.native_scale}", r: 255, g: 255, b: 255 }
args.outputs.labels << { x: 30, y: 60.from_top, text: "render scale: #{args.grid.native_scale_enum}", r: 255, g: 255, b: 255 }
args.outputs.sprites << { x: -640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: -320 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 0 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 320 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 960 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 1280 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 1600 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 1920 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 640 - 50, y: 720, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 640 - 50, y: 100.from_top, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 640 - 50, y: 0, w: 100, h: 100, path: "sprites/square.png" }
args.outputs.sprites << { x: 640 - 50, y: -100, w: 100, h: 100, path: "sprites/square.png" }
end
Advanced Rendering Hd - Allscreen Properties - main.rb
# ./samples/07_advanced_rendering_hd/03_allscreen_properties/app/main.rb
def tick args
label_style = { r: 255, g: 255, b: 255, size_enum: 4 }
args.outputs.background_color = [0, 0, 0]
args.outputs.borders << { x: 0, y: 0, w: 1280, h: 720, r: 255, g: 255, b: 255 }
args.outputs.labels << { x: 10, y: 10.from_top, text: "native_scale: #{args.grid.native_scale}", **label_style }
args.outputs.labels << { x: 10, y: 40.from_top, text: "native_scale_enum: #{args.grid.native_scale_enum}", **label_style }
args.outputs.labels << { x: 10, y: 70.from_top, text: "allscreen_offset_x: #{args.grid.allscreen_offset_x}", **label_style }
args.outputs.labels << { x: 10, y: 100.from_top, text: "allscreen_offset_y: #{args.grid.allscreen_offset_y}", **label_style }
if (args.state.tick_count % 500) < 250
args.outputs.labels << { x: 10, y: 130.from_top, text: "cropped to: grid", **label_style }
args.outputs.sprites << { x: 0,
y: 0,
w: 1280,
h: 720,
source_x: 2000 - 640,
source_y: 2000 - 320,
source_w: 1280,
source_h: 720,
path: "sprites/world.png" }
else
args.outputs.labels << { x: 10, y: 130.from_top, text: "cropped to: allscreen", **label_style }
args.outputs.sprites << { x: 0 - args.grid.allscreen_offset_x,
y: 0 - args.grid.allscreen_offset_y,
w: 1280 + args.grid.allscreen_offset_x * 2,
h: 720 + args.grid.allscreen_offset_y * 2,
source_x: 2000 - 640 - args.grid.allscreen_offset_x,
source_y: 2000 - 320 - args.grid.allscreen_offset_y,
source_w: 1280 + args.grid.allscreen_offset_x * 2,
source_h: 720 + args.grid.allscreen_offset_y * 2,
path: "sprites/world.png" }
args.outputs.sprites << { x: 0 - args.grid.allscreen_offset_x,
y: 0 - args.grid.allscreen_offset_y,
w: 1280 + args.grid.allscreen_offset_x * 2,
h: 720 + args.grid.allscreen_offset_y * 2,
source_x: 2000 - 640 - args.grid.allscreen_offset_x,
source_y: 2000 - 320 - args.grid.allscreen_offset_y,
source_w: 1280 + args.grid.allscreen_offset_x * 2,
source_h: 720 + args.grid.allscreen_offset_y * 2,
path: "sprites/world.png" }
end
args.outputs.sprites << { x: 0, y: 0.from_top - 165, w: 410, h: 165, r: 0, g: 0, b: 0, a: 200, path: :pixel }
end
Advanced Rendering Hd - Layouts And Portrait Mode - main.rb
# ./samples/07_advanced_rendering_hd/04_layouts_and_portrait_mode/app/main.rb
def tick args
if !args.gtk.version_pro?
args.outputs.labels << { x: args.grid.w / 2,
y: args.grid.h / 2,
alignment_enum: 1,
vertical_alignment_enum: 1,
text: "Portrait mode is a Pro feature." }
return
elsif args.gtk.version_pro? && args.grid.orientation == :landscape
args.outputs.labels << { x: args.grid.w / 2,
y: args.grid.h / 2,
alignment_enum: 1,
vertical_alignment_enum: 1,
text: "Landscape orientation detected. Make sure your metadata/game_metadata.txt has the value orientation=portrait." }
return
end
args.outputs.solids << args.layout.rect(row: 0, col: 0, w: 12, h: 24, include_row_gutter: true, include_col_gutter: true).merge(b: 255, a: 80)
# rows (light blue)
light_blue = { r: 128, g: 255, b: 255 }
args.outputs.labels << args.layout.rect(row: 1, col: 3).merge(text: "row examples", vertical_alignment_enum: 1, alignment_enum: 1)
4.map_with_index do |row|
args.outputs.solids << args.layout.rect(row: row, col: 0, w: 1, h: 1).merge(**light_blue)
end
2.map_with_index do |row|
args.outputs.solids << args.layout.rect(row: row * 2, col: 1, w: 1, h: 2).merge(**light_blue)
end
4.map_with_index do |row|
args.outputs.solids << args.layout.rect(row: row, col: 2, w: 2, h: 1).merge(**light_blue)
end
2.map_with_index do |row|
args.outputs.solids << args.layout.rect(row: row * 2, col: 4, w: 2, h: 2).merge(**light_blue)
end
# columns (yellow)
yellow = { r: 255, g: 255, b: 128 }
args.outputs.labels << args.layout.rect(row: 1, col: 9).merge(text: "column examples", vertical_alignment_enum: 1, alignment_enum: 1)
6.times do |col|
args.outputs.solids << args.layout.rect(row: 0, col: 6 + col, w: 1, h: 1).merge(**yellow)
end
3.times do |col|
args.outputs.solids << args.layout.rect(row: 1, col: 6 + col * 2, w: 2, h: 1).merge(**yellow)
end
6.times do |col|
args.outputs.solids << args.layout.rect(row: 2, col: 6 + col, w: 1, h: 2).merge(**yellow)
end
# max width/height baseline (transparent green)
green = { r: 0, g: 128, b: 80 }
args.outputs.labels << args.layout.rect(row: 4, col: 6).merge(text: "max width/height examples", vertical_alignment_enum: 1, alignment_enum: 1)
args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 12, h: 2).merge(a: 64, **green)
# max height
args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 12, h: 2, max_height: 1).merge(a: 64, **green)
# max width
args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 12, h: 2, max_width: 6).merge(a: 64, **green)
# labels relative to rects
label_color = { r: 0, g: 0, b: 0 }
white = { r: 232, g: 232, b: 232 }
# labels realtive to point, achored at 0.0, 0.0
args.outputs.labels << args.layout.rect(row: 5.5, col: 6).merge(text: "labels using args.layout.point anchored to 0.0, 0.0", vertical_alignment_enum: 1, alignment_enum: 1)
grey = { r: 128, g: 128, b: 128 }
args.outputs.solids << args.layout.rect(row: 7, col: 4).merge(**grey)
args.outputs.labels << args.layout.point(row: 7, col: 4, row_anchor: 1.0, col_anchor: 0.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 7, col: 5).merge(**grey)
args.outputs.labels << args.layout.point(row: 7, col: 5, row_anchor: 1.0, col_anchor: 0.5).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 7, col: 6).merge(**grey)
args.outputs.labels << args.layout.point(row: 7, col: 6, row_anchor: 1.0, col_anchor: 1.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 8, col: 4).merge(**grey)
args.outputs.labels << args.layout.point(row: 8, col: 4, row_anchor: 0.5, col_anchor: 0.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 8, col: 5).merge(**grey)
args.outputs.labels << args.layout.point(row: 8, col: 5, row_anchor: 0.5, col_anchor: 0.5).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 8, col: 6).merge(**grey)
args.outputs.labels << args.layout.point(row: 8, col: 6, row_anchor: 0.5, col_anchor: 1.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 9, col: 4).merge(**grey)
args.outputs.labels << args.layout.point(row: 9, col: 4, row_anchor: 0.0, col_anchor: 0.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 9, col: 5).merge(**grey)
args.outputs.labels << args.layout.point(row: 9, col: 5, row_anchor: 0.0, col_anchor: 0.5).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
args.outputs.solids << args.layout.rect(row: 9, col: 6).merge(**grey)
args.outputs.labels << args.layout.point(row: 9, col: 6, row_anchor: 0.0, col_anchor: 1.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color)
# centering rects
args.outputs.labels << args.layout.rect(row: 10.5, col: 6).merge(text: "layout.rect centered inside another layout.rect", vertical_alignment_enum: 1, alignment_enum: 1)
outer_rect = args.layout.rect(row: 12, col: 4, w: 3, h: 3)
# render outer rect
args.outputs.solids << outer_rect.merge(**light_blue)
# center a yellow rect with w and h of two
args.outputs.solids << args.layout.rect_center(
args.layout.rect(w: 1, h: 5), # inner rect
outer_rect, # outer rect
).merge(**yellow)
# center a black rect with w three h of one
args.outputs.solids << args.layout.rect_center(
args.layout.rect(w: 5, h: 1), # inner rect
outer_rect, # outer rect
)
args.outputs.labels << args.layout.rect(row: 16.5, col: 6).merge(text: "layout.rect_group usage", vertical_alignment_enum: 1, alignment_enum: 1)
horizontal_markers = [
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 }
]
args.outputs.solids << args.layout.rect_group(row: 18,
dcol: 1,
w: 1,
h: 1,
group: horizontal_markers)
vertical_markers = [
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 },
{ r: 0, g: 0, b: 0 }
]
args.outputs.solids << args.layout.rect_group(row: 18,
drow: 1,
w: 1,
h: 1,
group: vertical_markers)
colors = [
{ r: 0, g: 0, b: 0 },
{ r: 50, g: 50, b: 50 },
{ r: 100, g: 100, b: 100 },
{ r: 150, g: 150, b: 150 },
{ r: 200, g: 200, b: 200 },
]
args.outputs.solids << args.layout.rect_group(row: 19,
col: 1,
dcol: 2,
w: 2,
h: 1,
group: colors)
args.outputs.solids << args.layout.rect_group(row: 19,
col: 1,
drow: 1,
w: 2,
h: 1,
group: colors)
end
$gtk.reset
Tweening Lerping Easing Functions - Easing Functions - main.rb
# ./samples/08_tweening_lerping_easing_functions/01_easing_functions/app/main.rb
def tick args
# STOP! Watch the following presentation first!!!!
# Math for Game Programmers: Fast and Funky 1D Nonlinear Transformations
# https://www.youtube.com/watch?v=mr5xkf6zSzk
# You've watched the talk, yes? YES???
# define starting and ending points of properties to animate
args.state.target_x = 1180
args.state.target_y = 620
args.state.target_w = 100
args.state.target_h = 100
args.state.starting_x = 0
args.state.starting_y = 0
args.state.starting_w = 300
args.state.starting_h = 300
# define start time and duration of animation
args.state.start_animate_at = 3.seconds # this is the same as writing 60 * 5 (or 300)
args.state.duration = 2.seconds # this is the same as writing 60 * 2 (or 120)
# define type of animations
# Here are all the options you have for values you can put in the array:
# :identity, :quad, :cube, :quart, :quint, :flip
# Linear is defined as:
# [:identity]
#
# Smooth start variations are:
# [:quad]
# [:cube]
# [:quart]
# [:quint]
# Linear reversed, and smooth stop are the same as the animations defined above, but reversed:
# [:flip, :identity]
# [:flip, :quad, :flip]
# [:flip, :cube, :flip]
# [:flip, :quart, :flip]
# [:flip, :quint, :flip]
# You can also do custom definitions. See the bottom of the file details
# on how to do that. I've defined a couple for you:
# [:smoothest_start]
# [:smoothest_stop]
# CHANGE THIS LINE TO ONE OF THE LINES ABOVE TO SEE VARIATIONS
args.state.animation_type = [:identity]
# args.state.animation_type = [:quad]
# args.state.animation_type = [:cube]
# args.state.animation_type = [:quart]
# args.state.animation_type = [:quint]
# args.state.animation_type = [:flip, :identity]
# args.state.animation_type = [:flip, :quad, :flip]
# args.state.animation_type = [:flip, :cube, :flip]
# args.state.animation_type = [:flip, :quart, :flip]
# args.state.animation_type = [:flip, :quint, :flip]
# args.state.animation_type = [:smoothest_start]
# args.state.animation_type = [:smoothest_stop]
# THIS IS WHERE THE MAGIC HAPPENS!
# Numeric#ease
progress = args.state.start_animate_at.ease(args.state.duration, args.state.animation_type)
# Numeric#ease needs to called:
# 1. On the number that represents the point in time you want to start, and takes two parameters:
# a. The first parameter is how long the animation should take.
# b. The second parameter represents the functions that need to be called.
#
# For example, if I wanted an animate to start 3 seconds in, and last for 10 seconds,
# and I want to animation to start fast and end slow, I would do:
# (60 * 3).ease(60 * 10, :flip, :quint, :flip)
# initial value delta to the final value
calc_x = args.state.starting_x + (args.state.target_x - args.state.starting_x) * progress
calc_y = args.state.starting_y + (args.state.target_y - args.state.starting_y) * progress
calc_w = args.state.starting_w + (args.state.target_w - args.state.starting_w) * progress
calc_h = args.state.starting_h + (args.state.target_h - args.state.starting_h) * progress
args.outputs.solids << [calc_x, calc_y, calc_w, calc_h, 0, 0, 0]
# count down
count_down = args.state.start_animate_at - args.state.tick_count
if count_down > 0
args.outputs.labels << [640, 375, "Running: #{args.state.animation_type} in...", 3, 1]
args.outputs.labels << [640, 345, "%.2f" % count_down.fdiv(60), 3, 1]
elsif progress >= 1
args.outputs.labels << [640, 360, "Click screen to reset.", 3, 1]
if args.inputs.click
$gtk.reset
end
end
end
# $gtk.reset
# you can make own variations of animations using this
module Easing
# you have access to all the built in functions: identity, flip, quad, cube, quart, quint
def self.smoothest_start x
quad(quint(x))
end
def self.smoothest_stop x
flip(quad(quint(flip(x))))
end
# this is the source for the existing easing functions
def self.identity x
x
end
def self.flip x
1 - x
end
def self.quad x
x * x
end
def self.cube x
x * x * x
end
def self.quart x
x * x * x * x * x
end
def self.quint x
x * x * x * x * x * x
end
end
Tweening Lerping Easing Functions - Cubic Bezier - main.rb
# ./samples/08_tweening_lerping_easing_functions/02_cubic_bezier/app/main.rb
def tick args
args.outputs.background_color = [33, 33, 33]
args.outputs.lines << bezier(100, 100,
100, 620,
1180, 620,
1180, 100,
0)
args.outputs.lines << bezier(100, 100,
100, 620,
1180, 620,
1180, 100,
20)
end
def bezier x1, y1, x2, y2, x3, y3, x4, y4, step
step ||= 0
color = [200, 200, 200]
points = points_for_bezier [x1, y1], [x2, y2], [x3, y3], [x4, y4], step
points.each_cons(2).map do |p1, p2|
[p1, p2, color]
end
end
def points_for_bezier p1, p2, p3, p4, step
points = []
if step == 0
[p1, p2, p3, p4]
else
t_step = 1.fdiv(step + 1)
t = 0
t += t_step
points = []
while t < 1
points << [
b_for_t(p1.x, p2.x, p3.x, p4.x, t),
b_for_t(p1.y, p2.y, p3.y, p4.y, t),
]
t += t_step
end
[
p1,
*points,
p4
]
end
end
def b_for_t v0, v1, v2, v3, t
pow(1 - t, 3) * v0 +
3 * pow(1 - t, 2) * t * v1 +
3 * (1 - t) * pow(t, 2) * v2 +
pow(t, 3) * v3
end
def pow n, to
n ** to
end
Tweening Lerping Easing Functions - Easing Using Spline - main.rb
# ./samples/08_tweening_lerping_easing_functions/03_easing_using_spline/app/main.rb
def tick args
args.state.duration = 10.seconds
args.state.spline = [
[0.0, 0.33, 0.66, 1.0],
[1.0, 1.0, 1.0, 1.0],
[1.0, 0.66, 0.33, 0.0],
]
args.state.simulation_tick = args.state.tick_count % args.state.duration
progress = 0.ease_spline_extended args.state.simulation_tick, args.state.duration, args.state.spline
args.outputs.borders << args.grid.rect
args.outputs.solids << [20 + 1240 * progress,
20 + 680 * progress,
20, 20].anchor_rect(0.5, 0.5)
args.outputs.labels << [10,
710,
"perc: #{"%.2f" % (args.state.simulation_tick / args.state.duration)} t: #{args.state.simulation_tick}"]
end
Tweening Lerping Easing Functions - Parametric Enemy Movement - main.rb
# ./samples/08_tweening_lerping_easing_functions/04_parametric_enemy_movement/app/main.rb
def new_star args
{ x: 1280.randomize(:ratio),
starting_y: 800,
distance_to_travel: 900 + 100.randomize(:ratio),
duration: 100.randomize(:ratio) + 60,
created_at: args.state.tick_count,
max_alpha: 128.randomize(:ratio) + 128,
b: 255.randomize(:ratio),
g: 200.randomize(:ratio),
w: 1.randomize(:ratio) + 1,
h: 1.randomize(:ratio) + 1 }
end
def new_enemy args
{ x: 1280.randomize(:ratio),
starting_y: 800,
distance_to_travel: -900,
duration: 60.randomize(:ratio) + 180,
created_at: args.state.tick_count,
w: 32,
h: 32,
fire_rate: (30.randomize(:ratio) + (60 - args.state.score)).to_i }
end
def new_bullet args, starting_x, starting_y, enemy_speed
{ x: starting_x,
starting_y: starting_y,
distance_to_travel: -900,
created_at: args.state.tick_count,
duration: 900 / (enemy_speed.abs + 2.0 + (5.0 * args.state.score.fdiv(100))).abs,
w: 5,
h: 5 }
end
def new_player_bullet args, starting_x, starting_y, player_speed
{ x: starting_x,
starting_y: starting_y,
distance_to_travel: 900,
created_at: args.state.tick_count,
duration: 900 / (player_speed + 2.0),
w: 5,
h: 5 }
end
def defaults args
args.outputs.background_color = [0, 0, 0]
args.state.score ||= 0
args.state.stars ||= []
args.state.enemies ||= []
args.state.bullets ||= []
args.state.player_bullets ||= []
args.state.max_stars = 50
args.state.max_enemies = 10
args.state.player.x ||= 640
args.state.player.y ||= 100
args.state.player.w ||= 32
args.state.player.h ||= 32
if args.state.tick_count == 0
args.state.stars.clear
args.state.max_stars.times do
s = new_star args
s[:created_at] += s[:duration].randomize(:ratio)
args.state.stars << s
end
end
if args.state.tick_count == 0
args.state.enemies.clear
args.state.max_enemies.times do
s = new_enemy args
s[:created_at] += s[:duration].randomize(:ratio)
args.state.enemies << s
end
end
end
def input args
if args.inputs.keyboard.left
args.state.player.x -= 5
elsif args.inputs.keyboard.right
args.state.player.x += 5
end
if args.inputs.keyboard.up
args.state.player.y += 5
elsif args.inputs.keyboard.down
args.state.player.y -= 5
end
if args.inputs.keyboard.key_down.space
args.state.player_bullets << new_player_bullet(args,
args.state.player.x + args.state.player.w.half,
args.state.player.y + args.state.player.h, 5)
end
args.state.player.y = args.state.player.y.greater(0).lesser(720 - args.state.player.w)
args.state.player.x = args.state.player.x.greater(0).lesser(1280 - args.state.player.h)
end
def completed? entity
(entity[:created_at] + entity[:duration]).elapsed_time > 0
end
def calc_stars args
if (stars_to_add = args.state.max_stars - args.state.stars.length) > 0
stars_to_add.times { args.state.stars << new_star(args) }
end
args.state.stars = args.state.stars.reject { |s| completed? s }
end
def move_enemies args
if (enemies_to_add = args.state.max_enemies - args.state.enemies.length) > 0
enemies_to_add.times { args.state.enemies << new_enemy(args) }
end
args.state.enemies = args.state.enemies.reject { |s| completed? s }
end
def move_bullets args
args.state.enemies.each do |e|
if args.state.tick_count.mod_zero?(e[:fire_rate])
args.state.bullets << new_bullet(args, e[:x] + e[:w].half, current_y(e), e[:distance_to_travel] / e[:duration])
end
end
args.state.bullets = args.state.bullets.reject { |s| completed? s }
args.state.player_bullets = args.state.player_bullets.reject { |s| completed? s }
end
def intersect? entity_one, entity_two
entity_one.merge(y: current_y(entity_one))
.intersect_rect? entity_two.merge(y: current_y(entity_two))
end
def kill args
bullets_hitting_enemies = []
dead_bullets = []
dead_enemies = []
args.state.player_bullets.each do |b|
args.state.enemies.each do |e|
if intersect? b, e
dead_bullets << b
dead_enemies << e
end
end
end
args.state.score += dead_enemies.length
args.state.player_bullets.reject! { |b| dead_bullets.include? b }
args.state.enemies.reject! { |e| dead_enemies.include? e }
dead = args.state.bullets.any? do |b|
[args.state.player.x,
args.state.player.y,
args.state.player.w,
args.state.player.h].intersect_rect? b.merge(y: current_y(b))
end
return unless dead
args.gtk.reset
defaults args
end
def calc args
calc_stars args
move_enemies args
move_bullets args
kill args
end
def current_y entity
entity[:starting_y] + (entity[:distance_to_travel] * entity[:created_at].ease(entity[:duration], :identity))
end
def render args
args.outputs.solids << args.state.stars.map do |s|
[s[:x],
current_y(s),
s[:w], s[:h], 0, s[:g], s[:b], s[:max_alpha] * s[:created_at].ease(20, :identity)]
end
args.outputs.borders << args.state.enemies.map do |s|
[s[:x],
current_y(s),
s[:w], s[:h], 255, 0, 0]
end
args.outputs.borders << args.state.bullets.map do |b|
[b[:x],
current_y(b),
b[:w], b[:h], 255, 0, 0]
end
args.outputs.borders << args.state.player_bullets.map do |b|
[b[:x],
current_y(b),
b[:w], b[:h], 255, 255, 255]
end
args.borders << [args.state.player.x,
args.state.player.y,
args.state.player.w,
args.state.player.h, 255, 255, 255]
end
def tick args
defaults args
input args
calc args
render args
end
Performance - Sprites As Hash - main.rb
# ./samples/09_performance/01_sprites_as_hash/app/main.rb
# Sprites represented as Hashes using the queue ~args.outputs.sprites~
# code up, but are the "slowest" to render.
# The reason for this is the access of the key in the Hash and also
# because the data args.outputs.sprites is cleared every tick.
def random_x args
(args.grid.w.randomize :ratio) * -1
end
def random_y args
(args.grid.h.randomize :ratio) * -1
end
def random_speed
1 + (4.randomize :ratio)
end
def new_star args
{
x: (random_x args),
y: (random_y args),
w: 4, h: 4, path: 'sprites/tiny-star.png',
s: random_speed
}
end
def move_star args, star
star.x += star[:s]
star.y += star[:s]
if star.x > args.grid.w || star.y > args.grid.h
star.x = (random_x args)
star.y = (random_y args)
star[:s] = random_speed
end
end
def tick args
args.state.star_count ||= 0
# sets console command when sample app initially opens
if Kernel.global_tick_count == 0
puts ""
puts ""
puts "========================================================="
puts "* INFO: Sprites, Hashes"
puts "* INFO: Please specify the number of sprites to render."
args.gtk.console.set_command "reset_with count: 100"
end
# init
if args.state.tick_count == 0
args.state.stars = args.state.star_count.map { |i| new_star args }
end
# update
args.state.stars.each { |s| move_star args, s }
# render
args.outputs.sprites << args.state.stars
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
# resets game, and assigns star count given by user
def reset_with count: count
$gtk.reset
$gtk.args.state.star_count = count
end
Performance - Sprites As Entities - main.rb
# ./samples/09_performance/02_sprites_as_entities/app/main.rb
# Sprites represented as Entities using the queue ~args.outputs.sprites~
# yields nicer access apis over Hashes, but require a bit more code upfront.
# The hash sample has to use star[:s] to get the speed of the star, but
# an entity can use .s instead.
def random_x args
(args.grid.w.randomize :ratio) * -1
end
def random_y args
(args.grid.h.randomize :ratio) * -1
end
def random_speed
1 + (4.randomize :ratio)
end
def new_star args
args.state.new_entity :star, {
x: (random_x args),
y: (random_y args),
w: 4, h: 4,
path: 'sprites/tiny-star.png',
s: random_speed
}
end
def move_star args, star
star.x += star.s
star.y += star.s
if star.x > args.grid.w || star.y > args.grid.h
star.x = (random_x args)
star.y = (random_y args)
star.s = random_speed
end
end
def tick args
args.state.star_count ||= 0
# sets console command when sample app initially opens
if Kernel.global_tick_count == 0
puts ""
puts ""
puts "========================================================="
puts "* INFO: Sprites, Open Entities"
puts "* INFO: Please specify the number of sprites to render."
args.gtk.console.set_command "reset_with count: 100"
end
# init
if args.state.tick_count == 0
args.state.stars = args.state.star_count.map { |i| new_star args }
end
# update
args.state.stars.each { |s| move_star args, s }
# render
args.outputs.sprites << args.state.stars
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
# resets game, and assigns star count given by user
def reset_with count: count
$gtk.reset
$gtk.args.state.star_count = count
end
Performance - Sprites As Struct - main.rb
# ./samples/09_performance/03_sprites_as_struct/app/main.rb
# create a Struct variant that allows for named parameters on construction.
class NamedStruct < Struct
def initialize **opts
super(*members.map { |k| opts[k] })
end
end
# create a Star NamedStruct
Star = NamedStruct.new(:x, :y, :w, :h, :path, :s,
:angle, :angle_anchor_x, :angle_anchor_y,
:r, :g, :b, :a,
:tile_x, :tile_y,
:tile_w, :tile_h,
:source_x, :source_y,
:source_w, :source_h,
:flip_horizontally, :flip_vertically,
:blendmode_enum)
# Sprites represented as Structs. They require a little bit more code than Hashes,
# but are the a little faster to render too.
def random_x args
(args.grid.w.randomize :ratio) * -1
end
def random_y args
(args.grid.h.randomize :ratio) * -1
end
def random_speed
1 + (4.randomize :ratio)
end
def new_star args
Star.new x: (random_x args),
y: (random_y args),
w: 4, h: 4,
path: 'sprites/tiny-star.png',
s: random_speed
end
def move_star args, star
star.x += star[:s]
star.y += star[:s]
if star.x > args.grid.w || star.y > args.grid.h
star.x = (random_x args)
star.y = (random_y args)
star[:s] = random_speed
end
end
def tick args
args.state.star_count ||= 0
# sets console command when sample app initially opens
if Kernel.global_tick_count == 0
puts ""
puts ""
puts "========================================================="
puts "* INFO: Sprites, Structs"
puts "* INFO: Please specify the number of sprites to render."
args.gtk.console.set_command "reset_with count: 100"
end
# init
if args.state.tick_count == 0
args.state.stars = args.state.star_count.map { |i| new_star args }
end
# update
args.state.stars.each { |s| move_star args, s }
# render
args.outputs.sprites << args.state.stars
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
# resets game, and assigns star count given by user
def reset_with count: count
$gtk.reset
$gtk.args.state.star_count = count
end
Performance - Sprites As Strict Entities - main.rb
# ./samples/09_performance/04_sprites_as_strict_entities/app/main.rb
# Sprites represented as StrictEntities using the queue ~args.outputs.sprites~
# yields apis access similar to Entities, but all properties that can be set on the
# entity must be predefined with a default value. Strict entities do not support the
# addition of new properties after the fact. They are more performant than OpenEntities
# because of this constraint.
def random_x args
(args.grid.w.randomize :ratio) * -1
end
def random_y args
(args.grid.h.randomize :ratio) * -1
end
def random_speed
1 + (4.randomize :ratio)
end
def new_star args
args.state.new_entity_strict(:star,
x: (random_x args),
y: (random_y args),
w: 4, h: 4,
path: 'sprites/tiny-star.png',
s: random_speed) do |entity|
# invoke attr_sprite so that it responds to
# all properties that are required to render a sprite
entity.attr_sprite
end
end
def move_star args, star
star.x += star.s
star.y += star.s
if star.x > args.grid.w || star.y > args.grid.h
star.x = (random_x args)
star.y = (random_y args)
star.s = random_speed
end
end
def tick args
args.state.star_count ||= 0
# sets console command when sample app initially opens
if Kernel.global_tick_count == 0
puts ""
puts ""
puts "========================================================="
puts "* INFO: Sprites, Strict Entities"
puts "* INFO: Please specify the number of sprites to render."
args.gtk.console.set_command "reset_with count: 100"
end
# init
if args.state.tick_count == 0
args.state.stars = args.state.star_count.map { |i| new_star args }
end
# update
args.state.stars.each { |s| move_star args, s }
# render
args.outputs.sprites << args.state.stars
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
# resets game, and assigns star count given by user
def reset_with count: count
$gtk.reset
$gtk.args.state.star_count = count
end
Performance - Sprites As Classes - main.rb
# ./samples/09_performance/05_sprites_as_classes/app/main.rb
# Sprites represented as Classes using the queue ~args.outputs.sprites~.
# gives you full control of property declaration and method invocation.
# They are more performant than OpenEntities and StrictEntities, but more code upfront.
class Star
attr_sprite
def initialize grid
@grid = grid
@x = (rand @grid.w) * -1
@y = (rand @grid.h) * -1
@w = 4
@h = 4
@s = 1 + (4.randomize :ratio)
@path = 'sprites/tiny-star.png'
end
def move
@x += @s
@y += @s
@x = (rand @grid.w) * -1 if @x > @grid.right
@y = (rand @grid.h) * -1 if @y > @grid.top
end
end
# calls methods needed for game to run properly
def tick args
# sets console command when sample app initially opens
if Kernel.global_tick_count == 0
puts ""
puts ""
puts "========================================================="
puts "* INFO: Sprites, Classes"
puts "* INFO: Please specify the number of sprites to render."
args.gtk.console.set_command "reset_with count: 100"
end
# init
if args.state.tick_count == 0
args.state.stars = args.state.star_count.map { |i| Star.new args.grid }
end
# update
args.state.stars.each(&:move)
# render
args.outputs.sprites << args.state.stars
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
# resets game, and assigns star count given by user
def reset_with count: count
$gtk.reset
$gtk.args.state.star_count = count
end
Performance - Static Sprites As Classes - main.rb
# ./samples/09_performance/06_static_sprites_as_classes/app/main.rb
# Sprites represented as Classes using the queue ~args.outputs.static_sprites~.
# bypasses the queue behavior of ~args.outputs.sprites~. All instances are held
# by reference. You get better performance, but you are mutating state of held objects
# which is less functional/data oriented.
class Star
attr_sprite
def initialize grid
@grid = grid
@x = (rand @grid.w) * -1
@y = (rand @grid.h) * -1
@w = 4
@h = 4
@s = 1 + (4.randomize :ratio)
@path = 'sprites/tiny-star.png'
end
def move
@x += @s
@y += @s
@x = (rand @grid.w) * -1 if @x > @grid.right
@y = (rand @grid.h) * -1 if @y > @grid.top
end
end
# calls methods needed for game to run properly
def tick args
# sets console command when sample app initially opens
if Kernel.global_tick_count == 0
puts ""
puts ""
puts "========================================================="
puts "* INFO: Static Sprites, Classes"
puts "* INFO: Please specify the number of sprites to render."
args.gtk.console.set_command "reset_with count: 100"
end
# init
if args.state.tick_count == 0
args.state.stars = args.state.star_count.map { |i| Star.new args.grid }
args.outputs.static_sprites << args.state.stars
end
# update
args.state.stars.each(&:move)
# render
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
# resets game, and assigns star count given by user
def reset_with count: count
$gtk.reset
$gtk.args.state.star_count = count
end
Performance - Static Sprites As Classes With Custom Drawing - main.rb
# ./samples/09_performance/07_static_sprites_as_classes_with_custom_drawing/app/main.rb
# Sprites represented as Classes, with a draw_override method, and using the queue ~args.outputs.static_sprites~.
# is the fastest approach. This is comparable to what other game engines set as the default behavior.
# There are tradeoffs for all this speed if the creation of a full blown class, and bypassing
# functional/data-oriented practices.
class Star
def initialize grid
@grid = grid
@x = (rand @grid.w) * -1
@y = (rand @grid.h) * -1
@w = 4
@h = 4
@s = 1 + (4.randomize :ratio)
@path = 'sprites/tiny-star.png'
end
def move
@x += @s
@y += @s
@x = (rand @grid.w) * -1 if @x > @grid.right
@y = (rand @grid.h) * -1 if @y > @grid.top
end
# if the object that is in args.outputs.sprites (or static_sprites)
# respond_to? :draw_override, then the method is invoked giving you
# access to the class used to draw to the canvas.
def draw_override ffi_draw
# first move then draw
move
# The argument order for ffi.draw_sprite is:
# x, y, w, h, path
ffi_draw.draw_sprite @x, @y, @w, @h, @path
# The argument order for ffi_draw.draw_sprite_2 is (pass in nil for default value):
# x, y, w, h, path,
# angle, alpha
# The argument order for ffi_draw.draw_sprite_3 is:
# x, y, w, h,
# path,
# angle,
# alpha, red_saturation, green_saturation, blue_saturation
# tile_x, tile_y, tile_w, tile_h,
# flip_horizontally, flip_vertically,
# angle_anchor_x, angle_anchor_y,
# source_x, source_y, source_w, source_h
# The argument order for ffi_draw.draw_sprite_4 is:
# x, y, w, h,
# path,
# angle,
# alpha, red_saturation, green_saturation, blue_saturation
# tile_x, tile_y, tile_w, tile_h,
# flip_horizontally, flip_vertically,
# angle_anchor_x, angle_anchor_y,
# source_x, source_y, source_w, source_h,
# blendmode_enum
end
end
# calls methods needed for game to run properly
def tick args
# sets console command when sample app initially opens
if Kernel.global_tick_count == 0
puts ""
puts ""
puts "========================================================="
puts "* INFO: Static Sprites, Classes, Draw Override"
puts "* INFO: Please specify the number of sprites to render."
args.gtk.console.set_command "reset_with count: 100"
end
# init
if args.state.tick_count == 0
args.state.stars = args.state.star_count.map { |i| Star.new args.grid }
args.outputs.static_sprites << args.state.stars
end
# render framerate
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
# resets game, and assigns star count given by user
def reset_with count: count
$gtk.reset
$gtk.args.state.star_count = count
end
Performance - Collision Limits - main.rb
# ./samples/09_performance/08_collision_limits/app/main.rb
=begin
Reminders:
- find_all: Finds all elements of a collection that meet certain requirements.
In this sample app, we're finding all bodies that intersect with the center body.
- args.outputs.solids: An array. The values generate a solid.
The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE]
For more information about solids, go to mygame/documentation/03-solids-and-borders.md.
- args.outputs.labels: An array. The values generate a label.
The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE]
For more information about labels, go to mygame/documentation/02-labels.md.
- ARRAY#intersect_rect?: Returns true or false depending on if two rectangles intersect.
=end
# This code demonstrates moving objects that loop around once they exceed the scope of the screen,
# which has dimensions of 1280 by 720, and also detects collisions between objects called "bodies".
def body_count num
$gtk.args.state.other_bodies = num.map { [1280 * rand, 720 * rand, 10, 10] } # other_bodies set using num collection
end
def tick args
# Center body's values are set using an array
# Map is used to set values of 5000 other bodies
# All bodies that intersect with center body are stored in collisions collection
args.state.center_body ||= { x: 640 - 100, y: 360 - 100, w: 200, h: 200 } # calculations done to place body in center
args.state.other_bodies ||= 5000.map do
{ x: 1280 * rand,
y: 720 * rand,
w: 2,
h: 2,
path: :pixel,
r: 0,
g: 0,
b: 0 }
end # 2000 bodies given random position on screen
# finds all bodies that intersect with center body, stores them in collisions
collisions = args.state.other_bodies.find_all { |b| b.intersect_rect? args.state.center_body }
args.borders << args.state.center_body # outputs center body as a black border
# transparency changes based on number of collisions; the more collisions, the redder (more transparent) the box becomes
args.sprites << { x: args.state.center_body.x,
y: args.state.center_body.y,
w: args.state.center_body.w,
h: args.state.center_body.h,
path: :pixel,
a: collisions.length.idiv(2), # alpha value represents the number of collisions that occured
r: 255,
g: 0,
b: 0 } # center body is red solid
args.sprites << args.state.other_bodies # other bodies are output as (black) solids, as well
args.labels << [10, 30, args.gtk.current_framerate.to_sf] # outputs frame rate in bottom left corner
# Bodies are returned to bottom left corner if positions exceed scope of screen
args.state.other_bodies.each do |b| # for each body in the other_bodies collection
b.x += 5 # x and y are both incremented by 5
b.y += 5
b.x = 0 if b.x > 1280 # x becomes 0 if star exceeds scope of screen (goes too far right)
b.y = 0 if b.y > 720 # y becomes 0 if star exceeds scope of screen (goes too far up)
end
end
# Resets the game.
$gtk.reset
Performance - Collision Limits Find Single - main.rb
# ./samples/09_performance/09_collision_limits_find_single/app/main.rb
def tick args
if args.state.should_reset_framerate_calculation
args.gtk.reset_framerate_calculation
args.state.should_reset_framerate_calculation = nil
end
if !args.state.rects
args.state.rects = []
add_10_000_random_rects args
end
args.state.player_rect ||= { x: 640 - 20, y: 360 - 20, w: 40, h: 40 }
args.state.collision_type ||= :using_lambda
if args.state.tick_count == 0
generate_scene args, args.state.quad_tree
end
# inputs
# have a rectangle that can be moved around using arrow keys
args.state.player_rect.x += args.inputs.left_right * 4
args.state.player_rect.y += args.inputs.up_down * 4
if args.inputs.mouse.click
add_10_000_random_rects args
args.state.should_reset_framerate_calculation = true
end
if args.inputs.keyboard.key_down.tab
if args.state.collision_type == :using_lambda
args.state.collision_type = :using_while_loop
elsif args.state.collision_type == :using_while_loop
args.state.collision_type = :using_find_intersect_rect
elsif args.state.collision_type == :using_find_intersect_rect
args.state.collision_type = :using_lambda
end
args.state.should_reset_framerate_calculation = true
end
# calc
if args.state.collision_type == :using_lambda
args.state.current_collision = args.state.rects.find { |r| r.intersect_rect? args.state.player_rect }
elsif args.state.collision_type == :using_while_loop
args.state.current_collision = nil
idx = 0
l = args.state.rects.length
rects = args.state.rects
player = args.state.player_rect
while idx < l
if rects[idx].intersect_rect? player
args.state.current_collision = rects[idx]
break
end
idx += 1
end
else
args.state.current_collision = args.geometry.find_intersect_rect args.state.player_rect, args.state.rects
end
# render
render_instructions args
args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :scene }
if args.state.current_collision
args.outputs.sprites << args.state.current_collision.merge(path: :pixel, r: 255, g: 0, b: 0)
end
args.outputs.sprites << args.state.player_rect.merge(path: :pixel, a: 80, r: 0, g: 255, b: 0)
args.outputs.labels << {
x: args.state.player_rect.x + args.state.player_rect.w / 2,
y: args.state.player_rect.y + args.state.player_rect.h / 2,
text: "player",
alignment_enum: 1,
vertical_alignment_enum: 1,
size_enum: -4
}
end
def add_10_000_random_rects args
add_rects args, 10_000.map { { x: rand(1080) + 100, y: rand(520) + 100 } }
end
def add_rects args, points
args.state.rects.concat(points.map { |point| { x: point.x, y: point.y, w: 5, h: 5 } })
# args.state.quad_tree = args.geometry.quad_tree_create args.state.rects
generate_scene args, args.state.quad_tree
end
def add_rect args, x, y
args.state.rects << { x: x, y: y, w: 5, h: 5 }
# args.state.quad_tree = args.geometry.quad_tree_create args.state.rects
generate_scene args, args.state.quad_tree
end
def generate_scene args, quad_tree
args.outputs[:scene].w = 1280
args.outputs[:scene].h = 720
args.outputs[:scene].solids << { x: 0, y: 0, w: 1280, h: 720, r: 255, g: 255, b: 255 }
args.outputs[:scene].sprites << args.state.rects.map { |r| r.merge(path: :pixel, r: 0, g: 0, b: 255) }
end
def render_instructions args
args.outputs.primitives << { x: 0, y: 90.from_top, w: 1280, h: 100, r: 0, g: 0, b: 0, a: 200 }.solid!
args.outputs.labels << { x: 10, y: 10.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "Click to add 10,000 random rects. Tab to change collision algorithm." }
args.outputs.labels << { x: 10, y: 40.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "Algorithm: #{args.state.collision_type}" }
args.outputs.labels << { x: 10, y: 55.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "Rect Count: #{args.state.rects.length}" }
args.outputs.labels << { x: 10, y: 70.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "FPS: #{args.gtk.current_framerate.to_sf}" }
end
Performance - Collision Limits Many To Many - main.rb
# ./samples/09_performance/09_collision_limits_many_to_many/app/main.rb
class Square
attr_sprite
def initialize
@x = rand 1280
@y = rand 720
@w = 15
@h = 15
@path = 'sprites/square/blue.png'
@dir = 1
end
def mark_collisions all
@path = if all[self]
'sprites/square/red.png'
else
'sprites/square/blue.png'
end
end
def move
@dir = -1 if (@x + @w >= 1280) && @dir == 1
@dir = 1 if (@x <= 0) && @dir == -1
@x += @dir
end
end
def reset_if_needed args
if args.state.tick_count == 0 || args.inputs.mouse.click
args.state.star_count = 1500
args.state.stars = args.state.star_count.map { |i| Square.new }.to_a
args.outputs.static_sprites.clear
args.outputs.static_sprites << args.state.stars
end
end
def tick args
reset_if_needed args
Fn.each args.state.stars do |s| s.move end
all = GTK::Geometry.find_collisions args.state.stars
Fn.each args.state.stars do |s| s.mark_collisions all end
args.outputs.background_color = [0, 0, 0]
args.outputs.primitives << args.gtk.current_framerate_primitives
end
Advanced Debugging - Logging - main.rb
# ./samples/10_advanced_debugging/00_logging/app/main.rb
def tick args
args.outputs.background_color = [255, 255, 255, 0]
if args.state.tick_count == 0
args.gtk.log_spam "log level spam"
args.gtk.log_debug "log level debug"
args.gtk.log_info "log level info"
args.gtk.log_warn "log level warn"
args.gtk.log_error "log level error"
args.gtk.log_unfiltered "log level unfiltered"
puts "This is a puts call"
args.gtk.console.show
end
if args.state.tick_count == 60
puts "This is a puts call on tick 60"
elsif args.state.tick_count == 120
puts "This is a puts call on tick 120"
end
end
Advanced Debugging - Trace Debugging - main.rb
# ./samples/10_advanced_debugging/01_trace_debugging/app/main.rb
class Game
attr_gtk
def method1 num
method2 num
end
def method2 num
method3 num
end
def method3 num
method4 num
end
def method4 num
if num == 1
puts "UNLUCKY #{num}."
state.unlucky_count += 1
if state.unlucky_count > 3
raise "NAT 1 finally occurred. Check app/trace.txt for all method invocation history."
end
else
puts "LUCKY #{num}."
end
end
def tick
state.roll_history ||= []
state.roll_history << rand(20) + 1
state.countdown ||= 600
state.countdown -= 1
state.unlucky_count ||= 0
outputs.labels << [640, 360, "A dice roll of 1 will cause an exception.", 0, 1]
if state.countdown > 0
outputs.labels << [640, 340, "Dice roll countdown: #{state.countdown}", 0, 1]
else
state.attempts ||= 0
state.attempts += 1
outputs.labels << [640, 340, "ROLLING! #{state.attempts}", 0, 1]
end
return if state.countdown > 0
method1 state.roll_history[-1]
end
end
$game = Game.new
def tick args
trace! $game # <------------------- TRACING ENABLED FOR THIS OBJECT
$game.args = args
$game.tick
end
Advanced Debugging - Trace Debugging Classes - main.rb
# ./samples/10_advanced_debugging/02_trace_debugging_classes/app/main.rb
class Foobar
def initialize
trace! # Trace is added to the constructor.
end
def clicky args
return unless args.inputs.mouse.click
try_rand rand
end
def try_rand num
return if num < 0.9
raise "Exception finally occurred. Take a look at logs/trace.txt #{num}."
end
end
def tick args
args.labels << [640, 360, "Start clicking. Eventually an exception will be thrown. Then look at logs/trace.txt.", 0, 1]
args.state.foobar = Foobar.new if args.tick_count
return unless args.state.foobar
args.state.foobar.clicky args
end
Advanced Debugging - Unit Tests - benchmark_api_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/benchmark_api_tests.rb
def test_benchmark_api args, assert
result = args.gtk.benchmark iterations: 100,
only_one: -> () {
r = 0
(1..100).each do |i|
r += 1
end
}
assert.equal! result.first_place.name, :only_one
result = args.gtk.benchmark iterations: 100,
iterations_100: -> () {
r = 0
(1..100).each do |i|
r += 1
end
},
iterations_50: -> () {
r = 0
(1..50).each do |i|
r += 1
end
}
assert.equal! result.first_place.name, :iterations_50
result = args.gtk.benchmark iterations: 1,
iterations_100: -> () {
r = 0
(1..100).each do |i|
r += 1
end
},
iterations_50: -> () {
r = 0
(1..50).each do |i|
r += 1
end
}
assert.equal! result.too_small_to_measure, true
end
Advanced Debugging - Unit Tests - exception_raising_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/exception_raising_tests.rb
begin :shared
class ExceptionalClass
def initialize exception_to_throw = nil
raise exception_to_throw if exception_to_throw
end
end
end
def test_exception_in_newing_object args, assert
begin
ExceptionalClass.new TypeError
raise "Exception wasn't thrown!"
rescue Exception => e
assert.equal! e.class, TypeError, "Exceptions within constructor should be retained."
end
end
$gtk.reset 100
$gtk.log_level = :off
Advanced Debugging - Unit Tests - fn_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/fn_tests.rb
def infinity
1 / 0
end
def neg_infinity
-1 / 0
end
def nan
0.0 / 0
end
def test_add args, assert
assert.equal! (args.fn.add), 0
assert.equal! (args.fn.+), 0
assert.equal! (args.fn.+ 1, 2, 3), 6
assert.equal! (args.fn.+ 0), 0
assert.equal! (args.fn.+ 0, nil), 0
assert.equal! (args.fn.+ 0, nan), nil
assert.equal! (args.fn.+ 0, nil, infinity), nil
assert.equal! (args.fn.+ [1, 2, 3, [4, 5, 6]]), 21
assert.equal! (args.fn.+ [nil, [4, 5, 6]]), 15
end
def test_sub args, assert
neg_infinity = infinity * -1
assert.equal! (args.fn.+), 0
assert.equal! (args.fn.- 1, 2, 3), -4
assert.equal! (args.fn.- 4), -4
assert.equal! (args.fn.- 4, nan), nil
assert.equal! (args.fn.- 0, nil), 0
assert.equal! (args.fn.- 0, nil, infinity), nil
assert.equal! (args.fn.- [0, 1, 2, 3, [4, 5, 6]]), -21
assert.equal! (args.fn.- [nil, 0, [4, 5, 6]]), -15
end
def test_div args, assert
assert.equal! (args.fn.div), 1
assert.equal! (args.fn./), 1
assert.equal! (args.fn./ 6, 3), 2
assert.equal! (args.fn./ 6, infinity), nil
assert.equal! (args.fn./ 6, nan), nil
assert.equal! (args.fn./ infinity), nil
assert.equal! (args.fn./ 0), nil
assert.equal! (args.fn./ 6, [3]), 2
end
def test_idiv args, assert
assert.equal! (args.fn.idiv), 1
assert.equal! (args.fn.idiv 7, 3), 2
assert.equal! (args.fn.idiv 6, infinity), nil
assert.equal! (args.fn.idiv 6, nan), nil
assert.equal! (args.fn.idiv infinity), nil
assert.equal! (args.fn.idiv 0), nil
assert.equal! (args.fn.idiv 7, [3]), 2
end
def test_mul args, assert
assert.equal! (args.fn.mul), 1
assert.equal! (args.fn.*), 1
assert.equal! (args.fn.* 7, 3), 21
assert.equal! (args.fn.* 6, nan), nil
assert.equal! (args.fn.* 6, infinity), nil
assert.equal! (args.fn.* infinity), nil
assert.equal! (args.fn.* 0), 0
assert.equal! (args.fn.* 7, [3]), 21
end
def test_lt args, assert
assert.equal! (args.fn.lt 1), 1
assert.equal! (args.fn.lt), nil
assert.equal! (args.fn.lt infinity), nil
assert.equal! (args.fn.lt nan), nil
assert.equal! (args.fn.lt 10, 9, 8), 8
assert.equal! (args.fn.< 10, 9, 8), 8
assert.equal! (args.fn.< [10, 9, [8]]), 8
assert.equal! (args.fn.< 10, 10), nil
end
def test_lte args, assert
assert.equal! (args.fn.lte 1), 1
assert.equal! (args.fn.lte), nil
assert.equal! (args.fn.lte infinity), nil
assert.equal! (args.fn.lte nan), nil
assert.equal! (args.fn.lte 10, 9, 8), 8
assert.equal! (args.fn.lte 10, 10), 10
assert.equal! (args.fn.lte 10, 9, [8]), 8
assert.equal! (args.fn.<= 10, 9, 8), 8
end
def test_gt args, assert
assert.equal! (args.fn.gt 1), 1
assert.equal! (args.fn.gt), nil
assert.equal! (args.fn.gt infinity), nil
assert.equal! (args.fn.gt nan), nil
assert.equal! (args.fn.gt 8, 9, 10), 10
assert.equal! (args.fn.gt [8, 9, [10]]), 10
assert.equal! (args.fn.gt 10, 10), nil
assert.equal! (args.fn.gt 10, 10), nil
assert.equal! (args.fn.gt 10, 9), nil
assert.equal! (args.fn.> 8, 9, 10), 10
end
def test_gte args, assert
assert.equal! (args.fn.gte 1), 1
assert.equal! (args.fn.gte), nil
assert.equal! (args.fn.gte infinity), nil
assert.equal! (args.fn.gte nan), nil
assert.equal! (args.fn.gte 8, 9, 10), 10
assert.equal! (args.fn.gte 10, 10), 10
assert.equal! (args.fn.gte 8, 9, [10]), 10
assert.equal! (args.fn.gte 10, 9), nil
assert.equal! (args.fn.>= 8, 9, 10), 10
end
def test_acopy args, assert
orig = [1, 2, 3]
clone = args.fn.acopy orig
assert.equal! clone, [1, 2, 3]
assert.equal! clone, orig
assert.not_equal! clone.object_id, orig.object_id
end
def test_aget args, assert
assert.equal! (args.fn.aget [:a, :b, :c], 1), :b
assert.equal! (args.fn.aget [:a, :b, :c], nil), nil
assert.equal! (args.fn.aget nil, 1), nil
end
def test_alength args, assert
assert.equal! (args.fn.alength [:a, :b, :c]), 3
assert.equal! (args.fn.alength nil), nil
end
def test_amap args, assert
inc = lambda { |i| i + 1 }
ary = [1, 2, 3]
assert.equal! (args.fn.amap ary, inc), [2, 3, 4]
assert.equal! (args.fn.amap nil, inc), nil
assert.equal! (args.fn.amap ary, nil), nil
assert.equal! (args.fn.amap ary, inc).class, Array
end
def test_and args, assert
assert.equal! (args.fn.and 1, 2, 3, 4), 4
assert.equal! (args.fn.and 1, 2, nil, 4), nil
assert.equal! (args.fn.and), true
end
def test_or args, assert
assert.equal! (args.fn.or 1, 2, 3, 4), 1
assert.equal! (args.fn.or 1, 2, nil, 4), 1
assert.equal! (args.fn.or), nil
assert.equal! (args.fn.or nil, nil, false, 5, 10), 5
end
def test_eq_eq args, assert
assert.equal! (args.fn.eq?), true
assert.equal! (args.fn.eq? 1, 0), false
assert.equal! (args.fn.eq? 1, 1, 1), true
assert.equal! (args.fn.== 1, 1, 1), true
assert.equal! (args.fn.== nil, nil), true
end
def test_apply args, assert
assert.equal! (args.fn.and [nil, nil, nil]), [nil, nil, nil]
assert.equal! (args.fn.apply [nil, nil, nil], args.fn.method(:and)), nil
and_lambda = lambda {|*xs| args.fn.and(*xs)}
assert.equal! (args.fn.apply [nil, nil, nil], and_lambda), nil
end
def test_areduce args, assert
assert.equal! (args.fn.areduce [1, 2, 3], 0, lambda { |i, a| i + a }), 6
end
def test_array_hash args, assert
assert.equal! (args.fn.array_hash :a, 1, :b, 2), { a: 1, b: 2 }
assert.equal! (args.fn.array_hash), { }
end
Advanced Debugging - Unit Tests - gen_docs.rb
# ./samples/10_advanced_debugging/03_unit_tests/gen_docs.rb
# ./dragonruby mygame --eval samples/99_zz_gtk_unit_tests/gen_docs.rb --no-tick
Kernel.export_docs!
Advanced Debugging - Unit Tests - geometry_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/geometry_tests.rb
begin :shared
def primitive_representations x, y, w, h
[
[x, y, w, h],
{ x: x, y: y, w: w, h: h },
RectForTest.new(x, y, w, h)
]
end
class RectForTest
attr_sprite
def initialize x, y, w, h
@x = x
@y = y
@w = w
@h = h
end
def to_s
"RectForTest: #{[x, y, w, h]}"
end
end
end
begin :intersect_rect?
def test_intersect_rect_point args, assert
assert.true! [16, 13].intersect_rect?([13, 12, 4, 4]), "point intersects with rect."
end
def test_intersect_rect args, assert
intersecting = primitive_representations(0, 0, 100, 100) +
primitive_representations(20, 20, 20, 20)
intersecting.product(intersecting).each do |rect_one, rect_two|
assert.true! rect_one.intersect_rect?(rect_two),
"intersect_rect? assertion failed for #{rect_one}, #{rect_two} (expected true)."
end
not_intersecting = [
[ 0, 0, 5, 5],
{ x: 10, y: 10, w: 5, h: 5 },
RectForTest.new(20, 20, 5, 5)
]
not_intersecting.product(not_intersecting)
.reject { |rect_one, rect_two| rect_one == rect_two }
.each do |rect_one, rect_two|
assert.false! rect_one.intersect_rect?(rect_two),
"intersect_rect? assertion failed for #{rect_one}, #{rect_two} (expected false)."
end
end
end
begin :inside_rect?
def assert_inside_rect outer: nil, inner: nil, expected: nil, assert: nil
assert.true! inner.inside_rect?(outer) == expected,
"inside_rect? assertion failed for outer: #{outer} inner: #{inner} (expected #{expected})."
end
def test_inside_rect args, assert
outer_rects = primitive_representations(0, 0, 10, 10)
inner_rects = primitive_representations(1, 1, 5, 5)
primitive_representations(0, 0, 10, 10).product(primitive_representations(1, 1, 5, 5))
.each do |outer, inner|
assert_inside_rect outer: outer, inner: inner,
expected: true, assert: assert
end
end
end
begin :angle_to
def test_angle_to args, assert
origins = primitive_representations(0, 0, 0, 0)
rights = primitive_representations(1, 0, 0, 0)
aboves = primitive_representations(0, 1, 0, 0)
origins.product(aboves).each do |origin, above|
assert.equal! origin.angle_to(above), 90,
"A point directly above should be 90 degrees."
assert.equal! above.angle_from(origin), 90,
"A point coming from above should be 90 degrees."
end
origins.product(rights).each do |origin, right|
assert.equal! origin.angle_to(right) % 360, 0,
"A point directly to the right should be 0 degrees."
assert.equal! right.angle_from(origin) % 360, 0,
"A point coming from the right should be 0 degrees."
end
end
end
begin :scale_rect
def test_scale_rect args, assert
assert.equal! [0, 0, 100, 100].scale_rect(0.5, 0.5),
[25.0, 25.0, 50.0, 50.0]
assert.equal! [0, 0, 100, 100].scale_rect(0.5),
[0.0, 0.0, 50.0, 50.0]
assert.equal! [0, 0, 100, 100].scale_rect_extended(percentage_x: 0.5, percentage_y: 0.5, anchor_x: 0.5, anchor_y: 0.5),
[25.0, 25.0, 50.0, 50.0]
assert.equal! [0, 0, 100, 100].scale_rect_extended(percentage_x: 0.5, percentage_y: 0.5, anchor_x: 0, anchor_y: 0),
[0.0, 0.0, 50.0, 50.0]
end
end
$gtk.reset 100
$gtk.log_level = :off
Advanced Debugging - Unit Tests - http_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/http_tests.rb
def try_assert_or_schedule args, assert
if $result[:complete]
log_info "Request completed! Verifying."
if $result[:http_response_code] != 200
log_info "The request yielded a result of #{$result[:http_response_code]} instead of 200."
exit
end
log_info ":try_assert_or_schedule succeeded!"
else
args.gtk.schedule_callback Kernel.tick_count + 10 do
try_assert_or_schedule args, assert
end
end
end
def test_http args, assert
$result = $gtk.http_get 'http://dragonruby.org'
try_assert_or_schedule args, assert
end
$gtk.reset 100
$gtk.log_level = :off
Advanced Debugging - Unit Tests - input_emulation_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/input_emulation_tests.rb
def test_keyboard args, assert
args.inputs.keyboard.key_down.i = true
assert.true! args.inputs.keyboard.truthy_keys.include?(:i)
end
Advanced Debugging - Unit Tests - nil_coercion_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/nil_coercion_tests.rb
# numbers
def test_open_entity_add_number args, assert
assert.nil! args.state.i_value
args.state.i_value += 5
assert.equal! args.state.i_value, 5
assert.nil! args.state.f_value
args.state.f_value += 5.5
assert.equal! args.state.f_value, 5.5
end
def test_open_entity_subtract_number args, assert
assert.nil! args.state.i_value
args.state.i_value -= 5
assert.equal! args.state.i_value, -5
assert.nil! args.state.f_value
args.state.f_value -= 5.5
assert.equal! args.state.f_value, -5.5
end
def test_open_entity_multiply_number args, assert
assert.nil! args.state.i_value
args.state.i_value *= 5
assert.equal! args.state.i_value, 0
assert.nil! args.state.f_value
args.state.f_value *= 5.5
assert.equal! args.state.f_value, 0
end
def test_open_entity_divide_number args, assert
assert.nil! args.state.i_value
args.state.i_value /= 5
assert.equal! args.state.i_value, 0
assert.nil! args.state.f_value
args.state.f_value /= 5.5
assert.equal! args.state.f_value, 0
end
# array
def test_open_entity_add_array args, assert
assert.nil! args.state.values
args.state.values += [:a, :b, :c]
assert.equal! args.state.values, [:a, :b, :c]
end
def test_open_entity_subtract_array args, assert
assert.nil! args.state.values
args.state.values -= [:a, :b, :c]
assert.equal! args.state.values, []
end
def test_open_entity_shovel_array args, assert
assert.nil! args.state.values
args.state.values << :a
assert.equal! args.state.values, [:a]
end
def test_open_entity_enumerate args, assert
assert.nil! args.state.values
args.state.values = args.state.values.map_with_index { |i| i }
assert.equal! args.state.values, []
assert.nil! args.state.values_2
args.state.values_2 = args.state.values_2.map { |i| i }
assert.equal! args.state.values_2, []
assert.nil! args.state.values_3
args.state.values_3 = args.state.values_3.flat_map { |i| i }
assert.equal! args.state.values_3, []
end
# hashes
def test_open_entity_indexer args, assert
GTK::Entity.__reset_id__!
assert.nil! args.state.values
args.state.values[:test] = :value
assert.equal! args.state.values.to_s, { entity_id: 1, entity_name: :values, entity_keys_by_ref: {}, test: :value }.to_s
end
# bug
def test_open_entity_nil_bug args, assert
GTK::Entity.__reset_id__!
args.state.foo.a
args.state.foo.b
@hello[:foobar]
assert.nil! args.state.foo.a, "a was not nil."
# the line below fails
# assert.nil! args.state.foo.b, "b was not nil."
end
Advanced Debugging - Unit Tests - object_to_primitive_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/object_to_primitive_tests.rb
class PlayerSpriteForTest
end
def test_array_to_sprite args, assert
array = [[0, 0, 100, 100, "test.png"]].sprites
puts "No exception was thrown. Sweet!"
end
def test_class_to_sprite args, assert
array = [PlayerSprite.new].sprites
assert.true! array.first.is_a?(PlayerSprite)
puts "No exception was thrown. Sweet!"
end
$gtk.reset 100
$gtk.log_level = :off
Advanced Debugging - Unit Tests - parsing_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/parsing_tests.rb
def test_parse_json args, assert
result = args.gtk.parse_json '{ "name": "John Doe", "aliases": ["JD"] }'
assert.equal! result, { "name"=>"John Doe", "aliases"=>["JD"] }, "Parsing JSON failed."
end
def test_parse_xml args, assert
result = args.gtk.parse_xml <<-S
John Doe
S
expected = {:type=>:element,
:name=>nil,
:children=>[{:type=>:element,
:name=>"Person",
:children=>[{:type=>:element,
:name=>"Name",
:children=>[{:type=>:content,
:data=>"John Doe"}]}],
:attributes=>{"id"=>"100"}}]}
assert.equal! result, expected, "Parsing xml failed."
end
$gtk.reset 100
$gtk.log_level = :off
Advanced Debugging - Unit Tests - pretty_format_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/pretty_format_tests.rb
def H opts
opts
end
def A *opts
opts
end
def assert_format args, assert, hash, expected
actual = args.fn.pretty_format hash
assert.are_equal! actual, expected
end
def test_pretty_print args, assert
# =============================
# hash with single value
# =============================
input = (H first_name: "John")
expected = <<-S
{:first_name "John"}
S
(assert_format args, assert, input, expected)
# =============================
# hash with two values
# =============================
input = (H first_name: "John", last_name: "Smith")
expected = <<-S
{:first_name "John"
:last_name "Smith"}
S
(assert_format args, assert, input, expected)
# =============================
# hash with inner hash
# =============================
input = (H first_name: "John",
last_name: "Smith",
middle_initial: "I",
so: (H first_name: "Pocahontas",
last_name: "Tsenacommacah"),
friends: (A (H first_name: "Side", last_name: "Kick"),
(H first_name: "Tim", last_name: "Wizard")))
expected = <<-S
{:first_name "John"
:last_name "Smith"
:middle_initial "I"
:so {:first_name "Pocahontas"
:last_name "Tsenacommacah"}
:friends [{:first_name "Side"
:last_name "Kick"}
{:first_name "Tim"
:last_name "Wizard"}]}
S
(assert_format args, assert, input, expected)
# =============================
# array with one value
# =============================
input = (A 1)
expected = <<-S
[1]
S
(assert_format args, assert, input, expected)
# =============================
# array with multiple values
# =============================
input = (A 1, 2, 3)
expected = <<-S
[1
2
3]
S
(assert_format args, assert, input, expected)
# =============================
# array with multiple values hashes
# =============================
input = (A (H first_name: "Side", last_name: "Kick"),
(H first_name: "Tim", last_name: "Wizard"))
expected = <<-S
[{:first_name "Side"
:last_name "Kick"}
{:first_name "Tim"
:last_name "Wizard"}]
S
(assert_format args, assert, input, expected)
end
def test_nested_nested args, assert
# =============================
# nested array in nested hash
# =============================
input = (H type: :root,
text: "Root",
children: (A (H level: 1,
text: "Level 1",
children: (A (H level: 2,
text: "Level 2",
children: [])))))
expected = <<-S
{:type :root
:text "Root"
:children [{:level 1
:text "Level 1"
:children [{:level 2
:text "Level 2"
:children []}]}]}
S
(assert_format args, assert, input, expected)
end
def test_scene args, assert
script = <<-S
* Scene 1
** Narrator
They say happy endings don't exist.
** Narrator
They say true love is a lie.
S
input = parse_org args, script
puts (args.fn.pretty_format input)
end
Advanced Debugging - Unit Tests - require_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/require_tests.rb
def write_src path, src
$gtk.write_file path, src
end
write_src 'app/unit_testing_game.rb', <<-S
module UnitTesting
class Game
end
end
S
write_src 'lib/unit_testing_lib.rb', <<-S
module UnitTesting
class Lib
end
end
S
write_src 'app/nested/unit_testing_nested.rb', <<-S
module UnitTesting
class Nested
end
end
S
require 'app/unit_testing_game.rb'
require 'app/nested/unit_testing_nested.rb'
require 'lib/unit_testing_lib.rb'
def test_require args, assert
UnitTesting::Game.new
UnitTesting::Lib.new
UnitTesting::Nested.new
$gtk.exec 'rm ./mygame/app/unit_testing_game.rb'
$gtk.exec 'rm ./mygame/app/nested/unit_testing_nested.rb'
$gtk.exec 'rm ./mygame/lib/unit_testing_lib.rb'
assert.ok!
end
Advanced Debugging - Unit Tests - serialize_deserialize_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/serialize_deserialize_tests.rb
def assert_hash_strings! assert, string_1, string_2
Kernel.eval("$assert_hash_string_1 = #{string_1}")
Kernel.eval("$assert_hash_string_2 = #{string_2}")
assert.equal! $assert_hash_string_1, $assert_hash_string_2
end
def test_serialize args, assert
args.state.player_one = "test"
result = args.gtk.serialize_state args.state
assert_hash_strings! assert, result, "{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>\"test\"}"
args.gtk.write_file 'state.txt', ''
result = args.gtk.serialize_state 'state.txt', args.state
assert_hash_strings! assert, result, "{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>\"test\"}"
end
def test_deserialize args, assert
result = args.gtk.deserialize_state '{:entity_id=>3, :tick_count=>-1, :player_one=>"test"}'
assert.equal! result.player_one, "test"
args.gtk.write_file 'state.txt', '{:entity_id=>3, :tick_count=>-1, :player_one=>"test"}'
result = args.gtk.deserialize_state 'state.txt'
assert.equal! result.player_one, "test"
end
def test_very_large_serialization args, assert
args.gtk.write_file("logs/log.txt", "")
size = 3000
size.map_with_index do |i|
args.state.send("k#{i}=".to_sym, i)
end
result = args.gtk.serialize_state args.state
assert.true! $serialize_state_serialization_too_large
end
def test_strict_entity_serialization args, assert
args.state.player_one = args.state.new_entity(:player, name: "Ryu")
args.state.player_two = args.state.new_entity_strict(:player_strict, name: "Ken")
serialized_state = args.gtk.serialize_state args.state
assert_hash_strings! assert, serialized_state, '{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>{:entity_id=>3, :entity_name=>:player, :entity_keys_by_ref=>{}, :entity_type=>:player, :created_at=>-1, :global_created_at=>-1, :name=>"Ryu"}, :player_two=>{:entity_id=>5, :entity_name=>:player_strict, :entity_type=>:player_strict, :created_at=>-1, :global_created_at_elapsed=>-1, :entity_strict=>true, :entity_keys_by_ref=>{}, :name=>"Ken"}}'
deserialize_state = args.gtk.deserialize_state serialized_state
assert.equal! args.state.player_one.name, deserialize_state.player_one.name
assert.true! args.state.player_one.is_a? GTK::OpenEntity
assert.equal! args.state.player_two.name, deserialize_state.player_two.name
assert.true! args.state.player_two.is_a? GTK::StrictEntity
end
def test_strict_entity_serialization_with_nil args, assert
args.state.player_one = args.state.new_entity(:player, name: "Ryu")
args.state.player_two = args.state.new_entity_strict(:player_strict, name: "Ken", blood_type: nil)
serialized_state = args.gtk.serialize_state args.state
assert_hash_strings! assert, serialized_state, '{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>{:entity_id=>3, :entity_name=>:player, :entity_keys_by_ref=>{}, :entity_type=>:player, :created_at=>-1, :global_created_at=>-1, :name=>"Ryu"}, :player_two=>{:entity_name=>:player_strict, :global_created_at_elapsed=>-1, :created_at=>-1, :blood_type=>nil, :name=>"Ken", :entity_type=>:player_strict, :entity_strict=>true, :entity_keys_by_ref=>{}, :entity_id=>4}}'
deserialized_state = args.gtk.deserialize_state serialized_state
assert.equal! args.state.player_one.name, deserialized_state.player_one.name
assert.true! args.state.player_one.is_a? GTK::OpenEntity
assert.equal! args.state.player_two.name, deserialized_state.player_two.name
assert.equal! args.state.player_two.blood_type, deserialized_state.player_two.blood_type
assert.equal! deserialized_state.player_two.blood_type, nil
assert.true! args.state.player_two.is_a? GTK::StrictEntity
deserialized_state.player_two.blood_type = :O
assert.equal! deserialized_state.player_two.blood_type, :O
end
def test_multiple_strict_entities args, assert
args.state.player = args.state.new_entity_strict(:player_one, name: "Ryu")
args.state.enemy = args.state.new_entity_strict(:enemy, name: "Bison", other_property: 'extra mean')
serialized_state = args.gtk.serialize_state args.state
deserialized_state = args.gtk.deserialize_state serialized_state
assert.equal! deserialized_state.player.name, "Ryu"
assert.equal! deserialized_state.enemy.other_property, "extra mean"
end
def test_by_reference_state args, assert
args.state.a = args.state.new_entity(:person, name: "Jane Doe")
args.state.b = args.state.a
assert.equal! args.state.a.object_id, args.state.b.object_id
serialized_state = args.gtk.serialize_state args.state
deserialized_state = args.gtk.deserialize_state serialized_state
assert.equal! deserialized_state.a.object_id, deserialized_state.b.object_id
end
def test_by_reference_state_strict_entities args, assert
args.state.strict_entity = args.state.new_entity_strict(:couple) do |e|
e.one = args.state.new_entity_strict(:person, name: "Jane")
e.two = e.one
end
assert.equal! args.state.strict_entity.one, args.state.strict_entity.two
serialized_state = args.gtk.serialize_state args.state
deserialized_state = args.gtk.deserialize_state serialized_state
assert.equal! deserialized_state.strict_entity.one, deserialized_state.strict_entity.two
end
def test_serialization_excludes_thrash_count args, assert
args.state.player.name = "Ryu"
# force a nil pun
if args.state.player.age > 30
end
assert.equal! args.state.player.as_hash[:__thrash_count__][:>], 1
result = args.gtk.serialize_state args.state
assert.false! (result.include? "__thrash_count__"),
"The __thrash_count__ key exists in state when it shouldn't have."
end
def test_serialization_does_not_mix_up_zero_and_true args, assert
args.state.enemy.evil = true
args.state.enemy.hp = 0
serialized = args.gtk.serialize_state args.state.enemy
deserialized = args.gtk.deserialize_state serialized
assert.equal! deserialized.hp, 0,
"Value should have been deserialized as 0, but was #{deserialized.hp}"
assert.equal! deserialized.evil, true,
"Value should have been deserialized as true, but was #{deserialized.evil}"
end
Advanced Debugging - Unit Tests - state_serialization_experimental_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/state_serialization_experimental_tests.rb
MAX_CODE_GEN_LENGTH = 50
# NOTE: This is experimental/advanced stuff.
def needs_partitioning? target
target[:value].to_s.length > MAX_CODE_GEN_LENGTH
end
def partition target
return [] unless needs_partitioning? target
if target[:value].is_a? GTK::OpenEntity
target[:value] = target[:value].hash
end
results = []
idx = 0
left, right = target[:value].partition do
idx += 1
idx.even?
end
left, right = Hash[left], Hash[right]
left = { value: left }
right = { value: right}
[left, right]
end
def add_partition target, path, aggregate, final_result
partitions = partition target
partitions.each do |part|
if needs_partitioning? part
if part[:value].keys.length == 1
first_key = part[:value].keys[0]
new_part = { value: part[:value][first_key] }
path.push first_key
add_partition new_part, path, aggregate, final_result
path.pop
else
add_partition part, path, aggregate, final_result
end
else
final_result << { value: { __path__: [*path] } }
final_result << { value: part[:value] }
end
end
end
def state_to_string state
parts_queue = []
final_queue = []
add_partition({ value: state.hash },
[],
parts_queue,
final_queue)
final_queue.reject {|i| i[:value].keys.length == 0}.map do |i|
i[:value].to_s
end.join("\n#==================================================#\n")
end
def state_from_string string
Kernel.eval("$load_data = {}")
lines = string.split("\n#==================================================#\n")
lines.each do |l|
puts "todo: #{l}"
end
GTK::OpenEntity.parse_from_hash $load_data
end
def test_save_and_load args, assert
args.state.item_1.name = "Jane"
string = state_to_string args.state
state = state_from_string string
assert.equal! args.state.item_1.name, state.item_1.name
end
def test_save_and_load_big args, assert
size = 1000
size.map_with_index do |i|
args.state.send("k#{i}=".to_sym, i)
end
string = state_to_string args.state
state = state_from_string string
size.map_with_index do |i|
assert.equal! args.state.send("k#{i}".to_sym), state.send("k#{i}".to_sym)
assert.equal! args.state.send("k#{i}".to_sym), i
assert.equal! state.send("k#{i}".to_sym), i
end
end
def test_save_and_load_big_nested args, assert
args.state.player_one.friend.nested_hash.k0 = 0
args.state.player_one.friend.nested_hash.k1 = 1
args.state.player_one.friend.nested_hash.k2 = 2
args.state.player_one.friend.nested_hash.k3 = 3
args.state.player_one.friend.nested_hash.k4 = 4
args.state.player_one.friend.nested_hash.k5 = 5
args.state.player_one.friend.nested_hash.k6 = 6
args.state.player_one.friend.nested_hash.k7 = 7
args.state.player_one.friend.nested_hash.k8 = 8
args.state.player_one.friend.nested_hash.k9 = 9
string = state_to_string args.state
state = state_from_string string
end
$gtk.reset 100
$gtk.log_level = :off
Advanced Debugging - Unit Tests - suggest_autocompletion_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/suggest_autocompletion_tests.rb
def default_suggest_autocompletion args
{
index: 4,
text: "args.",
__meta__: {
other_options: [
{
index: Fixnum,
file: "app/main.rb"
}
]
}
}
end
def assert_completion source, *expected
results = suggest_autocompletion text: (source.strip.gsub ":cursor", ""),
index: (source.strip.index ":cursor")
puts results
end
def test_args_completion args, assert
$gtk.write_file_root "autocomplete.txt", ($gtk.suggest_autocompletion text: <<-S, index: 128).join("\n")
require 'app/game.rb'
def tick args
args.gtk.suppress_mailbox = false
$game ||= Game.new
$game.args = args
$game.args.
$game.tick
end
S
puts "contents:"
puts ($gtk.read_file "autocomplete.txt")
end
Http - Retrieve Images - main.rb
# ./samples/11_http/01_retrieve_images/app/main.rb
$gtk.register_cvar 'app.warn_seconds', "seconds to wait before starting", :uint, 11
def tick args
args.outputs.background_color = [0, 0, 0]
# Show a warning at the start.
args.state.warning_debounce ||= args.cvars['app.warn_seconds'].value * 60
if args.state.warning_debounce > 0
args.state.warning_debounce -= 1
args.outputs.labels << [640, 600, "This app shows random images from the Internet.", 10, 1, 255, 255, 255]
args.outputs.labels << [640, 500, "Quit in the next few seconds if this is a problem.", 10, 1, 255, 255, 255]
args.outputs.labels << [640, 350, "#{(args.state.warning_debounce / 60.0).to_i}", 10, 1, 255, 255, 255]
return
end
args.state.download_debounce ||= 0 # start immediately, reset to non zero later.
args.state.photos ||= []
# Put a little pause between each download.
if args.state.download.nil?
if args.state.download_debounce > 0
args.state.download_debounce -= 1
else
args.state.download = $gtk.http_get 'https://picsum.photos/200/300.jpg'
end
end
if !args.state.download.nil?
if args.state.download[:complete]
if args.state.download[:http_response_code] == 200
fname = "sprites/#{args.state.photos.length}.jpg"
$gtk.write_file fname, args.state.download[:response_data]
args.state.photos << [ 100 + rand(1080), 500 - rand(480), fname, rand(80) - 40 ]
end
args.state.download = nil
args.state.download_debounce = (rand(3) + 2) * 60
end
end
# draw any downloaded photos...
args.state.photos.each { |i|
args.outputs.primitives << [i[0], i[1], 200, 300, i[2], i[3]].sprite
}
# Draw a download progress bar...
args.outputs.primitives << [0, 0, 1280, 30, 0, 0, 0, 255].solid
if !args.state.download.nil?
br = args.state.download[:response_read]
total = args.state.download[:response_total]
if total != 0
pct = br.to_f / total.to_f
args.outputs.primitives << [0, 0, 1280 * pct, 30, 0, 0, 255, 255].solid
end
end
end
Http - In Game Web Server Http Get - main.rb
# ./samples/11_http/02_in_game_web_server_http_get/app/main.rb
def tick args
args.state.port ||= 3000
args.state.reqnum ||= 0
# by default the embedded webserver runs on port 9001 (the port number is over 9000) and is disabled in a production build
# to enable the http server in a production build, you need to manually start
# the server up:
args.gtk.start_server! port: args.state.port, enable_in_prod: true
args.outputs.background_color = [0, 0, 0]
args.outputs.labels << [640, 600, "Point your web browser at http://localhost:#{args.state.port}/", 10, 1, 255, 255, 255]
args.inputs.http_requests.each { |req|
puts("METHOD: #{req.method}");
puts("URI: #{req.uri}");
puts("HEADERS:");
req.headers.each { |k,v| puts(" #{k}: #{v}") }
if (req.uri == '/')
# headers and body can be nil if you don't care about them.
# If you don't set the Content-Type, it will default to
# "text/html; charset=utf-8".
# Don't set Content-Length; we'll ignore it and calculate it for you
args.state.reqnum += 1
req.respond 200, "hello This #{req.method} was request number #{args.state.reqnum}!
\n", { 'X-DRGTK-header' => 'Powered by DragonRuby!' }
else
req.reject
end
}
end
Http - In Game Web Server Http Post - main.rb
# ./samples/11_http/03_in_game_web_server_http_post/app/main.rb
def tick args
# defaults
args.state.post_button = args.layout.rect(row: 0, col: 0, w: 5, h: 1).merge(text: "execute http_post")
args.state.post_body_button = args.layout.rect(row: 1, col: 0, w: 5, h: 1).merge(text: "execute http_post_body")
args.state.request_to_s ||= ""
args.state.request_body ||= ""
# render
args.state.post_button.yield_self do |b|
args.outputs.borders << b
args.outputs.labels << b.merge(text: b.text,
y: b.y + 30,
x: b.x + 10)
end
args.state.post_body_button.yield_self do |b|
args.outputs.borders << b
args.outputs.labels << b.merge(text: b.text,
y: b.y + 30,
x: b.x + 10)
end
draw_label args, 0, 6, "Request:", args.state.request_to_s
draw_label args, 0, 14, "Request Body Unaltered:", args.state.request_body
# input
if args.inputs.mouse.click
# ============= HTTP_POST =============
if (args.inputs.mouse.inside_rect? args.state.post_button)
# ========= DATA TO SEND ===========
form_fields = { "userId" => "#{Time.now.to_i}" }
# ==================================
args.gtk.http_post "http://localhost:9001/testing",
form_fields,
["Content-Type: application/x-www-form-urlencoded"]
args.gtk.notify! "http_post"
end
# ============= HTTP_POST_BODY =============
if (args.inputs.mouse.inside_rect? args.state.post_body_button)
# =========== DATA TO SEND ==============
json = "{ \"userId\": \"#{Time.now.to_i}\"}"
# ==================================
args.gtk.http_post_body "http://localhost:9001/testing",
json,
["Content-Type: application/json", "Content-Length: #{json.length}"]
args.gtk.notify! "http_post_body"
end
end
# calc
args.inputs.http_requests.each do |r|
puts "#{r}"
if r.uri == "/testing"
puts r
args.state.request_to_s = "#{r}"
args.state.request_body = r.raw_body
r.respond 200, "ok"
end
end
end
def draw_label args, row, col, header, text
label_pos = args.layout.rect(row: row, col: col, w: 0, h: 0)
args.outputs.labels << "#{header}\n\n#{text}".wrapped_lines(80).map_with_index do |l, i|
{ x: label_pos.x, y: label_pos.y - (i * 15), text: l, size_enum: -2 }
end
end
C Extensions - Basics - main.rb
# ./samples/12_c_extensions/01_basics/app/main.rb
$gtk.ffi_misc.gtk_dlopen("ext")
include FFI::CExt
def tick args
args.outputs.labels << [640, 500, "mouse.x = #{args.mouse.x.to_i}", 5, 1]
args.outputs.labels << [640, 460, "square(mouse.x) = #{square(args.mouse.x.to_i)}", 5, 1]
args.outputs.labels << [640, 420, "mouse.y = #{args.mouse.y.to_i}", 5, 1]
args.outputs.labels << [640, 380, "square(mouse.y) = #{square(args.mouse.y.to_i)}", 5, 1]
end
C Extensions - Intermediate - main.rb
# ./samples/12_c_extensions/02_intermediate/app/main.rb
$gtk.ffi_misc.gtk_dlopen("ext")
include FFI::RE
def split_words(input)
words = []
last = IntPointer.new
re = re_compile("\\w+")
first = re_matchp(re, input, last)
while first != -1
words << input.slice(first, last.value)
input = input.slice(last.value + first, input.length)
first = re_matchp(re, input, last)
end
words
end
def tick args
args.outputs.labels << [640, 500, split_words("hello, dragonriders!").join(' '), 5, 1]
end
C Extensions - Native Pixel Arrays - main.rb
# ./samples/12_c_extensions/03_native_pixel_arrays/app/main.rb
$gtk.ffi_misc.gtk_dlopen("ext")
include FFI::CExt
def tick args
args.state.rotation ||= 0
update_scanner_texture # this calls into a C extension!
# New/changed pixel arrays get uploaded to the GPU before we render
# anything. At that point, they can be scaled, rotated, and otherwise
# used like any other sprite.
w = 100
h = 100
x = (1280 - w) / 2
y = (720 - h) / 2
args.outputs.background_color = [64, 0, 128]
args.outputs.primitives << [x, y, w, h, :scanner, args.state.rotation].sprite
args.state.rotation += 1
args.outputs.primitives << args.gtk.current_framerate_primitives
end
C Extensions - Handcrafted Extension - main.rb
# ./samples/12_c_extensions/04_handcrafted_extension/app/main.rb
$gtk.ffi_misc.gtk_dlopen("ext")
include FFI::CExt
puts Adder.new.add_all(1, 2, 3, [4, 5, 6.0])
def tick args
end
C Extensions - Handcrafted Extension - license.txt
# ./samples/12_c_extensions/04_handcrafted_extension/license.txt
Copyright 2022 DragonRuby LLC
MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
C Extensions - Ios C Extensions - main.rb
# ./samples/12_c_extensions/05_ios_c_extensions/app/main.rb
# NOTE: This is assumed to be executed with mygame as the root directory
# you'll need to copy this code over there to try it out.
# Steps:
# 1. Create ext.h and ext.m
# 2. Create Info.plist file
# 3. Add before_create_payload to IOSWizard (which does the following):
# a. run ./dragonruby-bind against C Extension and update implementation file
# b. create output location for iOS Framework
# c. compile C extension into Framework
# d. copy framework to Payload directory and Sign
# 4. Run $wizards.ios.start env: (:prod|:dev|:hotload) to create ipa
# 5. Invoke args.gtk.dlopen giving the name of the C Extensions (~1s to load).
# 6. Invoke methods as needed.
# ===================================================
# before_create_payload iOS Wizard
# ===================================================
class IOSWizard < Wizard
def before_create_payload
puts "* INFO - before_create_payload"
# invoke ./dragonruby-bind
sh "./dragonruby-bind --output=mygame/ext-bind.m mygame/ext.h"
# update generated implementation file
contents = $gtk.read_file "ext-bind.m"
contents = contents.gsub("#include \"mygame/ext.h\"", "#include \"mygame/ext.h\"\n#include \"mygame/ext.m\"")
puts contents
$gtk.write_file "ext-bind.m", contents
# create output location
sh "rm -rf ./mygame/native/ios-device/ext.framework"
sh "mkdir -p ./mygame/native/ios-device/ext.framework"
# compile C extension into framework
sh <<-S
clang -I. -I./mruby/include -I./include -o "./mygame/native/ios-device/ext.framework/ext" \\
-arch arm64 -dynamiclib -isysroot "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk" \\
-install_name @rpath/ext.framework/ext \\
-fembed-bitcode -Xlinker -rpath -Xlinker @loader_path/Frameworks -dead_strip -Xlinker -rpath -fobjc-arc -fobjc-link-runtime \\
-F/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk/System/Library/Frameworks \\
-miphoneos-version-min=10.3 -Wl,-no_pie -licucore -stdlib=libc++ \\
-framework CFNetwork -framework UIKit -framework Foundation \\
./mygame/ext-bind.m
S
# stage extension
sh "cp ./mygame/native/ios-device/Info.plist ./mygame/native/ios-device/ext.framework/Info.plist"
sh "mkdir -p \"#{app_path}/Frameworks/ext.framework/\""
sh "cp -r \"#{root_folder}/native/ios-device/ext.framework/\" \"#{app_path}/Frameworks/ext.framework/\""
# sign
sh <<-S
CODESIGN_ALLOCATE=#{codesign_allocate_path} #{codesign_path} \\
-f -s \"#{certificate_name}\" \\
\"#{app_path}/Frameworks/ext.framework/ext\"
S
end
end
def tick args
if args.state.tick_count == 60 && args.gtk.platform?(:ios)
args.gtk.dlopen 'ext'
include FFI::CExt
puts "the results of hello world are:"
puts hello_world()
$gtk.console.show
end
end
C Extensions - Ios C Extensions - Metadata - cvars.txt
# ./samples/12_c_extensions/05_ios_c_extensions/metadata/cvars.txt
C Extensions - Ios C Extensions - Metadata - ios_metadata.txt
# ./samples/12_c_extensions/05_ios_c_extensions/metadata/ios_metadata.txt
teamid=TEAMID
appid=APPID
appname=ICON NAME
version=1.0
devcert=NAME OF DEV CERT
prodcert=NAME OF PROD CERT
Path Finding Algorithms - Breadth First Search - main.rb
# ./samples/13_path_finding_algorithms/01_breadth_first_search/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# A visual demonstration of a breadth first search
# Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
# An animation that can respond to user input in real time
# A breadth first search expands in all directions one step at a time
# The frontier is a queue of cells to be expanded from
# The visited hash allows quick lookups of cells that have been expanded from
# The walls hash allows quick lookup of whether a cell is a wall
# The breadth first search starts by adding the red star to the frontier array
# and marking it as visited
# Each step a cell is removed from the front of the frontier array (queue)
# Unless the neighbor is a wall or visited, it is added to the frontier array
# The neighbor is then marked as visited
# The frontier is blue
# Visited cells are light brown
# Walls are camo green
# Even when walls are visited, they will maintain their wall color
# The star can be moved by clicking and dragging
# Walls can be added and removed by clicking and dragging
class BreadthFirstSearch
attr_gtk
def initialize(args)
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
args.state.grid.width = 30
args.state.grid.height = 15
args.state.grid.cell_size = 40
# Stores which step of the animation is being rendered
# When the user moves the star or messes with the walls,
# the breadth first search is recalculated up to this step
args.state.anim_steps = 0
# At some step the animation will end,
# and further steps won't change anything (the whole grid will be explored)
# This step is roughly the grid's width * height
# When anim_steps equals max_steps no more calculations will occur
# and the slider will be at the end
args.state.max_steps = args.state.grid.width * args.state.grid.height
# Whether the animation should play or not
# If true, every tick moves anim_steps forward one
# Pressing the stepwise animation buttons will pause the animation
args.state.play = true
# The location of the star and walls of the grid
# They can be modified to have a different initial grid
# Walls are stored in a hash for quick look up when doing the search
args.state.star = [0, 0]
args.state.walls = {
[3, 3] => true,
[3, 4] => true,
[3, 5] => true,
[3, 6] => true,
[3, 7] => true,
[3, 8] => true,
[3, 9] => true,
[3, 10] => true,
[3, 11] => true,
[4, 3] => true,
[4, 4] => true,
[4, 5] => true,
[4, 6] => true,
[4, 7] => true,
[4, 8] => true,
[4, 9] => true,
[4, 10] => true,
[4, 11] => true,
[13, 0] => true,
[13, 1] => true,
[13, 2] => true,
[13, 3] => true,
[13, 4] => true,
[13, 5] => true,
[13, 6] => true,
[13, 7] => true,
[13, 8] => true,
[13, 9] => true,
[13, 10] => true,
[14, 0] => true,
[14, 1] => true,
[14, 2] => true,
[14, 3] => true,
[14, 4] => true,
[14, 5] => true,
[14, 6] => true,
[14, 7] => true,
[14, 8] => true,
[14, 9] => true,
[14, 10] => true,
[21, 8] => true,
[21, 9] => true,
[21, 10] => true,
[21, 11] => true,
[21, 12] => true,
[21, 13] => true,
[21, 14] => true,
[22, 8] => true,
[22, 9] => true,
[22, 10] => true,
[22, 11] => true,
[22, 12] => true,
[22, 13] => true,
[22, 14] => true,
[23, 8] => true,
[23, 9] => true,
[24, 8] => true,
[24, 9] => true,
[25, 8] => true,
[25, 9] => true,
}
# Variables that are used by the breadth first search
# Storing cells that the search has visited, prevents unnecessary steps
# Expanding the frontier of the search in order makes the search expand
# from the center outward
args.state.visited = {}
args.state.frontier = []
# What the user is currently editing on the grid
# Possible values are: :none, :slider, :star, :remove_wall, :add_wall
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
args.state.click_and_drag = :none
# Store the rects of the buttons that control the animation
# They are here for user customization
# Editing these might require recentering the text inside them
# Those values can be found in the render_button methods
args.state.buttons.left = { x: 450, y: 600, w: 50, h: 50 }
args.state.buttons.center = { x: 500, y: 600, w: 200, h: 50 }
args.state.buttons.right = { x: 700, y: 600, w: 50, h: 50 }
# The variables below are related to the slider
# They allow the user to customize them
# They also give a central location for the render and input methods to get
# information from
# x & y are the coordinates of the leftmost part of the slider line
args.state.slider.x = 400
args.state.slider.y = 675
# This is the width of the line
args.state.slider.w = 360
# This is the offset for the circle
# Allows the center of the circle to be on the line,
# as opposed to the upper right corner
args.state.slider.offset = 20
# This is the spacing between each of the notches on the slider
# Notches are places where the circle can rest on the slider line
# There needs to be a notch for each step before the maximum number of steps
args.state.slider.spacing = args.state.slider.w.to_f / args.state.max_steps.to_f
end
# This method is called every frame/tick
# Every tick, the current state of the search is rendered on the screen,
# User input is processed, and
# The next step in the search is calculated
def tick
render
input
# If animation is playing, and max steps have not been reached
# Move the search a step forward
if state.play && state.anim_steps < state.max_steps
# Variable that tells the program what step to recalculate up to
state.anim_steps += 1
calc
end
end
# Draws everything onto the screen
def render
render_buttons
render_slider
render_background
render_visited
render_frontier
render_walls
render_star
end
# The methods below subdivide the task of drawing everything to the screen
# Draws the buttons that control the animation step and state
def render_buttons
render_left_button
render_center_button
render_right_button
end
# Draws the button which steps the search backward
# Shows the user where to click to move the search backward
def render_left_button
# Draws the gray button, and a black border
# The border separates the buttons visually
outputs.solids << buttons.left.merge(gray)
outputs.borders << buttons.left
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
# If the button size is changed, the label might need to be edited as well
# to keep the label in the center of the button
label_x = buttons.left[:x] + 20
label_y = buttons.left[:y] + 35
outputs.labels << { x: label_x, y: label_y, text: '<' }
end
def render_center_button
# Draws the gray button, and a black border
# The border separates the buttons visually
outputs.solids << buttons.center.merge(gray)
outputs.borders << buttons.center
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
# If the button size is changed, the label might need to be edited as well
# to keep the label in the center of the button
label_x = buttons.center[:x] + 37
label_y = buttons.center[:y] + 35
label_text = state.play ? "Pause Animation" : "Play Animation"
outputs.labels << { x: label_x, y: label_y, text: label_text }
end
def render_right_button
# Draws the gray button, and a black border
# The border separates the buttons visually
outputs.solids << buttons.right.merge(gray)
outputs.borders << buttons.right
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
label_x = buttons.right[:x] + 20
label_y = buttons.right[:y] + 35
outputs.labels << { x: label_x, y: label_y, text: ">" }
end
# Draws the slider so the user can move it and see the progress of the search
def render_slider
# Using a solid instead of a line, hides the line under the circle of the slider
# Draws the line
outputs.solids << {
x: slider.x,
y: slider.y,
w: slider.w,
h: 2
}
# The circle needs to be offset so that the center of the circle
# overlaps the line instead of the upper right corner of the circle
# The circle's x value is also moved based on the current seach step
circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing)
circle_y = (slider.y - slider.offset)
outputs.sprites << {
x: circle_x,
y: circle_y,
w: 37,
h: 37,
path: 'circle-white.png'
}
end
# Draws what the grid looks like with nothing on it
def render_background
render_unvisited
render_grid_lines
end
# Draws a rectangle the size of the entire grid to represent unvisited cells
def render_unvisited
rect = { x: 0, y: 0, w: grid.width, h: grid.height }
rect = rect.transform_values { |v| v * grid.cell_size }
outputs.solids << rect.merge(unvisited_color)
end
# Draws grid lines to show the division of the grid into cells
def render_grid_lines
outputs.lines << (0..grid.width).map { |x| vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| horizontal_line(y) }
end
# Easy way to draw vertical lines given an index
def vertical_line x
line = { x: x, y: 0, w: 0, h: grid.height }
line.transform_values { |v| v * grid.cell_size }
end
# Easy way to draw horizontal lines given an index
def horizontal_line y
line = { x: 0, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Draws the area that is going to be searched from
# The frontier is the most outward parts of the search
def render_frontier
outputs.solids << state.frontier.map do |cell|
render_cell cell, frontier_color
end
end
# Draws the walls
def render_walls
outputs.solids << state.walls.map do |wall|
render_cell wall, wall_color
end
end
# Renders cells that have been searched in the appropriate color
def render_visited
outputs.solids << state.visited.map do |cell|
render_cell cell, visited_color
end
end
# Renders the star
def render_star
outputs.sprites << render_cell(state.star, { path: 'star.png' })
end
def render_cell cell, attrs
{
x: cell.x * grid.cell_size,
y: cell.y * grid.cell_size,
w: grid.cell_size,
h: grid.cell_size
}.merge attrs
end
# In code, the cells are represented as 1x1 rectangles
# When drawn, the cells are larger than 1x1 rectangles
# This method is used to scale up cells, and lines
# Objects are scaled up according to the grid.cell_size variable
# This allows for easy customization of the visual scale of the grid
def scale_up(cell)
# Prevents the original value of cell from being edited
cell = cell.clone
# If cell is just an x and y coordinate
if cell.size == 2
# Add a width and height of 1
cell << 1
cell << 1
end
# Scale all the values up
cell.map! { |value| value * grid.cell_size }
# Returns the scaled up cell
cell
end
# This method processes user input every tick
# This method allows the user to use the buttons, slider, and edit the grid
# There are 2 types of input:
# Button Input
# Click and Drag Input
#
# Button Input is used for the backward step and forward step buttons
# Input is detected by mouse up within the bounds of the rect
#
# Click and Drag Input is used for moving the star, adding walls,
# removing walls, and the slider
#
# When the mouse is down on the star, the click_and_drag variable is set to :star
# While click_and_drag equals :star, the cursor's position is used to calculate the
# appropriate drag behavior
#
# When the mouse goes up click_and_drag is set to :none
#
# A variable has to be used because the star has to continue being edited even
# when the cursor is no longer over the star
#
# Similar things occur for the other Click and Drag inputs
def input
# Checks whether any of the buttons are being clicked
input_buttons
# The detection and processing of click and drag inputs are separate
# The program has to remember that the user is dragging an object
# even when the mouse is no longer over that object
detect_click_and_drag
process_click_and_drag
end
# Detects and Process input for each button
def input_buttons
input_left_button
input_center_button
input_next_step_button
end
# Checks if the previous step button is clicked
# If it is, it pauses the animation and moves the search one step backward
def input_left_button
if left_button_clicked?
state.play = false
state.anim_steps -= 1
recalculate
end
end
# Controls the play/pause button
# Inverses whether the animation is playing or not when clicked
def input_center_button
if center_button_clicked? or inputs.keyboard.key_down.space
state.play = !state.play
end
end
# Checks if the next step button is clicked
# If it is, it pauses the animation and moves the search one step forward
def input_next_step_button
if right_button_clicked?
state.play = false
state.anim_steps += 1
calc
end
end
# Determines what the user is editing and stores the value
# Storing the value allows the user to continue the same edit as long as the
# mouse left click is held
def detect_click_and_drag
if inputs.mouse.up
state.click_and_drag = :none
elsif star_clicked?
state.click_and_drag = :star
elsif wall_clicked?
state.click_and_drag = :remove_wall
elsif grid_clicked?
state.click_and_drag = :add_wall
elsif slider_clicked?
state.click_and_drag = :slider
end
end
# Processes click and drag based on what the user is currently dragging
def process_click_and_drag
if state.click_and_drag == :star
input_star
elsif state.click_and_drag == :remove_wall
input_remove_wall
elsif state.click_and_drag == :add_wall
input_add_wall
elsif state.click_and_drag == :slider
input_slider
end
end
# Moves the star to the grid closest to the mouse
# Only recalculates the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def input_star
old_star = state.star.clone
state.star = cell_closest_to_mouse
unless old_star == state.star
recalculate
end
end
# Removes walls that are under the cursor
def input_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if mouse_inside_grid?
if state.walls.key?(cell_closest_to_mouse)
state.walls.delete(cell_closest_to_mouse)
recalculate
end
end
end
# Adds walls at cells under the cursor
def input_add_wall
if mouse_inside_grid?
unless state.walls.key?(cell_closest_to_mouse)
state.walls[cell_closest_to_mouse] = true
recalculate
end
end
end
# This method is called when the user is editing the slider
# It pauses the animation and moves the white circle to the closest integer point
# on the slider
# Changes the step of the search to be animated
def input_slider
state.play = false
mouse_x = inputs.mouse.point.x
# Bounds the mouse_x to the closest x value on the slider line
mouse_x = slider.x if mouse_x < slider.x
mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w
# Sets the current search step to the one represented by the mouse x value
# The slider's circle moves due to the render_slider method using anim_steps
state.anim_steps = ((mouse_x - slider.x) / slider.spacing).to_i
recalculate
end
# Whenever the user edits the grid,
# The search has to be recalculated upto the current step
# with the current grid as the initial state of the grid
def recalculate
# Resets the search
state.frontier = []
state.visited = {}
# Moves the animation forward one step at a time
state.anim_steps.times { calc }
end
# This method moves the search forward one step
# When the animation is playing it is called every tick
# And called whenever the current step of the animation needs to be recalculated
# Moves the search forward one step
# Parameter called_from_tick is true if it is called from the tick method
# It is false when the search is being recalculated after user editing the grid
def calc
# The setup to the search
# Runs once when the there is no frontier or visited cells
if state.frontier.empty? && state.visited.empty?
state.frontier << state.star
state.visited[state.star] = true
end
# A step in the search
unless state.frontier.empty?
# Takes the next frontier cell
new_frontier = state.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless state.visited.key?(neighbor) || state.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
state.frontier << neighbor
state.visited[neighbor] = true
end
end
end
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors(cell)
neighbors = []
neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1
neighbors << [cell.x, cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y] unless cell.x == 0
neighbors
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse helps with this
def cell_closest_to_mouse
# Closest cell to the mouse
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Bound x and y to the grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# These methods detect when the buttons are clicked
def left_button_clicked?
inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.left)
end
def center_button_clicked?
inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.center)
end
def right_button_clicked?
inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.right)
end
# Signal that the user is going to be moving the slider
# Is the mouse down on the circle of the slider?
def slider_clicked?
circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing)
circle_y = (slider.y - slider.offset)
circle_rect = [circle_x, circle_y, 37, 37]
inputs.mouse.down && inputs.mouse.point.inside_rect?(circle_rect)
end
# Signal that the user is going to be moving the star
def star_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star))
end
# Signal that the user is going to be removing walls
def wall_clicked?
inputs.mouse.down && mouse_inside_a_wall?
end
# Signal that the user is going to be adding walls
def grid_clicked?
inputs.mouse.down && mouse_inside_grid?
end
# Returns whether the mouse is inside of a wall
# Part of the condition that checks whether the user is removing a wall
def mouse_inside_a_wall?
state.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(scale_up([wall.x, wall.y]))
end
false
end
# Returns whether the mouse is inside of a grid
# Part of the condition that checks whether the user is adding a wall
def mouse_inside_grid?
inputs.mouse.point.inside_rect?(scale_up([0, 0, grid.width, grid.height]))
end
# Light brown
def unvisited_color
{ r: 221, g: 212, b: 213 }
end
# Dark Brown
def visited_color
{ r: 204, g: 191, b: 179 }
end
# Blue
def frontier_color
{ r: 103, g: 136, b: 204 }
end
# Camo Green
def wall_color
{ r: 134, g: 134, b: 120 }
end
# Button Background
def gray
{ r: 190, g: 190, b: 190 }
end
# These methods make the code more concise
def grid
state.grid
end
def buttons
state.buttons
end
def slider
state.slider
end
end
# Method that is called by DragonRuby periodically
# Used for updating animations and calculations
def tick args
# Pressing r will reset the application
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
# Every tick, new args are passed, and the Breadth First Search tick is called
$breadth_first_search ||= BreadthFirstSearch.new(args)
$breadth_first_search.args = args
$breadth_first_search.tick
end
def reset
$breadth_first_search = nil
end
Path Finding Algorithms - Detailed Breadth First Search - main.rb
# ./samples/13_path_finding_algorithms/02_detailed_breadth_first_search/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# A visual demonstration of a breadth first search
# Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
# An animation that can respond to user input in real time
# A breadth first search expands in all directions one step at a time
# The frontier is a queue of cells to be expanded from
# The visited hash allows quick lookups of cells that have been expanded from
# The walls hash allows quick lookup of whether a cell is a wall
# The breadth first search starts by adding the red star to the frontier array
# and marking it as visited
# Each step a cell is removed from the front of the frontier array (queue)
# Unless the neighbor is a wall or visited, it is added to the frontier array
# The neighbor is then marked as visited
# The frontier is blue
# Visited cells are light brown
# Walls are camo green
# Even when walls are visited, they will maintain their wall color
# This search numbers the order in which new cells are explored
# The next cell from where the search will continue is highlighted yellow
# And the cells that will be considered for expansion are in semi-transparent green
# The star can be moved by clicking and dragging
# Walls can be added and removed by clicking and dragging
class DetailedBreadthFirstSearch
attr_gtk
def initialize(args)
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
args.state.grid.width = 9
args.state.grid.height = 4
args.state.grid.cell_size = 90
# Stores which step of the animation is being rendered
# When the user moves the star or messes with the walls,
# the breadth first search is recalculated up to this step
args.state.anim_steps = 0
# At some step the animation will end,
# and further steps won't change anything (the whole grid will be explored)
# This step is roughly the grid's width * height
# When anim_steps equals max_steps no more calculations will occur
# and the slider will be at the end
args.state.max_steps = args.state.grid.width * args.state.grid.height
# The location of the star and walls of the grid
# They can be modified to have a different initial grid
# Walls are stored in a hash for quick look up when doing the search
args.state.star = [3, 2]
args.state.walls = {}
# Variables that are used by the breadth first search
# Storing cells that the search has visited, prevents unnecessary steps
# Expanding the frontier of the search in order makes the search expand
# from the center outward
args.state.visited = {}
args.state.frontier = []
args.state.cell_numbers = []
# What the user is currently editing on the grid
# Possible values are: :none, :slider, :star, :remove_wall, :add_wall
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
args.state.click_and_drag = :none
# The x, y, w, h values for the buttons
# Allow easy movement of the buttons location
# A centralized location to get values to detect input and draw the buttons
# Editing these values might mean needing to edit the label offsets
# which can be found in the appropriate render button methods
args.state.buttons.left = [450, 600, 160, 50]
args.state.buttons.right = [610, 600, 160, 50]
# The variables below are related to the slider
# They allow the user to customize them
# They also give a central location for the render and input methods to get
# information from
# x & y are the coordinates of the leftmost part of the slider line
args.state.slider.x = 400
args.state.slider.y = 675
# This is the width of the line
args.state.slider.w = 360
# This is the offset for the circle
# Allows the center of the circle to be on the line,
# as opposed to the upper right corner
args.state.slider.offset = 20
# This is the spacing between each of the notches on the slider
# Notches are places where the circle can rest on the slider line
# There needs to be a notch for each step before the maximum number of steps
args.state.slider.spacing = args.state.slider.w.to_f / args.state.max_steps.to_f
end
# This method is called every frame/tick
# Every tick, the current state of the search is rendered on the screen,
# User input is processed, and
def tick
render
input
end
# This method is called from tick and renders everything every tick
def render
render_buttons
render_slider
render_background
render_visited
render_frontier
render_walls
render_star
render_highlights
render_cell_numbers
end
# The methods below subdivide the task of drawing everything to the screen
# Draws the buttons that move the search backward or forward
# These buttons are rendered so the user knows where to click to move the search
def render_buttons
render_left_button
render_right_button
end
# Renders the button which steps the search backward
# Shows the user where to click to move the search backward
def render_left_button
# Draws the gray button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.left, gray]
outputs.borders << [buttons.left]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
label_x = buttons.left.x + 05
label_y = buttons.left.y + 35
outputs.labels << [label_x, label_y, "< Step backward"]
end
# Renders the button which steps the search forward
# Shows the user where to click to move the search forward
def render_right_button
# Draws the gray button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.right, gray]
outputs.borders << [buttons.right]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
label_x = buttons.right.x + 10
label_y = buttons.right.y + 35
outputs.labels << [label_x, label_y, "Step forward >"]
end
# Draws the slider so the user can move it and see the progress of the search
def render_slider
# Using primitives hides the line under the white circle of the slider
# Draws the line
outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line
# The circle needs to be offset so that the center of the circle
# overlaps the line instead of the upper right corner of the circle
# The circle's x value is also moved based on the current seach step
circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing)
circle_y = (slider.y - slider.offset)
circle_rect = [circle_x, circle_y, 37, 37]
outputs.primitives << [circle_rect, 'circle-white.png'].sprite
end
# Draws what the grid looks like with nothing on it
# Which is a bunch of unvisited cells
# Drawn first so other things can draw on top of it
def render_background
render_unvisited
# The grid lines make the cells appear separate
render_grid_lines
end
# Draws a rectangle the size of the entire grid to represent unvisited cells
# Unvisited cells are the default cell
def render_unvisited
background = [0, 0, grid.width, grid.height]
outputs.solids << scale_up(background).merge(unvisited_color)
end
# Draws grid lines to show the division of the grid into cells
def render_grid_lines
outputs.lines << (0..grid.width).map do |x|
scale_up(vertical_line(x)).merge(grid_line_color)
end
outputs.lines << (0..grid.height).map do |y|
scale_up(horizontal_line(y)).merge(grid_line_color)
end
end
# Easy way to get a vertical line given an index
def vertical_line column
[column, 0, 0, grid.height]
end
# Easy way to get a horizontal line given an index
def horizontal_line row
[0, row, grid.width, 0]
end
# Draws the area that is going to be searched from
# The frontier is the most outward parts of the search
def render_frontier
state.frontier.each do |cell|
outputs.solids << scale_up(cell).merge(frontier_color)
end
end
# Draws the walls
def render_walls
state.walls.each_key do |wall|
outputs.solids << scale_up(wall).merge(wall_color)
end
end
# Renders cells that have been searched in the appropriate color
def render_visited
state.visited.each_key do |cell|
outputs.solids << scale_up(cell).merge(visited_color)
end
end
# Renders the star
def render_star
outputs.sprites << scale_up(state.star).merge({ path: 'star.png' })
end
# Cells have a number rendered in them based on when they were explored
# This is based off of their index in the cell_numbers array
# Cells are added to this array the same time they are added to the frontier array
def render_cell_numbers
state.cell_numbers.each_with_index do |cell, index|
# Math that approx centers the number in the cell
label_x = (cell.x * grid.cell_size) + grid.cell_size / 2 - 5
label_y = (cell.y * grid.cell_size) + (grid.cell_size / 2) + 5
outputs.labels << [label_x, label_y, (index + 1).to_s]
end
end
# The next frontier to be expanded is highlighted yellow
# Its adjacent non-wall neighbors have their border highlighted green
# This is to show the user how the search expands
def render_highlights
return if state.frontier.empty?
# Highlight the next frontier to be expanded yellow
next_frontier = state.frontier[0]
outputs.solids << scale_up(next_frontier).merge(highlighter_yellow)
# Neighbors have a semi-transparent green layer over them
# Unless the neighbor is a wall
adjacent_neighbors(next_frontier).each do |neighbor|
unless state.walls.key?(neighbor)
outputs.solids << scale_up(neighbor).merge(highlighter_green)
end
end
end
# Cell Size is used when rendering to allow the grid to be scaled up or down
# Cells in the frontier array and visited hash and walls hash are stored as x & y
# Scaling up cells and lines when rendering allows omitting of width and height
def scale_up(cell)
if cell.size == 2
return {
x: cell.x * grid.cell_size,
y: cell.y * grid.cell_size,
w: grid.cell_size,
h: grid.cell_size
}
else
return {
x: cell.x * grid.cell_size,
y: cell.y * grid.cell_size,
w: cell.w * grid.cell_size,
h: cell.h * grid.cell_size
}
end
end
# This method processes user input every tick
# This method allows the user to use the buttons, slider, and edit the grid
# There are 2 types of input:
# Button Input
# Click and Drag Input
#
# Button Input is used for the backward step and forward step buttons
# Input is detected by mouse up within the bounds of the rect
#
# Click and Drag Input is used for moving the star, adding walls,
# removing walls, and the slider
#
# When the mouse is down on the star, the click_and_drag variable is set to :star
# While click_and_drag equals :star, the cursor's position is used to calculate the
# appropriate drag behavior
#
# When the mouse goes up click_and_drag is set to :none
#
# A variable has to be used because the star has to continue being edited even
# when the cursor is no longer over the star
#
# Similar things occur for the other Click and Drag inputs
def input
# Processes inputs for the buttons
input_buttons
# Detects which if any click and drag input is occurring
detect_click_and_drag
# Does the appropriate click and drag input based on the click_and_drag variable
process_click_and_drag
end
# Detects and Process input for each button
def input_buttons
input_left_button
input_right_button
end
# Checks if the previous step button is clicked
# If it is, it pauses the animation and moves the search one step backward
def input_left_button
if left_button_clicked?
unless state.anim_steps == 0
state.anim_steps -= 1
recalculate
end
end
end
# Checks if the next step button is clicked
# If it is, it pauses the animation and moves the search one step forward
def input_right_button
if right_button_clicked?
unless state.anim_steps == state.max_steps
state.anim_steps += 1
# Although normally recalculate would be called here
# because the right button only moves the search forward
# We can just do that
calc
end
end
end
# Whenever the user edits the grid,
# The search has to be recalculated upto the current step
def recalculate
# Resets the search
state.frontier = []
state.visited = {}
state.cell_numbers = []
# Moves the animation forward one step at a time
state.anim_steps.times { calc }
end
# Determines what the user is clicking and planning on dragging
# Click and drag input is initiated by a click on the appropriate item
# and ended by mouse up
# Storing the value allows the user to continue the same edit as long as the
# mouse left click is held
def detect_click_and_drag
if inputs.mouse.up
state.click_and_drag = :none
elsif star_clicked?
state.click_and_drag = :star
elsif wall_clicked?
state.click_and_drag = :remove_wall
elsif grid_clicked?
state.click_and_drag = :add_wall
elsif slider_clicked?
state.click_and_drag = :slider
end
end
# Processes input based on what the user is currently dragging
def process_click_and_drag
if state.click_and_drag == :slider
input_slider
elsif state.click_and_drag == :star
input_star
elsif state.click_and_drag == :remove_wall
input_remove_wall
elsif state.click_and_drag == :add_wall
input_add_wall
end
end
# This method is called when the user is dragging the slider
# It moves the current animation step to the point represented by the slider
def input_slider
mouse_x = inputs.mouse.point.x
# Bounds the mouse_x to the closest x value on the slider line
mouse_x = slider.x if mouse_x < slider.x
mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w
# Sets the current search step to the one represented by the mouse x value
# The slider's circle moves due to the render_slider method using anim_steps
state.anim_steps = ((mouse_x - slider.x) / slider.spacing).to_i
recalculate
end
# Moves the star to the grid closest to the mouse
# Only recalculates the search if the star changes position
# Called whenever the user is dragging the star
def input_star
old_star = state.star.clone
state.star = cell_closest_to_mouse
unless old_star == state.star
recalculate
end
end
# Removes walls that are under the cursor
def input_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if mouse_inside_grid?
if state.walls.key?(cell_closest_to_mouse)
state.walls.delete(cell_closest_to_mouse)
recalculate
end
end
end
# Adds walls at cells under the cursor
def input_add_wall
# Adds a wall to the hash
# We can use the grid closest to mouse, because the cursor is inside the grid
if mouse_inside_grid?
unless state.walls.key?(cell_closest_to_mouse)
state.walls[cell_closest_to_mouse] = true
recalculate
end
end
end
# This method moves the search forward one step
# When the animation is playing it is called every tick
# And called whenever the current step of the animation needs to be recalculated
# Moves the search forward one step
# Parameter called_from_tick is true if it is called from the tick method
# It is false when the search is being recalculated after user editing the grid
def calc
# The setup to the search
# Runs once when the there is no frontier or visited cells
if state.frontier.empty? && state.visited.empty?
state.frontier << state.star
state.visited[state.star] = true
end
# A step in the search
unless state.frontier.empty?
# Takes the next frontier cell
new_frontier = state.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless state.visited.key?(neighbor) || state.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
state.frontier << neighbor
state.visited[neighbor] = true
# Also assign them a frontier number
state.cell_numbers << neighbor
end
end
end
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors cell
neighbors = []
neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1
neighbors << [cell.x, cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y] unless cell.x == 0
neighbors
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the grid closest to the mouse helps with this
def cell_closest_to_mouse
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
[x, y]
end
# These methods detect when the buttons are clicked
def left_button_clicked?
(inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.left)) || inputs.keyboard.key_up.left
end
def right_button_clicked?
(inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.right)) || inputs.keyboard.key_up.right
end
# Signal that the user is going to be moving the slider
def slider_clicked?
circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing)
circle_y = (slider.y - slider.offset)
circle_rect = [circle_x, circle_y, 37, 37]
inputs.mouse.down && inputs.mouse.point.inside_rect?(circle_rect)
end
# Signal that the user is going to be moving the star
def star_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star))
end
# Signal that the user is going to be removing walls
def wall_clicked?
inputs.mouse.down && mouse_inside_a_wall?
end
# Signal that the user is going to be adding walls
def grid_clicked?
inputs.mouse.down && mouse_inside_grid?
end
# Returns whether the mouse is inside of a wall
# Part of the condition that checks whether the user is removing a wall
def mouse_inside_a_wall?
state.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(scale_up(wall))
end
false
end
# Returns whether the mouse is inside of a grid
# Part of the condition that checks whether the user is adding a wall
def mouse_inside_grid?
inputs.mouse.point.inside_rect?(scale_up([0, 0, grid.width, grid.height]))
end
# These methods provide handy aliases to colors
# Light brown
def unvisited_color
{ r: 221, g: 212, b: 213 }
end
# Black
def grid_line_color
{ r: 255, g: 255, b: 255 }
end
# Dark Brown
def visited_color
{ r: 204, g: 191, b: 179 }
end
# Blue
def frontier_color
{ r: 103, g: 136, b: 204 }
end
# Camo Green
def wall_color
{ r: 134, g: 134, b: 120 }
end
# Next frontier to be expanded
def highlighter_yellow
{ r: 214, g: 231, b: 125 }
end
# The neighbors of the next frontier to be expanded
def highlighter_green
{ r: 65, g: 191, b: 127, a: 70 }
end
# Button background
def gray
[190, 190, 190]
end
# These methods make the code more concise
def grid
state.grid
end
def buttons
state.buttons
end
def slider
state.slider
end
end
def tick args
# Pressing r resets the program
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
$detailed_breadth_first_search ||= DetailedBreadthFirstSearch.new(args)
$detailed_breadth_first_search.args = args
$detailed_breadth_first_search.tick
end
def reset
$detailed_breadth_first_search = nil
end
Path Finding Algorithms - Breadcrumbs - main.rb
# ./samples/13_path_finding_algorithms/03_breadcrumbs/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
class Breadcrumbs
attr_gtk
# This method is called every frame/tick
# Every tick, the current state of the search is rendered on the screen,
# User input is processed, and
# The next step in the search is calculated
def tick
defaults
# If the grid has not been searched
if search.came_from.empty?
calc
# Calc Path
end
render
input
end
def defaults
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
grid.width ||= 30
grid.height ||= 15
grid.cell_size ||= 40
grid.rect ||= [0, 0, grid.width, grid.height]
# The location of the star and walls of the grid
# They can be modified to have a different initial grid
# Walls are stored in a hash for quick look up when doing the search
grid.star ||= [2, 8]
grid.target ||= [10, 5]
grid.walls ||= {
[3, 3] => true,
[3, 4] => true,
[3, 5] => true,
[3, 6] => true,
[3, 7] => true,
[3, 8] => true,
[3, 9] => true,
[3, 10] => true,
[3, 11] => true,
[4, 3] => true,
[4, 4] => true,
[4, 5] => true,
[4, 6] => true,
[4, 7] => true,
[4, 8] => true,
[4, 9] => true,
[4, 10] => true,
[4, 11] => true,
[13, 0] => true,
[13, 1] => true,
[13, 2] => true,
[13, 3] => true,
[13, 4] => true,
[13, 5] => true,
[13, 6] => true,
[13, 7] => true,
[13, 8] => true,
[13, 9] => true,
[13, 10] => true,
[14, 0] => true,
[14, 1] => true,
[14, 2] => true,
[14, 3] => true,
[14, 4] => true,
[14, 5] => true,
[14, 6] => true,
[14, 7] => true,
[14, 8] => true,
[14, 9] => true,
[14, 10] => true,
[21, 8] => true,
[21, 9] => true,
[21, 10] => true,
[21, 11] => true,
[21, 12] => true,
[21, 13] => true,
[21, 14] => true,
[22, 8] => true,
[22, 9] => true,
[22, 10] => true,
[22, 11] => true,
[22, 12] => true,
[22, 13] => true,
[22, 14] => true,
[23, 8] => true,
[23, 9] => true,
[24, 8] => true,
[24, 9] => true,
[25, 8] => true,
[25, 9] => true,
}
# Variables that are used by the breadth first search
# Storing cells that the search has visited, prevents unnecessary steps
# Expanding the frontier of the search in order makes the search expand
# from the center outward
# The cells from which the search is to expand
search.frontier ||= []
# A hash of where each cell was expanded from
# The key is a cell, and the value is the cell it came from
search.came_from ||= {}
# Cells that are part of the path from the target to the star
search.path ||= {}
# What the user is currently editing on the grid
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
state.current_input ||= :none
end
def calc
# Setup the search to start from the star
search.frontier << grid.star
search.came_from[grid.star] = nil
# Until there are no more cells to expand from
until search.frontier.empty?
# Takes the next frontier cell
new_frontier = search.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless search.came_from.has_key?(neighbor) || grid.walls.has_key?(neighbor)
# Add them to the frontier and mark them as visited in the first grid
# Unless the target has been visited
# Add the neighbor to the frontier and remember which cell it came from
search.frontier << neighbor
search.came_from[neighbor] = new_frontier
end
end
end
end
# Draws everything onto the screen
def render
render_background
# render_heat_map
render_walls
# render_path
# render_labels
render_arrows
render_star
render_target
unless grid.walls.has_key?(grid.target)
render_trail
end
end
def render_trail(current_cell=grid.target)
return if current_cell == grid.star
parent_cell = search.came_from[current_cell]
if current_cell && parent_cell
outputs.lines << [(current_cell.x + 0.5) * grid.cell_size, (current_cell.y + 0.5) * grid.cell_size,
(parent_cell.x + 0.5) * grid.cell_size, (parent_cell.y + 0.5) * grid.cell_size, purple]
end
render_trail(parent_cell)
end
def render_arrows
search.came_from.each do |child, parent|
if parent && child
arrow_cell = [(child.x + parent.x) / 2, (child.y + parent.y) / 2]
if parent.x > child.x # If the parent cell is to the right of the child cell
# Point arrow right
outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 0})
elsif parent.x < child.x # If the parent cell is to the right of the child cell
outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 180})
elsif parent.y > child.y # If the parent cell is to the right of the child cell
outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 90})
elsif parent.y < child.y # If the parent cell is to the right of the child cell
outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 270})
end
end
end
end
# The methods below subdivide the task of drawing everything to the screen
# Draws what the grid looks like with nothing on it
def render_background
render_unvisited
render_grid_lines
end
# Draws both grids
def render_unvisited
outputs.solids << scale_up(grid.rect).merge(unvisited_color)
end
# Draws grid lines to show the division of the grid into cells
def render_grid_lines
outputs.lines << (0..grid.width).map { |x| vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| horizontal_line(y) }
end
# Easy way to draw vertical lines given an index
def vertical_line x
line = { x: x, y: 0, w: 0, h: grid.height }
line.transform_values { |v| v * grid.cell_size }
end
# Easy way to draw horizontal lines given an index
def horizontal_line y
line = { x: 0, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Draws the walls on both grids
def render_walls
outputs.solids << grid.walls.map do |key, value|
scale_up(key).merge(wall_color)
end
end
# Renders the star on both grids
def render_star
outputs.sprites << scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the target on both grids
def render_target
outputs.sprites << scale_up(grid.target).merge({ path: 'target.png'})
end
# Labels the grids
def render_labels
outputs.labels << [200, 625, "Without early exit"]
end
# Renders the path based off of the search.path hash
def render_path
# If the star and target are disconnected there will only be one path
# The path should not render in that case
unless search.path.size == 1
search.path.each_key do | cell |
# Renders path on both grids
outputs.solids << [scale_up(cell), path_color]
end
end
end
# Calculates the path from the target to the star after the search is over
# Relies on the came_from hash
# Fills the search.path hash, which is later rendered on screen
def calc_path
endpoint = grid.target
while endpoint
search.path[endpoint] = true
endpoint = search.came_from[endpoint]
end
end
# In code, the cells are represented as 1x1 rectangles
# When drawn, the cells are larger than 1x1 rectangles
# This method is used to scale up cells, and lines
# Objects are scaled up according to the grid.cell_size variable
# This allows for easy customization of the visual scale of the grid
def scale_up(cell)
x = cell.x * grid.cell_size
y = cell.y * grid.cell_size
w = cell.w.zero? ? grid.cell_size : cell.w * grid.cell_size
h = cell.h.zero? ? grid.cell_size : cell.h * grid.cell_size
{ x: x, y: y, w: w, h: h }
end
# This method processes user input every tick
# Any method with "1" is related to the first grid
# Any method with "2" is related to the second grid
def input
# The program has to remember that the user is dragging an object
# even when the mouse is no longer over that object
# So detecting input and processing input is separate
# detect_input
# process_input
if inputs.mouse.up
state.current_input = :none
elsif star_clicked?
state.current_input = :star
end
if mouse_inside_grid?
unless grid.target == cell_closest_to_mouse
grid.target = cell_closest_to_mouse
end
if state.current_input == :star
unless grid.star == cell_closest_to_mouse
grid.star = cell_closest_to_mouse
end
end
end
end
# Determines what the user is editing and stores the value
# Storing the value allows the user to continue the same edit as long as the
# mouse left click is held
def detect_input
# When the mouse is up, nothing is being edited
if inputs.mouse.up
state.current_input = :none
# When the star in the no second grid is clicked
elsif star_clicked?
state.current_input = :star
# When the target in the no second grid is clicked
elsif target_clicked?
state.current_input = :target
# When a wall in the first grid is clicked
elsif wall_clicked?
state.current_input = :remove_wall
# When the first grid is clicked
elsif grid_clicked?
state.current_input = :add_wall
end
end
# Processes click and drag based on what the user is currently dragging
def process_input
if state.current_input == :star
input_star
elsif state.current_input == :target
input_target
elsif state.current_input == :remove_wall
input_remove_wall
elsif state.current_input == :add_wall
input_add_wall
end
end
# Moves the star to the cell closest to the mouse in the first grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def input_star
old_star = grid.star.clone
grid.star = cell_closest_to_mouse
unless old_star == grid.star
reset_search
end
end
# Moves the target to the grid closest to the mouse in the first grid
# Only reset_searchs the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def input_target
old_target = grid.target.clone
grid.target = cell_closest_to_mouse
unless old_target == grid.target
reset_search
end
end
# Removes walls in the first grid that are under the cursor
def input_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if mouse_inside_grid?
if grid.walls.key?(cell_closest_to_mouse)
grid.walls.delete(cell_closest_to_mouse)
reset_search
end
end
end
# Adds a wall in the first grid in the cell the mouse is over
def input_add_wall
if mouse_inside_grid?
unless grid.walls.key?(cell_closest_to_mouse)
grid.walls[cell_closest_to_mouse] = true
reset_search
end
end
end
# Whenever the user edits the grid,
# The search has to be reset_searchd upto the current step
# with the current grid as the initial state of the grid
def reset_search
# Reset_Searchs the search
search.frontier = []
search.came_from = {}
search.path = {}
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors(cell)
neighbors = []
# Gets all the valid neighbors into the array
# From southern neighbor, clockwise
neighbors << [cell.x, cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y] unless cell.x == 0
neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1
# Sorts the neighbors so the rendered path is a zigzag path
# Cells in a diagonal direction are given priority
# Comment this line to see the difference
neighbors = neighbors.sort_by { |neighbor_x, neighbor_y| proximity_to_star(neighbor_x, neighbor_y) }
neighbors
end
# Finds the vertical and horizontal distance of a cell from the star
# and returns the larger value
# This method is used to have a zigzag pattern in the rendered path
# A cell that is [5, 5] from the star,
# is explored before over a cell that is [0, 7] away.
# So, if possible, the search tries to go diagonal (zigzag) first
def proximity_to_star(x, y)
distance_x = (grid.star.x - x).abs
distance_y = (grid.star.y - y).abs
if distance_x > distance_y
return distance_x
else
return distance_y
end
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse helps with this
def cell_closest_to_mouse
# Closest cell to the mouse in the first grid
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Bound x and y to the grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# Signal that the user is going to be moving the star from the first grid
def star_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(grid.star))
end
# Signal that the user is going to be moving the target from the first grid
def target_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(grid.target))
end
# Signal that the user is going to be adding walls from the first grid
def grid_clicked?
inputs.mouse.down && mouse_inside_grid?
end
# Returns whether the mouse is inside of the first grid
# Part of the condition that checks whether the user is adding a wall
def mouse_inside_grid?
inputs.mouse.point.inside_rect?(scale_up(grid.rect))
end
# These methods provide handy aliases to colors
# Light brown
def unvisited_color
{ r: 221, g: 212, b: 213 }
end
# Camo Green
def wall_color
{ r: 134, g: 134, b: 120 }
end
# Pastel White
def path_color
[231, 230, 228]
end
def red
[255, 0, 0]
end
def purple
[149, 64, 191]
end
# Makes code more concise
def grid
state.grid
end
def search
state.search
end
end
# Method that is called by DragonRuby periodically
# Used for updating animations and calculations
def tick args
# Pressing r will reset the application
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
# Every tick, new args are passed, and the Breadth First Search tick is called
$breadcrumbs ||= Breadcrumbs.new
$breadcrumbs.args = args
$breadcrumbs.tick
end
def reset
$breadcrumbs = nil
end
# # Representation of how far away visited cells are from the star
# # Replaces the render_visited method
# # Visually demonstrates the effectiveness of early exit for pathfinding
# def render_heat_map
# # THIS CODE NEEDS SOME FIXING DUE TO REFACTORING
# search.came_from.each_key do | cell |
# distance = (grid.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs
# max_distance = grid.width + grid.height
# alpha = 255.to_i * distance.to_i / max_distance.to_i
# outputs.solids << [scale_up(visited_cell), red, alpha]
# # outputs.solids << [early_exit_scale_up(visited_cell), red, alpha]
# end
# end
Path Finding Algorithms - Early Exit - main.rb
# ./samples/13_path_finding_algorithms/04_early_exit/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# Comparison of a breadth first search with and without early exit
# Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
# Demonstrates the exploration difference caused by early exit
# Also demonstrates how breadth first search is used for path generation
# The left grid is a breadth first search without early exit
# The right grid is a breadth first search with early exit
# The red squares represent how far the search expanded
# The darker the red, the farther the search proceeded
# Comparison of the heat map reveals how much searching can be saved by early exit
# The white path shows path generation via breadth first search
class EarlyExitBreadthFirstSearch
attr_gtk
# This method is called every frame/tick
# Every tick, the current state of the search is rendered on the screen,
# User input is processed, and
# The next step in the search is calculated
def tick
defaults
# If the grid has not been searched
if state.visited.empty?
# Complete the search
state.max_steps.times { step }
# And calculate the path
calc_path
end
render
input
end
def defaults
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
grid.width ||= 15
grid.height ||= 15
grid.cell_size ||= 40
grid.rect ||= [0, 0, grid.width, grid.height]
# At some step the animation will end,
# and further steps won't change anything (the whole grid.widthill be explored)
# This step is roughly the grid's width * height
# When anim_steps equals max_steps no more calculations will occur
# and the slider will be at the end
state.max_steps ||= args.state.grid.width * args.state.grid.height
# The location of the star and walls of the grid
# They can be modified to have a different initial grid
# Walls are stored in a hash for quick look up when doing the search
state.star ||= [2, 8]
state.target ||= [10, 5]
state.walls ||= {}
# Variables that are used by the breadth first search
# Storing cells that the search has visited, prevents unnecessary steps
# Expanding the frontier of the search in order makes the search expand
# from the center outward
# Visited cells in the first grid
state.visited ||= {}
# Visited cells in the second grid
state.early_exit_visited ||= {}
# The cells from which the search is to expand
state.frontier ||= []
# A hash of where each cell was expanded from
# The key is a cell, and the value is the cell it came from
state.came_from ||= {}
# Cells that are part of the path from the target to the star
state.path ||= {}
# What the user is currently editing on the grid
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
state.current_input ||= :none
end
# Draws everything onto the screen
def render
render_background
render_heat_map
render_walls
render_path
render_star
render_target
render_labels
end
# The methods below subdivide the task of drawing everything to the screen
# Draws what the grid looks like with nothing on it
def render_background
render_unvisited
render_grid_lines
end
# Draws both grids
def render_unvisited
outputs.solids << scale_up(grid.rect).merge(unvisited_color)
outputs.solids << early_exit_scale_up(grid.rect).merge(unvisited_color)
end
# Draws grid lines to show the division of the grid into cells
def render_grid_lines
outputs.lines << (0..grid.width).map { |x| vertical_line(x) }
outputs.lines << (0..grid.width).map { |x| early_exit_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| horizontal_line(y) }
outputs.lines << (0..grid.height).map { |y| early_exit_horizontal_line(y) }
end
# Easy way to draw vertical lines given an index
def vertical_line x
line = { x: x, y: 0, w: 0, h: grid.height }
line.transform_values { |v| v * grid.cell_size }
end
# Easy way to draw horizontal lines given an index
def horizontal_line y
line = { x: 0, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Easy way to draw vertical lines given an index
def early_exit_vertical_line x
vertical_line(x + grid.width + 1)
end
# Easy way to draw horizontal lines given an index
def early_exit_horizontal_line y
line = { x: grid.width + 1, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Draws the walls on both grids
def render_walls
state.walls.each_key do |wall|
outputs.solids << scale_up(wall).merge(wall_color)
outputs.solids << early_exit_scale_up(wall).merge(wall_color)
end
end
# Renders the star on both grids
def render_star
outputs.sprites << scale_up(state.star).merge({path: 'star.png'})
outputs.sprites << early_exit_scale_up(state.star).merge({path: 'star.png'})
end
# Renders the target on both grids
def render_target
outputs.sprites << scale_up(state.target).merge({path: 'target.png'})
outputs.sprites << early_exit_scale_up(state.target).merge({path: 'target.png'})
end
# Labels the grids
def render_labels
outputs.labels << [200, 625, "Without early exit"]
outputs.labels << [875, 625, "With early exit"]
end
# Renders the path based off of the state.path hash
def render_path
# If the star and target are disconnected there will only be one path
# The path should not render in that case
unless state.path.size == 1
state.path.each_key do | cell |
# Renders path on both grids
outputs.solids << scale_up(cell).merge(path_color)
outputs.solids << early_exit_scale_up(cell).merge(path_color)
end
end
end
# Calculates the path from the target to the star after the search is over
# Relies on the came_from hash
# Fills the state.path hash, which is later rendered on screen
def calc_path
endpoint = state.target
while endpoint
state.path[endpoint] = true
endpoint = state.came_from[endpoint]
end
end
# Representation of how far away visited cells are from the star
# Replaces the render_visited method
# Visually demonstrates the effectiveness of early exit for pathfinding
def render_heat_map
state.visited.each_key do | visited_cell |
distance = (state.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs
max_distance = grid.width + grid.height
alpha = 255.to_i * distance.to_i / max_distance.to_i
heat_color = red.merge({a: alpha })
outputs.solids << scale_up(visited_cell).merge(heat_color)
end
state.early_exit_visited.each_key do | visited_cell |
distance = (state.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs
max_distance = grid.width + grid.height
alpha = 255.to_i * distance.to_i / max_distance.to_i
heat_color = red.merge({a: alpha })
outputs.solids << early_exit_scale_up(visited_cell).merge(heat_color)
end
end
# Translates the given cell grid.width + 1 to the right and then scales up
# Used to draw cells for the second grid
# This method does not work for lines,
# so separate methods exist for the grid lines
def early_exit_scale_up(cell)
cell_clone = cell.clone
cell_clone.x += grid.width + 1
scale_up(cell_clone)
end
# In code, the cells are represented as 1x1 rectangles
# When drawn, the cells are larger than 1x1 rectangles
# This method is used to scale up cells, and lines
# Objects are scaled up according to the grid.cell_size variable
# This allows for easy customization of the visual scale of the grid
def scale_up(cell)
if cell.size == 2
return {
x: cell.x * grid.cell_size,
y: cell.y * grid.cell_size,
w: grid.cell_size,
h: grid.cell_size
}
else
return {
x: cell.x * grid.cell_size,
y: cell.y * grid.cell_size,
w: cell.w * grid.cell_size,
h: cell.h * grid.cell_size
}
end
end
# This method processes user input every tick
# Any method with "1" is related to the first grid
# Any method with "2" is related to the second grid
def input
# The program has to remember that the user is dragging an object
# even when the mouse is no longer over that object
# So detecting input and processing input is separate
detect_input
process_input
end
# Determines what the user is editing and stores the value
# Storing the value allows the user to continue the same edit as long as the
# mouse left click is held
def detect_input
# When the mouse is up, nothing is being edited
if inputs.mouse.up
state.current_input = :none
# When the star in the no second grid is clicked
elsif star_clicked?
state.current_input = :star
# When the star in the second grid is clicked
elsif star2_clicked?
state.current_input = :star2
# When the target in the no second grid is clicked
elsif target_clicked?
state.current_input = :target
# When the target in the second grid is clicked
elsif target2_clicked?
state.current_input = :target2
# When a wall in the first grid is clicked
elsif wall_clicked?
state.current_input = :remove_wall
# When a wall in the second grid is clicked
elsif wall2_clicked?
state.current_input = :remove_wall2
# When the first grid is clicked
elsif grid_clicked?
state.current_input = :add_wall
# When the second grid is clicked
elsif grid2_clicked?
state.current_input = :add_wall2
end
end
# Processes click and drag based on what the user is currently dragging
def process_input
if state.current_input == :star
input_star
elsif state.current_input == :star2
input_star2
elsif state.current_input == :target
input_target
elsif state.current_input == :target2
input_target2
elsif state.current_input == :remove_wall
input_remove_wall
elsif state.current_input == :remove_wall2
input_remove_wall2
elsif state.current_input == :add_wall
input_add_wall
elsif state.current_input == :add_wall2
input_add_wall2
end
end
# Moves the star to the cell closest to the mouse in the first grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def input_star
old_star = state.star.clone
state.star = cell_closest_to_mouse
unless old_star == state.star
reset_search
end
end
# Moves the star to the cell closest to the mouse in the second grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def input_star2
old_star = state.star.clone
state.star = cell_closest_to_mouse2
unless old_star == state.star
reset_search
end
end
# Moves the target to the grid closest to the mouse in the first grid
# Only reset_searchs the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def input_target
old_target = state.target.clone
state.target = cell_closest_to_mouse
unless old_target == state.target
reset_search
end
end
# Moves the target to the cell closest to the mouse in the second grid
# Only reset_searchs the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def input_target2
old_target = state.target.clone
state.target = cell_closest_to_mouse2
unless old_target == state.target
reset_search
end
end
# Removes walls in the first grid that are under the cursor
def input_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if mouse_inside_grid?
if state.walls.key?(cell_closest_to_mouse)
state.walls.delete(cell_closest_to_mouse)
reset_search
end
end
end
# Removes walls in the second grid that are under the cursor
def input_remove_wall2
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if mouse_inside_grid2?
if state.walls.key?(cell_closest_to_mouse2)
state.walls.delete(cell_closest_to_mouse2)
reset_search
end
end
end
# Adds a wall in the first grid in the cell the mouse is over
def input_add_wall
if mouse_inside_grid?
unless state.walls.key?(cell_closest_to_mouse)
state.walls[cell_closest_to_mouse] = true
reset_search
end
end
end
# Adds a wall in the second grid in the cell the mouse is over
def input_add_wall2
if mouse_inside_grid2?
unless state.walls.key?(cell_closest_to_mouse2)
state.walls[cell_closest_to_mouse2] = true
reset_search
end
end
end
# Whenever the user edits the grid,
# The search has to be reset_searchd upto the current step
# with the current grid as the initial state of the grid
def reset_search
# Reset_Searchs the search
state.frontier = []
state.visited = {}
state.early_exit_visited = {}
state.came_from = {}
state.path = {}
end
# Moves the search forward one step
def step
# The setup to the search
# Runs once when there are no visited cells
if state.visited.empty?
state.visited[state.star] = true
state.early_exit_visited[state.star] = true
state.frontier << state.star
state.came_from[state.star] = nil
end
# A step in the search
unless state.frontier.empty?
# Takes the next frontier cell
new_frontier = state.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless state.visited.key?(neighbor) || state.walls.key?(neighbor)
# Add them to the frontier and mark them as visited in the first grid
state.visited[neighbor] = true
# Unless the target has been visited
unless state.visited.key?(state.target)
# Mark the neighbor as visited in the second grid as well
state.early_exit_visited[neighbor] = true
end
# Add the neighbor to the frontier and remember which cell it came from
state.frontier << neighbor
state.came_from[neighbor] = new_frontier
end
end
end
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors(cell)
neighbors = []
# Gets all the valid neighbors into the array
# From southern neighbor, clockwise
neighbors << [cell.x, cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y] unless cell.x == 0
neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1
# Sorts the neighbors so the rendered path is a zigzag path
# Cells in a diagonal direction are given priority
# Comment this line to see the difference
neighbors = neighbors.sort_by { |neighbor_x, neighbor_y| proximity_to_star(neighbor_x, neighbor_y) }
neighbors
end
# Finds the vertical and horizontal distance of a cell from the star
# and returns the larger value
# This method is used to have a zigzag pattern in the rendered path
# A cell that is [5, 5] from the star,
# is explored before over a cell that is [0, 7] away.
# So, if possible, the search tries to go diagonal (zigzag) first
def proximity_to_star(x, y)
distance_x = (state.star.x - x).abs
distance_y = (state.star.y - y).abs
if distance_x > distance_y
return distance_x
else
return distance_y
end
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse helps with this
def cell_closest_to_mouse
# Closest cell to the mouse in the first grid
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Bound x and y to the grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse in the second grid helps with this
def cell_closest_to_mouse2
# Closest cell grid to the mouse in the second
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Translate the cell to the first grid
x -= grid.width + 1
# Bound x and y to the first grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# Signal that the user is going to be moving the star from the first grid
def star_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star))
end
# Signal that the user is going to be moving the star from the second grid
def star2_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(early_exit_scale_up(state.star))
end
# Signal that the user is going to be moving the target from the first grid
def target_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.target))
end
# Signal that the user is going to be moving the target from the second grid
def target2_clicked?
inputs.mouse.down && inputs.mouse.point.inside_rect?(early_exit_scale_up(state.target))
end
# Signal that the user is going to be removing walls from the first grid
def wall_clicked?
inputs.mouse.down && mouse_inside_wall?
end
# Signal that the user is going to be removing walls from the second grid
def wall2_clicked?
inputs.mouse.down && mouse_inside_wall2?
end
# Signal that the user is going to be adding walls from the first grid
def grid_clicked?
inputs.mouse.down && mouse_inside_grid?
end
# Signal that the user is going to be adding walls from the second grid
def grid2_clicked?
inputs.mouse.down && mouse_inside_grid2?
end
# Returns whether the mouse is inside of a wall in the first grid
# Part of the condition that checks whether the user is removing a wall
def mouse_inside_wall?
state.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(scale_up(wall))
end
false
end
# Returns whether the mouse is inside of a wall in the second grid
# Part of the condition that checks whether the user is removing a wall
def mouse_inside_wall2?
state.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(early_exit_scale_up(wall))
end
false
end
# Returns whether the mouse is inside of the first grid
# Part of the condition that checks whether the user is adding a wall
def mouse_inside_grid?
inputs.mouse.point.inside_rect?(scale_up(grid.rect))
end
# Returns whether the mouse is inside of the second grid
# Part of the condition that checks whether the user is adding a wall
def mouse_inside_grid2?
inputs.mouse.point.inside_rect?(early_exit_scale_up(grid.rect))
end
# These methods provide handy aliases to colors
# Light brown
def unvisited_color
[221, 212, 213]
{ r: 221, g: 212, b: 213 }
end
# Camo Green
def wall_color
{ r: 134, g: 134, b: 120 }
end
# Pastel White
def path_color
{ r: 231, g: 230, b: 228 }
end
def red
{ r: 255, g: 0, b: 0 }
end
# Makes code more concise
def grid
state.grid
end
end
# Method that is called by DragonRuby periodically
# Used for updating animations and calculations
def tick args
# Pressing r will reset the application
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
# Every tick, new args are passed, and the Breadth First Search tick is called
$early_exit_breadth_first_search ||= EarlyExitBreadthFirstSearch.new
$early_exit_breadth_first_search.args = args
$early_exit_breadth_first_search.tick
end
def reset
$early_exit_breadth_first_search = nil
end
Path Finding Algorithms - Dijkstra - main.rb
# ./samples/13_path_finding_algorithms/05_dijkstra/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# Demonstrates how Dijkstra's Algorithm allows movement costs to be considered
# Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
# The first grid is a breadth first search with an early exit.
# It shows a heat map of all the cells that were visited by the search and their relative distance.
# The second grid is an implementation of Dijkstra's algorithm.
# Light green cells have 5 times the movement cost of regular cells.
# The heat map will darken based on movement cost.
# Dark green cells are walls, and the search cannot go through them.
class Movement_Costs
attr_gtk
# This method is called every frame/tick
# Every tick, the current state of the search is rendered on the screen,
# User input is processed, and
# The next step in the search is calculated
def tick
defaults
render
input
calc
end
def defaults
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
grid.width ||= 10
grid.height ||= 10
grid.cell_size ||= 60
grid.rect ||= [0, 0, grid.width, grid.height]
# The location of the star and walls of the grid
# They can be modified to have a different initial grid
# Walls are stored in a hash for quick look up when doing the search
state.star ||= [1, 5]
state.target ||= [8, 4]
state.walls ||= {[1, 1] => true, [2, 1] => true, [3, 1] => true, [1, 2] => true, [2, 2] => true, [3, 2] => true}
state.hills ||= {
[4, 1] => true,
[5, 1] => true,
[4, 2] => true,
[5, 2] => true,
[6, 2] => true,
[4, 3] => true,
[5, 3] => true,
[6, 3] => true,
[3, 4] => true,
[4, 4] => true,
[5, 4] => true,
[6, 4] => true,
[7, 4] => true,
[3, 5] => true,
[4, 5] => true,
[5, 5] => true,
[6, 5] => true,
[7, 5] => true,
[4, 6] => true,
[5, 6] => true,
[6, 6] => true,
[7, 6] => true,
[4, 7] => true,
[5, 7] => true,
[6, 7] => true,
[4, 8] => true,
[5, 8] => true,
}
# What the user is currently editing on the grid
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
state.user_input ||= :none
# Values that are used for the breadth first search
# Keeping track of what cells were visited prevents counting cells multiple times
breadth_first_search.visited ||= {}
# The cells from which the breadth first search will expand
breadth_first_search.frontier ||= []
# Keeps track of which cell all cells were searched from
# Used to recreate the path from the target to the star
breadth_first_search.came_from ||= {}
# Keeps track of the movement cost so far to be at a cell
# Allows the costs of new cells to be quickly calculated
# Also doubles as a way to check if cells have already been visited
dijkstra_search.cost_so_far ||= {}
# The cells from which the Dijkstra search will expand
dijkstra_search.frontier ||= []
# Keeps track of which cell all cells were searched from
# Used to recreate the path from the target to the star
dijkstra_search.came_from ||= {}
end
# Draws everything onto the screen
def render
render_background
render_heat_maps
render_star
render_target
render_hills
render_walls
render_paths
end
# The methods below subdivide the task of drawing everything to the screen
# Draws what the grid looks like with nothing on it
def render_background
render_unvisited
render_grid_lines
render_labels
end
# Draws two rectangles the size of the grid in the default cell color
# Used as part of the background
def render_unvisited
outputs.solids << scale_up(grid.rect).merge(unvisited_color)
outputs.solids << move_and_scale_up(grid.rect).merge(unvisited_color)
end
# Draws grid lines to show the division of the grid into cells
def render_grid_lines
outputs.lines << (0..grid.width).map { |x| vertical_line(x) }
outputs.lines << (0..grid.width).map { |x| shifted_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| horizontal_line(y) }
outputs.lines << (0..grid.height).map { |y| shifted_horizontal_line(y) }
end
# A line the size of the grid, multiplied by the cell size for rendering
def vertical_line x
line = { x: x, y: 0, w: 0, h: grid.height }
line.transform_values { |v| v * grid.cell_size }
end
# A line the size of the grid, multiplied by the cell size for rendering
def horizontal_line y
line = { x: 0, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Translate vertical line by the size of the grid and 1
def shifted_vertical_line x
vertical_line(x + grid.width + 1)
end
# Get horizontal line and shift to the right
def shifted_horizontal_line y
line = { x: grid.width + 1, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Labels the grids
def render_labels
outputs.labels << [175, 650, "Number of steps", 3]
outputs.labels << [925, 650, "Distance", 3]
end
def render_paths
render_breadth_first_search_path
render_dijkstra_path
end
def render_heat_maps
render_breadth_first_search_heat_map
render_dijkstra_heat_map
end
# This heat map shows the cells explored by the breadth first search and how far they are from the star.
def render_breadth_first_search_heat_map
# For each cell explored
breadth_first_search.visited.each_key do | visited_cell |
# Find its distance from the star
distance = (state.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs
max_distance = grid.width + grid.height
# Get it as a percent of the maximum distance and scale to 255 for use as an alpha value
alpha = 255.to_i * distance.to_i / max_distance.to_i
heat_color = red.merge({a: alpha })
outputs.solids << scale_up(visited_cell).merge(heat_color)
end
end
def render_breadth_first_search_path
# If the search found the target
if breadth_first_search.visited.has_key?(state.target)
# Start from the target
endpoint = state.target
# And the cell it came from
next_endpoint = breadth_first_search.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells
path = get_path_between(endpoint, next_endpoint)
outputs.solids << scale_up(path).merge(path_color)
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = breadth_first_search.came_from[endpoint]
# Continue till there are no more cells
end
end
end
def render_dijkstra_heat_map
dijkstra_search.cost_so_far.each do |visited_cell, cost|
max_cost = (grid.width + grid.height) #* 5
alpha = 255.to_i * cost.to_i / max_cost.to_i
heat_color = red.merge({a: alpha})
outputs.solids << move_and_scale_up(visited_cell).merge(heat_color)
end
end
def render_dijkstra_path
# If the search found the target
if dijkstra_search.came_from.has_key?(state.target)
# Get the target and the cell it came from
endpoint = state.target
next_endpoint = dijkstra_search.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between them
path = get_path_between(endpoint, next_endpoint)
outputs.solids << move_and_scale_up(path).merge(path_color)
# Shift one cell down the path
endpoint = next_endpoint
next_endpoint = dijkstra_search.came_from[endpoint]
# Repeat till the end of the path
end
end
end
# Renders the star on both grids
def render_star
outputs.sprites << scale_up(state.star).merge({path: 'star.png'})
outputs.sprites << move_and_scale_up(state.star).merge({path: 'star.png'})
end
# Renders the target on both grids
def render_target
outputs.sprites << scale_up(state.target).merge({path: 'target.png'})
outputs.sprites << move_and_scale_up(state.target).merge({path: 'target.png'})
end
def render_hills
state.hills.each_key do |hill|
outputs.solids << scale_up(hill).merge(hill_color)
outputs.solids << move_and_scale_up(hill).merge(hill_color)
end
end
# Draws the walls on both grids
def render_walls
state.walls.each_key do |wall|
outputs.solids << scale_up(wall).merge(wall_color)
outputs.solids << move_and_scale_up(wall).merge(wall_color)
end
end
def get_path_between(cell_one, cell_two)
path = nil
if cell_one.x == cell_two.x
if cell_one.y < cell_two.y
path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4]
else
path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4]
end
else
if cell_one.x < cell_two.x
path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4]
else
path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4]
end
end
path
end
# Translates the given cell grid.width + 1 to the right and then scales up
# Used to draw cells for the second grid
# This method does not work for lines,
# so separate methods exist for the grid lines
def move_and_scale_up(cell)
cell_clone = cell.clone
cell_clone.x += grid.width + 1
scale_up(cell_clone)
end
# In code, the cells are represented as 1x1 rectangles
# When drawn, the cells are larger than 1x1 rectangles
# This method is used to scale up cells, and lines
# Objects are scaled up according to the grid.cell_size variable
# This allows for easy customization of the visual scale of the grid
def scale_up(cell)
if cell.size == 2
return {
x: cell.x * grid.cell_size,
y: cell.y * grid.cell_size,
w: grid.cell_size,
h: grid.cell_size
}
else
return {
x: cell.x * grid.cell_size,
y: cell.y * grid.cell_size,
w: cell.w * grid.cell_size,
h: cell.h * grid.cell_size
}
end
end
# Handles user input every tick so the grid can be edited
# Separate input detection and processing is needed
# For example: Adding walls is started by clicking down on a hill,
# but the mouse doesn't need to remain over hills to add walls
def input
# If the mouse was lifted this tick
if inputs.mouse.up
# Set current input to none
state.user_input = :none
end
# If the mouse was clicked this tick
if inputs.mouse.down
# Determine what the user is editing and edit the state.user_input variable
determine_input
end
# Process user input based on user_input variable and current mouse position
process_input
end
# Determines what the user is editing and stores the value
# This method is called the tick the mouse is clicked
# Storing the value allows the user to continue the same edit as long as the
# mouse left click is held
def determine_input
# If the mouse is over the star in the first grid
if mouse_over_star?
# The user is editing the star from the first grid
state.user_input = :star
# If the mouse is over the star in the second grid
elsif mouse_over_star2?
# The user is editing the star from the second grid
state.user_input = :star2
# If the mouse is over the target in the first grid
elsif mouse_over_target?
# The user is editing the target from the first grid
state.user_input = :target
# If the mouse is over the target in the second grid
elsif mouse_over_target2?
# The user is editing the target from the second grid
state.user_input = :target2
# If the mouse is over a wall in the first grid
elsif mouse_over_wall?
# The user is removing a wall from the first grid
state.user_input = :remove_wall
# If the mouse is over a wall in the second grid
elsif mouse_over_wall2?
# The user is removing a wall from the second grid
state.user_input = :remove_wall2
# If the mouse is over a hill in the first grid
elsif mouse_over_hill?
# The user is adding a wall from the first grid
state.user_input = :add_wall
# If the mouse is over a hill in the second grid
elsif mouse_over_hill2?
# The user is adding a wall from the second grid
state.user_input = :add_wall2
# If the mouse is over the first grid
elsif mouse_over_grid?
# The user is adding a hill from the first grid
state.user_input = :add_hill
# If the mouse is over the second grid
elsif mouse_over_grid2?
# The user is adding a hill from the second grid
state.user_input = :add_hill2
end
end
# Processes click and drag based on what the user is currently dragging
def process_input
if state.user_input == :star
input_star
elsif state.user_input == :star2
input_star2
elsif state.user_input == :target
input_target
elsif state.user_input == :target2
input_target2
elsif state.user_input == :remove_wall
input_remove_wall
elsif state.user_input == :remove_wall2
input_remove_wall2
elsif state.user_input == :add_hill
input_add_hill
elsif state.user_input == :add_hill2
input_add_hill2
elsif state.user_input == :add_wall
input_add_wall
elsif state.user_input == :add_wall2
input_add_wall2
end
end
# Calculates the two searches
def calc
# If the searches have not started
if breadth_first_search.visited.empty?
# Calculate the two searches
calc_breadth_first
calc_dijkstra
end
end
def calc_breadth_first
# Sets up the Breadth First Search
breadth_first_search.visited[state.star] = true
breadth_first_search.frontier << state.star
breadth_first_search.came_from[state.star] = nil
until breadth_first_search.frontier.empty?
return if breadth_first_search.visited.key?(state.target)
# A step in the search
# Takes the next frontier cell
new_frontier = breadth_first_search.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do | neighbor |
# That have not been visited and are not walls
unless breadth_first_search.visited.key?(neighbor) || state.walls.key?(neighbor)
# Add them to the frontier and mark them as visited in the first grid
breadth_first_search.visited[neighbor] = true
breadth_first_search.frontier << neighbor
# Remember which cell the neighbor came from
breadth_first_search.came_from[neighbor] = new_frontier
end
end
end
end
# Calculates the Dijkstra Search from the beginning to the end
def calc_dijkstra
# The initial values for the Dijkstra search
dijkstra_search.frontier << [state.star, 0]
dijkstra_search.came_from[state.star] = nil
dijkstra_search.cost_so_far[state.star] = 0
# Until their are no more cells to be explored
until dijkstra_search.frontier.empty?
# Get the next cell to be explored from
# We get the first element of the array which is the cell. The second element is the priority.
current = dijkstra_search.frontier.shift[0]
# Stop the search if we found the target
return if current == state.target
# For each of the neighbors
adjacent_neighbors(current).each do | neighbor |
# Unless this cell is a wall or has already been explored.
unless dijkstra_search.came_from.key?(neighbor) or state.walls.key?(neighbor)
# Calculate the movement cost of getting to this cell and memo
new_cost = dijkstra_search.cost_so_far[current] + cost(neighbor)
dijkstra_search.cost_so_far[neighbor] = new_cost
# Add this neighbor to the cells too be explored
dijkstra_search.frontier << [neighbor, new_cost]
dijkstra_search.came_from[neighbor] = current
end
end
# Sort the frontier so exploration occurs that have a low cost so far.
# My implementation of a priority queue
dijkstra_search.frontier = dijkstra_search.frontier.sort_by {|cell, priority| priority}
end
end
def cost(cell)
return 5 if state.hills.key? cell
1
end
# Moves the star to the cell closest to the mouse in the first grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def input_star
old_star = state.star.clone
unless cell_closest_to_mouse == state.target
state.star = cell_closest_to_mouse
end
unless old_star == state.star
reset_search
end
end
# Moves the star to the cell closest to the mouse in the second grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def input_star2
old_star = state.star.clone
unless cell_closest_to_mouse2 == state.target
state.star = cell_closest_to_mouse2
end
unless old_star == state.star
reset_search
end
end
# Moves the target to the grid closest to the mouse in the first grid
# Only reset_searchs the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def input_target
old_target = state.target.clone
unless cell_closest_to_mouse == state.star
state.target = cell_closest_to_mouse
end
unless old_target == state.target
reset_search
end
end
# Moves the target to the cell closest to the mouse in the second grid
# Only reset_searchs the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def input_target2
old_target = state.target.clone
unless cell_closest_to_mouse2 == state.star
state.target = cell_closest_to_mouse2
end
unless old_target == state.target
reset_search
end
end
# Removes walls in the first grid that are under the cursor
def input_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if mouse_over_grid?
if state.walls.key?(cell_closest_to_mouse) or state.hills.key?(cell_closest_to_mouse)
state.walls.delete(cell_closest_to_mouse)
state.hills.delete(cell_closest_to_mouse)
reset_search
end
end
end
# Removes walls in the second grid that are under the cursor
def input_remove_wall2
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if mouse_over_grid2?
if state.walls.key?(cell_closest_to_mouse2) or state.hills.key?(cell_closest_to_mouse2)
state.walls.delete(cell_closest_to_mouse2)
state.hills.delete(cell_closest_to_mouse2)
reset_search
end
end
end
# Adds a hill in the first grid in the cell the mouse is over
def input_add_hill
if mouse_over_grid?
unless state.hills.key?(cell_closest_to_mouse)
state.hills[cell_closest_to_mouse] = true
reset_search
end
end
end
# Adds a hill in the second grid in the cell the mouse is over
def input_add_hill2
if mouse_over_grid2?
unless state.hills.key?(cell_closest_to_mouse2)
state.hills[cell_closest_to_mouse2] = true
reset_search
end
end
end
# Adds a wall in the first grid in the cell the mouse is over
def input_add_wall
if mouse_over_grid?
unless state.walls.key?(cell_closest_to_mouse)
state.hills.delete(cell_closest_to_mouse)
state.walls[cell_closest_to_mouse] = true
reset_search
end
end
end
# Adds a wall in the second grid in the cell the mouse is over
def input_add_wall2
if mouse_over_grid2?
unless state.walls.key?(cell_closest_to_mouse2)
state.hills.delete(cell_closest_to_mouse2)
state.walls[cell_closest_to_mouse2] = true
reset_search
end
end
end
# Whenever the user edits the grid,
# The search has to be reset_searchd upto the current step
# with the current grid as the initial state of the grid
def reset_search
breadth_first_search.visited = {}
breadth_first_search.frontier = []
breadth_first_search.came_from = {}
dijkstra_search.frontier = []
dijkstra_search.came_from = {}
dijkstra_search.cost_so_far = {}
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors(cell)
neighbors = []
# Gets all the valid neighbors into the array
# From southern neighbor, clockwise
neighbors << [cell.x , cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y ] unless cell.x == 0
neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1
# Sorts the neighbors so the rendered path is a zigzag path
# Cells in a diagonal direction are given priority
# Comment this line to see the difference
neighbors = neighbors.sort_by { |neighbor_x, neighbor_y| proximity_to_star(neighbor_x, neighbor_y) }
neighbors
end
# Finds the vertical and horizontal distance of a cell from the star
# and returns the larger value
# This method is used to have a zigzag pattern in the rendered path
# A cell that is [5, 5] from the star,
# is explored before over a cell that is [0, 7] away.
# So, if possible, the search tries to go diagonal (zigzag) first
def proximity_to_star(x, y)
distance_x = (state.star.x - x).abs
distance_y = (state.star.y - y).abs
if distance_x > distance_y
return distance_x
else
return distance_y
end
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse helps with this
def cell_closest_to_mouse
# Closest cell to the mouse in the first grid
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Bound x and y to the grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse in the second grid helps with this
def cell_closest_to_mouse2
# Closest cell grid to the mouse in the second
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Translate the cell to the first grid
x -= grid.width + 1
# Bound x and y to the first grid
x = 0 if x < 0
y = 0 if y < 0
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# Signal that the user is going to be moving the star from the first grid
def mouse_over_star?
inputs.mouse.point.inside_rect?(scale_up(state.star))
end
# Signal that the user is going to be moving the star from the second grid
def mouse_over_star2?
inputs.mouse.point.inside_rect?(move_and_scale_up(state.star))
end
# Signal that the user is going to be moving the target from the first grid
def mouse_over_target?
inputs.mouse.point.inside_rect?(scale_up(state.target))
end
# Signal that the user is going to be moving the target from the second grid
def mouse_over_target2?
inputs.mouse.point.inside_rect?(move_and_scale_up(state.target))
end
# Signal that the user is going to be removing walls from the first grid
def mouse_over_wall?
state.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(scale_up(wall))
end
false
end
# Signal that the user is going to be removing walls from the second grid
def mouse_over_wall2?
state.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(move_and_scale_up(wall))
end
false
end
# Signal that the user is going to be removing hills from the first grid
def mouse_over_hill?
state.hills.each_key do | hill |
return true if inputs.mouse.point.inside_rect?(scale_up(hill))
end
false
end
# Signal that the user is going to be removing hills from the second grid
def mouse_over_hill2?
state.hills.each_key do | hill |
return true if inputs.mouse.point.inside_rect?(move_and_scale_up(hill))
end
false
end
# Signal that the user is going to be adding walls from the first grid
def mouse_over_grid?
inputs.mouse.point.inside_rect?(scale_up(grid.rect))
end
# Signal that the user is going to be adding walls from the second grid
def mouse_over_grid2?
inputs.mouse.point.inside_rect?(move_and_scale_up(grid.rect))
end
# These methods provide handy aliases to colors
# Light brown
def unvisited_color
{ r: 221, g: 212, b: 213 }
end
# Camo Green
def wall_color
{ r: 134, g: 134, b: 120 }
end
# Pastel White
def path_color
{ r: 231, g: 230, b: 228 }
end
def red
{ r: 255, g: 0, b: 0 }
end
# A Green
def hill_color
{ r: 139, g: 173, b: 132 }
end
# Makes code more concise
def grid
state.grid
end
def breadth_first_search
state.breadth_first_search
end
def dijkstra_search
state.dijkstra_search
end
end
# Method that is called by DragonRuby periodically
# Used for updating animations and calculations
def tick args
# Pressing r will reset the application
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
# Every tick, new args are passed, and the Dijkstra tick method is called
$movement_costs ||= Movement_Costs.new
$movement_costs.args = args
$movement_costs.tick
end
def reset
$movement_costs = nil
end
Path Finding Algorithms - Heuristic - main.rb
# ./samples/13_path_finding_algorithms/06_heuristic/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
# The effectiveness of the Heuristic search algorithm is shown through this demonstration.
# Notice that both searches find the shortest path
# The heuristic search, however, explores less of the grid, and is therefore faster.
# The heuristic search prioritizes searching cells that are closer to the target.
# Make sure to look at the Heuristic with walls program to see some of the downsides of the heuristic algorithm.
class Heuristic
attr_gtk
def tick
defaults
render
input
# If animation is playing, and max steps have not been reached
# Move the search a step forward
if state.play && state.current_step < state.max_steps
# Variable that tells the program what step to recalculate up to
state.current_step += 1
move_searches_one_step_forward
end
end
def defaults
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
grid.width ||= 15
grid.height ||= 15
grid.cell_size ||= 40
grid.rect ||= [0, 0, grid.width, grid.height]
grid.star ||= [0, 2]
grid.target ||= [14, 12]
grid.walls ||= {}
# There are no hills in the Heuristic Search Demo
# What the user is currently editing on the grid
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
state.user_input ||= :none
# These variables allow the breadth first search to take place
# Came_from is a hash with a key of a cell and a value of the cell that was expanded from to find the key.
# Used to prevent searching cells that have already been found
# and to trace a path from the target back to the starting point.
# Frontier is an array of cells to expand the search from.
# The search is over when there are no more cells to search from.
# Path stores the path from the target to the star, once the target has been found
# It prevents calculating the path every tick.
bfs.came_from ||= {}
bfs.frontier ||= []
bfs.path ||= []
heuristic.came_from ||= {}
heuristic.frontier ||= []
heuristic.path ||= []
# Stores which step of the animation is being rendered
# When the user moves the star or messes with the walls,
# the searches are recalculated up to this step
unless state.current_step
state.current_step = 0
end
# At some step the animation will end,
# and further steps won't change anything (the whole grid will be explored)
# This step is roughly the grid's width * height
# When anim_steps equals max_steps no more calculations will occur
# and the slider will be at the end
state.max_steps = grid.width * grid.height
# Whether the animation should play or not
# If true, every tick moves anim_steps forward one
# Pressing the stepwise animation buttons will pause the animation
# An if statement instead of the ||= operator is used for assigning a boolean value.
# The || operator does not differentiate between nil and false.
if state.play == nil
state.play = false
end
# Store the rects of the buttons that control the animation
# They are here for user customization
# Editing these might require recentering the text inside them
# Those values can be found in the render_button methods
buttons.left = [470, 600, 50, 50]
buttons.center = [520, 600, 200, 50]
buttons.right = [720, 600, 50, 50]
# The variables below are related to the slider
# They allow the user to customize them
# They also give a central location for the render and input methods to get
# information from
# x & y are the coordinates of the leftmost part of the slider line
slider.x = 440
slider.y = 675
# This is the width of the line
slider.w = 360
# This is the offset for the circle
# Allows the center of the circle to be on the line,
# as opposed to the upper right corner
slider.offset = 20
# This is the spacing between each of the notches on the slider
# Notches are places where the circle can rest on the slider line
# There needs to be a notch for each step before the maximum number of steps
slider.spacing = slider.w.to_f / state.max_steps.to_f
end
# All methods with render draw stuff on the screen
# UI has buttons, the slider, and labels
# The search specific rendering occurs in the respective methods
def render
render_ui
render_bfs
render_heuristic
end
def render_ui
render_buttons
render_slider
render_labels
end
def render_buttons
render_left_button
render_center_button
render_right_button
end
def render_bfs
render_bfs_grid
render_bfs_star
render_bfs_target
render_bfs_visited
render_bfs_walls
render_bfs_frontier
render_bfs_path
end
def render_heuristic
render_heuristic_grid
render_heuristic_star
render_heuristic_target
render_heuristic_visited
render_heuristic_walls
render_heuristic_frontier
render_heuristic_path
end
# This method handles user input every tick
def input
# Check and handle button input
input_buttons
# If the mouse was lifted this tick
if inputs.mouse.up
# Set current input to none
state.user_input = :none
end
# If the mouse was clicked this tick
if inputs.mouse.down
# Determine what the user is editing and appropriately edit the state.user_input variable
determine_input
end
# Process user input based on user_input variable and current mouse position
process_input
end
# Determines what the user is editing
# This method is called when the mouse is clicked down
def determine_input
if mouse_over_slider?
state.user_input = :slider
# If the mouse is over the star in the first grid
elsif bfs_mouse_over_star?
# The user is editing the star from the first grid
state.user_input = :bfs_star
# If the mouse is over the star in the second grid
elsif heuristic_mouse_over_star?
# The user is editing the star from the second grid
state.user_input = :heuristic_star
# If the mouse is over the target in the first grid
elsif bfs_mouse_over_target?
# The user is editing the target from the first grid
state.user_input = :bfs_target
# If the mouse is over the target in the second grid
elsif heuristic_mouse_over_target?
# The user is editing the target from the second grid
state.user_input = :heuristic_target
# If the mouse is over a wall in the first grid
elsif bfs_mouse_over_wall?
# The user is removing a wall from the first grid
state.user_input = :bfs_remove_wall
# If the mouse is over a wall in the second grid
elsif heuristic_mouse_over_wall?
# The user is removing a wall from the second grid
state.user_input = :heuristic_remove_wall
# If the mouse is over the first grid
elsif bfs_mouse_over_grid?
# The user is adding a wall from the first grid
state.user_input = :bfs_add_wall
# If the mouse is over the second grid
elsif heuristic_mouse_over_grid?
# The user is adding a wall from the second grid
state.user_input = :heuristic_add_wall
end
end
# Processes click and drag based on what the user is currently dragging
def process_input
if state.user_input == :slider
process_input_slider
elsif state.user_input == :bfs_star
process_input_bfs_star
elsif state.user_input == :heuristic_star
process_input_heuristic_star
elsif state.user_input == :bfs_target
process_input_bfs_target
elsif state.user_input == :heuristic_target
process_input_heuristic_target
elsif state.user_input == :bfs_remove_wall
process_input_bfs_remove_wall
elsif state.user_input == :heuristic_remove_wall
process_input_heuristic_remove_wall
elsif state.user_input == :bfs_add_wall
process_input_bfs_add_wall
elsif state.user_input == :heuristic_add_wall
process_input_heuristic_add_wall
end
end
def render_slider
# Using primitives hides the line under the white circle of the slider
# Draws the line
outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line
# The circle needs to be offset so that the center of the circle
# overlaps the line instead of the upper right corner of the circle
# The circle's x value is also moved based on the current seach step
circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing)
circle_y = (slider.y - slider.offset)
circle_rect = [circle_x, circle_y, 37, 37]
outputs.primitives << [circle_rect, 'circle-white.png'].sprite
end
def render_labels
outputs.labels << [205, 625, "Breadth First Search"]
outputs.labels << [820, 625, "Heuristic Best-First Search"]
end
def render_left_button
# Draws the button_color button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.left, button_color]
outputs.borders << [buttons.left]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
# If the button size is changed, the label might need to be edited as well
# to keep the label in the center of the button
label_x = buttons.left.x + 20
label_y = buttons.left.y + 35
outputs.labels << [label_x, label_y, "<"]
end
def render_center_button
# Draws the button_color button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.center, button_color]
outputs.borders << [buttons.center]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
# If the button size is changed, the label might need to be edited as well
# to keep the label in the center of the button
label_x = buttons.center.x + 37
label_y = buttons.center.y + 35
label_text = state.play ? "Pause Animation" : "Play Animation"
outputs.labels << [label_x, label_y, label_text]
end
def render_right_button
# Draws the button_color button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.right, button_color]
outputs.borders << [buttons.right]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
label_x = buttons.right.x + 20
label_y = buttons.right.y + 35
outputs.labels << [label_x, label_y, ">"]
end
def render_bfs_grid
# A large rect the size of the grid
outputs.solids << bfs_scale_up(grid.rect).merge(default_color)
outputs.lines << (0..grid.width).map { |x| bfs_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| bfs_horizontal_line(y) }
end
def render_heuristic_grid
# A large rect the size of the grid
outputs.solids << heuristic_scale_up(grid.rect).merge(default_color)
outputs.lines << (0..grid.width).map { |x| heuristic_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| heuristic_horizontal_line(y) }
end
# Returns a vertical line for a column of the first grid
def bfs_vertical_line x
line = { x: x, y: 0, w: 0, h: grid.height }
line.transform_values { |v| v * grid.cell_size }
end
# Returns a horizontal line for a column of the first grid
def bfs_horizontal_line y
line = { x: 0, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Returns a vertical line for a column of the second grid
def heuristic_vertical_line x
bfs_vertical_line(x + grid.width + 1)
end
# Returns a horizontal line for a column of the second grid
def heuristic_horizontal_line y
line = { x: grid.width + 1, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Renders the star on the first grid
def render_bfs_star
outputs.sprites << bfs_scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the star on the second grid
def render_heuristic_star
outputs.sprites << heuristic_scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the target on the first grid
def render_bfs_target
outputs.sprites << bfs_scale_up(grid.target).merge({ path: 'target.png' })
end
# Renders the target on the second grid
def render_heuristic_target
outputs.sprites << heuristic_scale_up(grid.target).merge({ path: 'target.png' })
end
# Renders the walls on the first grid
def render_bfs_walls
outputs.solids << grid.walls.map do |key, value|
bfs_scale_up(key).merge(wall_color)
end
end
# Renders the walls on the second grid
def render_heuristic_walls
outputs.solids << grid.walls.map do |key, value|
heuristic_scale_up(key).merge(wall_color)
end
end
# Renders the visited cells on the first grid
def render_bfs_visited
outputs.solids << bfs.came_from.map do |key, value|
bfs_scale_up(key).merge(visited_color)
end
end
# Renders the visited cells on the second grid
def render_heuristic_visited
outputs.solids << heuristic.came_from.map do |key, value|
heuristic_scale_up(key).merge(visited_color)
end
end
# Renders the frontier cells on the first grid
def render_bfs_frontier
outputs.solids << bfs.frontier.map do |cell|
bfs_scale_up(cell).merge(frontier_color)
end
end
# Renders the frontier cells on the second grid
def render_heuristic_frontier
outputs.solids << heuristic.frontier.map do |cell|
heuristic_scale_up(cell).merge(frontier_color)
end
end
# Renders the path found by the breadth first search on the first grid
def render_bfs_path
outputs.solids << bfs.path.map do |path|
bfs_scale_up(path).merge(path_color)
end
end
# Renders the path found by the heuristic search on the second grid
def render_heuristic_path
outputs.solids << heuristic.path.map do |path|
heuristic_scale_up(path).merge(path_color)
end
end
# Returns the rect for the path between two cells based on their relative positions
def get_path_between(cell_one, cell_two)
path = nil
# If cell one is above cell two
if cell_one.x == cell_two.x && cell_one.y > cell_two.y
# Path starts from the center of cell two and moves upward to the center of cell one
path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4]
# If cell one is below cell two
elsif cell_one.x == cell_two.x && cell_one.y < cell_two.y
# Path starts from the center of cell one and moves upward to the center of cell two
path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4]
# If cell one is to the left of cell two
elsif cell_one.x > cell_two.x && cell_one.y == cell_two.y
# Path starts from the center of cell two and moves rightward to the center of cell one
path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4]
# If cell one is to the right of cell two
elsif cell_one.x < cell_two.x && cell_one.y == cell_two.y
# Path starts from the center of cell one and moves rightward to the center of cell two
path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4]
end
path
end
# In code, the cells are represented as 1x1 rectangles
# When drawn, the cells are larger than 1x1 rectangles
# This method is used to scale up cells, and lines
# Objects are scaled up according to the grid.cell_size variable
# This allows for easy customization of the visual scale of the grid
# This method scales up cells for the first grid
def bfs_scale_up(cell)
x = cell.x * grid.cell_size
y = cell.y * grid.cell_size
w = cell.w.zero? ? grid.cell_size : cell.w * grid.cell_size
h = cell.h.zero? ? grid.cell_size : cell.h * grid.cell_size
{x: x, y: y, w: w, h: h}
# {x:, y:, w:, h:}
end
# Translates the given cell grid.width + 1 to the right and then scales up
# Used to draw cells for the second grid
# This method does not work for lines,
# so separate methods exist for the grid lines
def heuristic_scale_up(cell)
# Prevents the original value of cell from being edited
cell = cell.clone
# Translates the cell to the second grid equivalent
cell.x += grid.width + 1
# Proceeds as if scaling up for the first grid
bfs_scale_up(cell)
end
# Checks and handles input for the buttons
# Called when the mouse is lifted
def input_buttons
input_left_button
input_center_button
input_right_button
end
# Checks if the previous step button is clicked
# If it is, it pauses the animation and moves the search one step backward
def input_left_button
if left_button_clicked?
state.play = false
state.current_step -= 1
recalculate_searches
end
end
# Controls the play/pause button
# Inverses whether the animation is playing or not when clicked
def input_center_button
if center_button_clicked? || inputs.keyboard.key_down.space
state.play = !state.play
end
end
# Checks if the next step button is clicked
# If it is, it pauses the animation and moves the search one step forward
def input_right_button
if right_button_clicked?
state.play = false
state.current_step += 1
move_searches_one_step_forward
end
end
# These methods detect when the buttons are clicked
def left_button_clicked?
inputs.mouse.point.inside_rect?(buttons.left) && inputs.mouse.up
end
def center_button_clicked?
inputs.mouse.point.inside_rect?(buttons.center) && inputs.mouse.up
end
def right_button_clicked?
inputs.mouse.point.inside_rect?(buttons.right) && inputs.mouse.up
end
# Signal that the user is going to be moving the slider
# Is the mouse over the circle of the slider?
def mouse_over_slider?
circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing)
circle_y = (slider.y - slider.offset)
circle_rect = [circle_x, circle_y, 37, 37]
inputs.mouse.point.inside_rect?(circle_rect)
end
# Signal that the user is going to be moving the star from the first grid
def bfs_mouse_over_star?
inputs.mouse.point.inside_rect?(bfs_scale_up(grid.star))
end
# Signal that the user is going to be moving the star from the second grid
def heuristic_mouse_over_star?
inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.star))
end
# Signal that the user is going to be moving the target from the first grid
def bfs_mouse_over_target?
inputs.mouse.point.inside_rect?(bfs_scale_up(grid.target))
end
# Signal that the user is going to be moving the target from the second grid
def heuristic_mouse_over_target?
inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.target))
end
# Signal that the user is going to be removing walls from the first grid
def bfs_mouse_over_wall?
grid.walls.each_key do |wall|
return true if inputs.mouse.point.inside_rect?(bfs_scale_up(wall))
end
false
end
# Signal that the user is going to be removing walls from the second grid
def heuristic_mouse_over_wall?
grid.walls.each_key do |wall|
return true if inputs.mouse.point.inside_rect?(heuristic_scale_up(wall))
end
false
end
# Signal that the user is going to be adding walls from the first grid
def bfs_mouse_over_grid?
inputs.mouse.point.inside_rect?(bfs_scale_up(grid.rect))
end
# Signal that the user is going to be adding walls from the second grid
def heuristic_mouse_over_grid?
inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.rect))
end
# This method is called when the user is editing the slider
# It pauses the animation and moves the white circle to the closest integer point
# on the slider
# Changes the step of the search to be animated
def process_input_slider
state.play = false
mouse_x = inputs.mouse.point.x
# Bounds the mouse_x to the closest x value on the slider line
mouse_x = slider.x if mouse_x < slider.x
mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w
# Sets the current search step to the one represented by the mouse x value
# The slider's circle moves due to the render_slider method using anim_steps
state.current_step = ((mouse_x - slider.x) / slider.spacing).to_i
recalculate_searches
end
# Moves the star to the cell closest to the mouse in the first grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def process_input_bfs_star
old_star = grid.star.clone
unless bfs_cell_closest_to_mouse == grid.target
grid.star = bfs_cell_closest_to_mouse
end
unless old_star == grid.star
recalculate_searches
end
end
# Moves the star to the cell closest to the mouse in the second grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def process_input_heuristic_star
old_star = grid.star.clone
unless heuristic_cell_closest_to_mouse == grid.target
grid.star = heuristic_cell_closest_to_mouse
end
unless old_star == grid.star
recalculate_searches
end
end
# Moves the target to the grid closest to the mouse in the first grid
# Only recalculate_searchess the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def process_input_bfs_target
old_target = grid.target.clone
unless bfs_cell_closest_to_mouse == grid.star
grid.target = bfs_cell_closest_to_mouse
end
unless old_target == grid.target
recalculate_searches
end
end
# Moves the target to the cell closest to the mouse in the second grid
# Only recalculate_searchess the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def process_input_heuristic_target
old_target = grid.target.clone
unless heuristic_cell_closest_to_mouse == grid.star
grid.target = heuristic_cell_closest_to_mouse
end
unless old_target == grid.target
recalculate_searches
end
end
# Removes walls in the first grid that are under the cursor
def process_input_bfs_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if bfs_mouse_over_grid?
if grid.walls.key?(bfs_cell_closest_to_mouse)
grid.walls.delete(bfs_cell_closest_to_mouse)
recalculate_searches
end
end
end
# Removes walls in the second grid that are under the cursor
def process_input_heuristic_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if heuristic_mouse_over_grid?
if grid.walls.key?(heuristic_cell_closest_to_mouse)
grid.walls.delete(heuristic_cell_closest_to_mouse)
recalculate_searches
end
end
end
# Adds a wall in the first grid in the cell the mouse is over
def process_input_bfs_add_wall
if bfs_mouse_over_grid?
unless grid.walls.key?(bfs_cell_closest_to_mouse)
grid.walls[bfs_cell_closest_to_mouse] = true
recalculate_searches
end
end
end
# Adds a wall in the second grid in the cell the mouse is over
def process_input_heuristic_add_wall
if heuristic_mouse_over_grid?
unless grid.walls.key?(heuristic_cell_closest_to_mouse)
grid.walls[heuristic_cell_closest_to_mouse] = true
recalculate_searches
end
end
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse helps with this
def bfs_cell_closest_to_mouse
# Closest cell to the mouse in the first grid
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Bound x and y to the grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse in the second grid helps with this
def heuristic_cell_closest_to_mouse
# Closest cell grid to the mouse in the second
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Translate the cell to the first grid
x -= grid.width + 1
# Bound x and y to the first grid
x = 0 if x < 0
y = 0 if y < 0
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
def recalculate_searches
# Reset the searches
bfs.came_from = {}
bfs.frontier = []
bfs.path = []
heuristic.came_from = {}
heuristic.frontier = []
heuristic.path = []
# Move the searches forward to the current step
state.current_step.times { move_searches_one_step_forward }
end
def move_searches_one_step_forward
bfs_one_step_forward
heuristic_one_step_forward
end
def bfs_one_step_forward
return if bfs.came_from.key?(grid.target)
# Only runs at the beginning of the search as setup.
if bfs.came_from.empty?
bfs.frontier << grid.star
bfs.came_from[grid.star] = nil
end
# A step in the search
unless bfs.frontier.empty?
# Takes the next frontier cell
new_frontier = bfs.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless bfs.came_from.key?(neighbor) || grid.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
bfs.frontier << neighbor
bfs.came_from[neighbor] = new_frontier
end
end
end
# Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line
# Comment this line and let a path generate to see the difference
bfs.frontier = bfs.frontier.sort_by { |cell| proximity_to_star(cell) }
# If the search found the target
if bfs.came_from.key?(grid.target)
# Calculate the path between the target and star
bfs_calc_path
end
end
# Calculates the path between the target and star for the breadth first search
# Only called when the breadth first search finds the target
def bfs_calc_path
# Start from the target
endpoint = grid.target
# And the cell it came from
next_endpoint = bfs.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells and store it
path = get_path_between(endpoint, next_endpoint)
bfs.path << path
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = bfs.came_from[endpoint]
# Continue till there are no more cells
end
end
# Moves the heuristic search forward one step
# Can be called from tick while the animation is playing
# Can also be called when recalculating the searches after the user edited the grid
def heuristic_one_step_forward
# Stop the search if the target has been found
return if heuristic.came_from.key?(grid.target)
# If the search has not begun
if heuristic.came_from.empty?
# Setup the search to begin from the star
heuristic.frontier << grid.star
heuristic.came_from[grid.star] = nil
end
# One step in the heuristic search
# Unless there are no more cells to explore from
unless heuristic.frontier.empty?
# Get the next cell to explore from
new_frontier = heuristic.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless heuristic.came_from.key?(neighbor) || grid.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
heuristic.frontier << neighbor
heuristic.came_from[neighbor] = new_frontier
end
end
end
# Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line
heuristic.frontier = heuristic.frontier.sort_by { |cell| proximity_to_star(cell) }
# Sort the frontier so cells that are close to the target are then prioritized
heuristic.frontier = heuristic.frontier.sort_by { |cell| heuristic_heuristic(cell) }
# If the search found the target
if heuristic.came_from.key?(grid.target)
# Calculate the path between the target and star
heuristic_calc_path
end
end
# Returns one-dimensional absolute distance between cell and target
# Returns a number to compare distances between cells and the target
def heuristic_heuristic(cell)
(grid.target.x - cell.x).abs + (grid.target.y - cell.y).abs
end
# Calculates the path between the target and star for the heuristic search
# Only called when the heuristic search finds the target
def heuristic_calc_path
# Start from the target
endpoint = grid.target
# And the cell it came from
next_endpoint = heuristic.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells and store it
path = get_path_between(endpoint, next_endpoint)
heuristic.path << path
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = heuristic.came_from[endpoint]
# Continue till there are no more cells
end
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors(cell)
neighbors = []
# Gets all the valid neighbors into the array
# From southern neighbor, clockwise
neighbors << [cell.x , cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y ] unless cell.x == 0
neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1
neighbors
end
# Finds the vertical and horizontal distance of a cell from the star
# and returns the larger value
# This method is used to have a zigzag pattern in the rendered path
# A cell that is [5, 5] from the star,
# is explored before over a cell that is [0, 7] away.
# So, if possible, the search tries to go diagonal (zigzag) first
def proximity_to_star(cell)
distance_x = (grid.star.x - cell.x).abs
distance_y = (grid.star.y - cell.y).abs
[distance_x, distance_y].max
end
# Methods that allow code to be more concise. Subdivides args.state, which is where all variables are stored.
def grid
state.grid
end
def buttons
state.buttons
end
def slider
state.slider
end
def bfs
state.bfs
end
def heuristic
state.heuristic
end
# Descriptive aliases for colors
def default_color
{ r: 221, g: 212, b: 213 }
end
def wall_color
{ r: 134, g: 134, b: 120 }
end
def visited_color
{ r: 204, g: 191, b: 179 }
end
def frontier_color
{ r: 103, g: 136, b: 204, a: 200 }
end
def path_color
{ r: 231, g: 230, b: 228 }
end
def button_color
[190, 190, 190] # Gray
end
end
# Method that is called by DragonRuby periodically
# Used for updating animations and calculations
def tick args
# Pressing r will reset the application
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
# Every tick, new args are passed, and the Breadth First Search tick is called
$heuristic ||= Heuristic.new
$heuristic.args = args
$heuristic.tick
end
def reset
$heuristic = nil
end
Path Finding Algorithms - Heuristic With Walls - main.rb
# ./samples/13_path_finding_algorithms/07_heuristic_with_walls/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
# This time the heuristic search still explored less of the grid, hence finishing faster.
# However, it did not find the shortest path between the star and the target.
# The only difference between this app and Heuristic is the change of the starting position.
class Heuristic_With_Walls
attr_gtk
def tick
defaults
render
input
# If animation is playing, and max steps have not been reached
# Move the search a step forward
if state.play && state.current_step < state.max_steps
# Variable that tells the program what step to recalculate up to
state.current_step += 1
move_searches_one_step_forward
end
end
def defaults
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
grid.width ||= 15
grid.height ||= 15
grid.cell_size ||= 40
grid.rect ||= [0, 0, grid.width, grid.height]
grid.star ||= [0, 2]
grid.target ||= [14, 12]
grid.walls ||= {
[2, 2] => true,
[3, 2] => true,
[4, 2] => true,
[5, 2] => true,
[6, 2] => true,
[7, 2] => true,
[8, 2] => true,
[9, 2] => true,
[10, 2] => true,
[11, 2] => true,
[12, 2] => true,
[12, 3] => true,
[12, 4] => true,
[12, 5] => true,
[12, 6] => true,
[12, 7] => true,
[12, 8] => true,
[12, 9] => true,
[12, 10] => true,
[12, 11] => true,
[12, 12] => true,
[2, 12] => true,
[3, 12] => true,
[4, 12] => true,
[5, 12] => true,
[6, 12] => true,
[7, 12] => true,
[8, 12] => true,
[9, 12] => true,
[10, 12] => true,
[11, 12] => true,
[12, 12] => true
}
# There are no hills in the Heuristic Search Demo
# What the user is currently editing on the grid
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
state.user_input ||= :none
# These variables allow the breadth first search to take place
# Came_from is a hash with a key of a cell and a value of the cell that was expanded from to find the key.
# Used to prevent searching cells that have already been found
# and to trace a path from the target back to the starting point.
# Frontier is an array of cells to expand the search from.
# The search is over when there are no more cells to search from.
# Path stores the path from the target to the star, once the target has been found
# It prevents calculating the path every tick.
bfs.came_from ||= {}
bfs.frontier ||= []
bfs.path ||= []
heuristic.came_from ||= {}
heuristic.frontier ||= []
heuristic.path ||= []
# Stores which step of the animation is being rendered
# When the user moves the star or messes with the walls,
# the searches are recalculated up to this step
unless state.current_step
state.current_step = 0
end
# At some step the animation will end,
# and further steps won't change anything (the whole grid will be explored)
# This step is roughly the grid's width * height
# When anim_steps equals max_steps no more calculations will occur
# and the slider will be at the end
state.max_steps = grid.width * grid.height
# Whether the animation should play or not
# If true, every tick moves anim_steps forward one
# Pressing the stepwise animation buttons will pause the animation
# An if statement instead of the ||= operator is used for assigning a boolean value.
# The || operator does not differentiate between nil and false.
if state.play == nil
state.play = false
end
# Store the rects of the buttons that control the animation
# They are here for user customization
# Editing these might require recentering the text inside them
# Those values can be found in the render_button methods
buttons.left = [470, 600, 50, 50]
buttons.center = [520, 600, 200, 50]
buttons.right = [720, 600, 50, 50]
# The variables below are related to the slider
# They allow the user to customize them
# They also give a central location for the render and input methods to get
# information from
# x & y are the coordinates of the leftmost part of the slider line
slider.x = 440
slider.y = 675
# This is the width of the line
slider.w = 360
# This is the offset for the circle
# Allows the center of the circle to be on the line,
# as opposed to the upper right corner
slider.offset = 20
# This is the spacing between each of the notches on the slider
# Notches are places where the circle can rest on the slider line
# There needs to be a notch for each step before the maximum number of steps
slider.spacing = slider.w.to_f / state.max_steps.to_f
end
# All methods with render draw stuff on the screen
# UI has buttons, the slider, and labels
# The search specific rendering occurs in the respective methods
def render
render_ui
render_bfs
render_heuristic
end
def render_ui
render_buttons
render_slider
render_labels
end
def render_buttons
render_left_button
render_center_button
render_right_button
end
def render_bfs
render_bfs_grid
render_bfs_star
render_bfs_target
render_bfs_visited
render_bfs_walls
render_bfs_frontier
render_bfs_path
end
def render_heuristic
render_heuristic_grid
render_heuristic_star
render_heuristic_target
render_heuristic_visited
render_heuristic_walls
render_heuristic_frontier
render_heuristic_path
end
# This method handles user input every tick
def input
# Check and handle button input
input_buttons
# If the mouse was lifted this tick
if inputs.mouse.up
# Set current input to none
state.user_input = :none
end
# If the mouse was clicked this tick
if inputs.mouse.down
# Determine what the user is editing and appropriately edit the state.user_input variable
determine_input
end
# Process user input based on user_input variable and current mouse position
process_input
end
# Determines what the user is editing
# This method is called when the mouse is clicked down
def determine_input
if mouse_over_slider?
state.user_input = :slider
# If the mouse is over the star in the first grid
elsif bfs_mouse_over_star?
# The user is editing the star from the first grid
state.user_input = :bfs_star
# If the mouse is over the star in the second grid
elsif heuristic_mouse_over_star?
# The user is editing the star from the second grid
state.user_input = :heuristic_star
# If the mouse is over the target in the first grid
elsif bfs_mouse_over_target?
# The user is editing the target from the first grid
state.user_input = :bfs_target
# If the mouse is over the target in the second grid
elsif heuristic_mouse_over_target?
# The user is editing the target from the second grid
state.user_input = :heuristic_target
# If the mouse is over a wall in the first grid
elsif bfs_mouse_over_wall?
# The user is removing a wall from the first grid
state.user_input = :bfs_remove_wall
# If the mouse is over a wall in the second grid
elsif heuristic_mouse_over_wall?
# The user is removing a wall from the second grid
state.user_input = :heuristic_remove_wall
# If the mouse is over the first grid
elsif bfs_mouse_over_grid?
# The user is adding a wall from the first grid
state.user_input = :bfs_add_wall
# If the mouse is over the second grid
elsif heuristic_mouse_over_grid?
# The user is adding a wall from the second grid
state.user_input = :heuristic_add_wall
end
end
# Processes click and drag based on what the user is currently dragging
def process_input
if state.user_input == :slider
process_input_slider
elsif state.user_input == :bfs_star
process_input_bfs_star
elsif state.user_input == :heuristic_star
process_input_heuristic_star
elsif state.user_input == :bfs_target
process_input_bfs_target
elsif state.user_input == :heuristic_target
process_input_heuristic_target
elsif state.user_input == :bfs_remove_wall
process_input_bfs_remove_wall
elsif state.user_input == :heuristic_remove_wall
process_input_heuristic_remove_wall
elsif state.user_input == :bfs_add_wall
process_input_bfs_add_wall
elsif state.user_input == :heuristic_add_wall
process_input_heuristic_add_wall
end
end
def render_slider
# Using primitives hides the line under the white circle of the slider
# Draws the line
outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line
# The circle needs to be offset so that the center of the circle
# overlaps the line instead of the upper right corner of the circle
# The circle's x value is also moved based on the current seach step
circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing)
circle_y = (slider.y - slider.offset)
circle_rect = [circle_x, circle_y, 37, 37]
outputs.primitives << [circle_rect, 'circle-white.png'].sprite
end
def render_labels
outputs.labels << [205, 625, "Breadth First Search"]
outputs.labels << [820, 625, "Heuristic Best-First Search"]
end
def render_left_button
# Draws the button_color button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.left, button_color]
outputs.borders << [buttons.left]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
# If the button size is changed, the label might need to be edited as well
# to keep the label in the center of the button
label_x = buttons.left.x + 20
label_y = buttons.left.y + 35
outputs.labels << [label_x, label_y, "<"]
end
def render_center_button
# Draws the button_color button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.center, button_color]
outputs.borders << [buttons.center]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
# If the button size is changed, the label might need to be edited as well
# to keep the label in the center of the button
label_x = buttons.center.x + 37
label_y = buttons.center.y + 35
label_text = state.play ? "Pause Animation" : "Play Animation"
outputs.labels << [label_x, label_y, label_text]
end
def render_right_button
# Draws the button_color button, and a black border
# The border separates the buttons visually
outputs.solids << [buttons.right, button_color]
outputs.borders << [buttons.right]
# Renders an explanatory label in the center of the button
# Explains to the user what the button does
label_x = buttons.right.x + 20
label_y = buttons.right.y + 35
outputs.labels << [label_x, label_y, ">"]
end
def render_bfs_grid
# A large rect the size of the grid
outputs.solids << bfs_scale_up(grid.rect).merge(default_color)
outputs.lines << (0..grid.width).map { |x| bfs_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| bfs_horizontal_line(y) }
end
def render_heuristic_grid
# A large rect the size of the grid
outputs.solids << heuristic_scale_up(grid.rect).merge(default_color)
outputs.lines << (0..grid.width).map { |x| heuristic_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| heuristic_horizontal_line(y) }
end
# Returns a vertical line for a column of the first grid
def bfs_vertical_line x
line = { x: x, y: 0, w: 0, h: grid.height }
line.transform_values { |v| v * grid.cell_size }
end
# Returns a horizontal line for a column of the first grid
def bfs_horizontal_line y
line = { x: 0, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Returns a vertical line for a column of the second grid
def heuristic_vertical_line x
bfs_vertical_line(x + grid.width + 1)
end
# Returns a horizontal line for a column of the second grid
def heuristic_horizontal_line y
line = { x: grid.width + 1, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Renders the star on the first grid
def render_bfs_star
outputs.sprites << bfs_scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the star on the second grid
def render_heuristic_star
outputs.sprites << heuristic_scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the target on the first grid
def render_bfs_target
outputs.sprites << bfs_scale_up(grid.target).merge({ path: 'target.png' })
end
# Renders the target on the second grid
def render_heuristic_target
outputs.sprites << heuristic_scale_up(grid.target).merge({ path: 'target.png' })
end
# Renders the walls on the first grid
def render_bfs_walls
outputs.solids << grid.walls.map do |key, value|
bfs_scale_up(key).merge(wall_color)
end
end
# Renders the walls on the second grid
def render_heuristic_walls
outputs.solids << grid.walls.map do |key, value|
heuristic_scale_up(key).merge(wall_color)
end
end
# Renders the visited cells on the first grid
def render_bfs_visited
outputs.solids << bfs.came_from.map do |key, value|
bfs_scale_up(key).merge(visited_color)
end
end
# Renders the visited cells on the second grid
def render_heuristic_visited
outputs.solids << heuristic.came_from.map do |key, value|
heuristic_scale_up(key).merge(visited_color)
end
end
# Renders the frontier cells on the first grid
def render_bfs_frontier
outputs.solids << bfs.frontier.map do |cell|
bfs_scale_up(cell).merge(frontier_color)
end
end
# Renders the frontier cells on the second grid
def render_heuristic_frontier
outputs.solids << heuristic.frontier.map do |cell|
heuristic_scale_up(cell).merge(frontier_color)
end
end
# Renders the path found by the breadth first search on the first grid
def render_bfs_path
outputs.solids << bfs.path.map do |path|
bfs_scale_up(path).merge(path_color)
end
end
# Renders the path found by the heuristic search on the second grid
def render_heuristic_path
outputs.solids << heuristic.path.map do |path|
heuristic_scale_up(path).merge(path_color)
end
end
# Returns the rect for the path between two cells based on their relative positions
def get_path_between(cell_one, cell_two)
path = nil
# If cell one is above cell two
if cell_one.x == cell_two.x && cell_one.y > cell_two.y
# Path starts from the center of cell two and moves upward to the center of cell one
path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4]
# If cell one is below cell two
elsif cell_one.x == cell_two.x && cell_one.y < cell_two.y
# Path starts from the center of cell one and moves upward to the center of cell two
path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4]
# If cell one is to the left of cell two
elsif cell_one.x > cell_two.x && cell_one.y == cell_two.y
# Path starts from the center of cell two and moves rightward to the center of cell one
path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4]
# If cell one is to the right of cell two
elsif cell_one.x < cell_two.x && cell_one.y == cell_two.y
# Path starts from the center of cell one and moves rightward to the center of cell two
path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4]
end
path
end
# In code, the cells are represented as 1x1 rectangles
# When drawn, the cells are larger than 1x1 rectangles
# This method is used to scale up cells, and lines
# Objects are scaled up according to the grid.cell_size variable
# This allows for easy customization of the visual scale of the grid
# This method scales up cells for the first grid
def bfs_scale_up(cell)
x = cell.x * grid.cell_size
y = cell.y * grid.cell_size
w = cell.w.zero? ? grid.cell_size : cell.w * grid.cell_size
h = cell.h.zero? ? grid.cell_size : cell.h * grid.cell_size
{x: x, y: y, w: w, h: h}
# {x:, y:, w:, h:}
end
# Translates the given cell grid.width + 1 to the right and then scales up
# Used to draw cells for the second grid
# This method does not work for lines,
# so separate methods exist for the grid lines
def heuristic_scale_up(cell)
# Prevents the original value of cell from being edited
cell = cell.clone
# Translates the cell to the second grid equivalent
cell.x += grid.width + 1
# Proceeds as if scaling up for the first grid
bfs_scale_up(cell)
end
# Checks and handles input for the buttons
# Called when the mouse is lifted
def input_buttons
input_left_button
input_center_button
input_right_button
end
# Checks if the previous step button is clicked
# If it is, it pauses the animation and moves the search one step backward
def input_left_button
if left_button_clicked?
state.play = false
state.current_step -= 1
recalculate_searches
end
end
# Controls the play/pause button
# Inverses whether the animation is playing or not when clicked
def input_center_button
if center_button_clicked? || inputs.keyboard.key_down.space
state.play = !state.play
end
end
# Checks if the next step button is clicked
# If it is, it pauses the animation and moves the search one step forward
def input_right_button
if right_button_clicked?
state.play = false
state.current_step += 1
move_searches_one_step_forward
end
end
# These methods detect when the buttons are clicked
def left_button_clicked?
inputs.mouse.point.inside_rect?(buttons.left) && inputs.mouse.up
end
def center_button_clicked?
inputs.mouse.point.inside_rect?(buttons.center) && inputs.mouse.up
end
def right_button_clicked?
inputs.mouse.point.inside_rect?(buttons.right) && inputs.mouse.up
end
# Signal that the user is going to be moving the slider
# Is the mouse over the circle of the slider?
def mouse_over_slider?
circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing)
circle_y = (slider.y - slider.offset)
circle_rect = [circle_x, circle_y, 37, 37]
inputs.mouse.point.inside_rect?(circle_rect)
end
# Signal that the user is going to be moving the star from the first grid
def bfs_mouse_over_star?
inputs.mouse.point.inside_rect?(bfs_scale_up(grid.star))
end
# Signal that the user is going to be moving the star from the second grid
def heuristic_mouse_over_star?
inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.star))
end
# Signal that the user is going to be moving the target from the first grid
def bfs_mouse_over_target?
inputs.mouse.point.inside_rect?(bfs_scale_up(grid.target))
end
# Signal that the user is going to be moving the target from the second grid
def heuristic_mouse_over_target?
inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.target))
end
# Signal that the user is going to be removing walls from the first grid
def bfs_mouse_over_wall?
grid.walls.each_key do |wall|
return true if inputs.mouse.point.inside_rect?(bfs_scale_up(wall))
end
false
end
# Signal that the user is going to be removing walls from the second grid
def heuristic_mouse_over_wall?
grid.walls.each_key do |wall|
return true if inputs.mouse.point.inside_rect?(heuristic_scale_up(wall))
end
false
end
# Signal that the user is going to be adding walls from the first grid
def bfs_mouse_over_grid?
inputs.mouse.point.inside_rect?(bfs_scale_up(grid.rect))
end
# Signal that the user is going to be adding walls from the second grid
def heuristic_mouse_over_grid?
inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.rect))
end
# This method is called when the user is editing the slider
# It pauses the animation and moves the white circle to the closest integer point
# on the slider
# Changes the step of the search to be animated
def process_input_slider
state.play = false
mouse_x = inputs.mouse.point.x
# Bounds the mouse_x to the closest x value on the slider line
mouse_x = slider.x if mouse_x < slider.x
mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w
# Sets the current search step to the one represented by the mouse x value
# The slider's circle moves due to the render_slider method using anim_steps
state.current_step = ((mouse_x - slider.x) / slider.spacing).to_i
recalculate_searches
end
# Moves the star to the cell closest to the mouse in the first grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def process_input_bfs_star
old_star = grid.star.clone
unless bfs_cell_closest_to_mouse == grid.target
grid.star = bfs_cell_closest_to_mouse
end
unless old_star == grid.star
recalculate_searches
end
end
# Moves the star to the cell closest to the mouse in the second grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def process_input_heuristic_star
old_star = grid.star.clone
unless heuristic_cell_closest_to_mouse == grid.target
grid.star = heuristic_cell_closest_to_mouse
end
unless old_star == grid.star
recalculate_searches
end
end
# Moves the target to the grid closest to the mouse in the first grid
# Only recalculate_searchess the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def process_input_bfs_target
old_target = grid.target.clone
unless bfs_cell_closest_to_mouse == grid.star
grid.target = bfs_cell_closest_to_mouse
end
unless old_target == grid.target
recalculate_searches
end
end
# Moves the target to the cell closest to the mouse in the second grid
# Only recalculate_searchess the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def process_input_heuristic_target
old_target = grid.target.clone
unless heuristic_cell_closest_to_mouse == grid.star
grid.target = heuristic_cell_closest_to_mouse
end
unless old_target == grid.target
recalculate_searches
end
end
# Removes walls in the first grid that are under the cursor
def process_input_bfs_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if bfs_mouse_over_grid?
if grid.walls.key?(bfs_cell_closest_to_mouse)
grid.walls.delete(bfs_cell_closest_to_mouse)
recalculate_searches
end
end
end
# Removes walls in the second grid that are under the cursor
def process_input_heuristic_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if heuristic_mouse_over_grid?
if grid.walls.key?(heuristic_cell_closest_to_mouse)
grid.walls.delete(heuristic_cell_closest_to_mouse)
recalculate_searches
end
end
end
# Adds a wall in the first grid in the cell the mouse is over
def process_input_bfs_add_wall
if bfs_mouse_over_grid?
unless grid.walls.key?(bfs_cell_closest_to_mouse)
grid.walls[bfs_cell_closest_to_mouse] = true
recalculate_searches
end
end
end
# Adds a wall in the second grid in the cell the mouse is over
def process_input_heuristic_add_wall
if heuristic_mouse_over_grid?
unless grid.walls.key?(heuristic_cell_closest_to_mouse)
grid.walls[heuristic_cell_closest_to_mouse] = true
recalculate_searches
end
end
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse helps with this
def bfs_cell_closest_to_mouse
# Closest cell to the mouse in the first grid
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Bound x and y to the grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse in the second grid helps with this
def heuristic_cell_closest_to_mouse
# Closest cell grid to the mouse in the second
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Translate the cell to the first grid
x -= grid.width + 1
# Bound x and y to the first grid
x = 0 if x < 0
y = 0 if y < 0
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
def recalculate_searches
# Reset the searches
bfs.came_from = {}
bfs.frontier = []
bfs.path = []
heuristic.came_from = {}
heuristic.frontier = []
heuristic.path = []
# Move the searches forward to the current step
state.current_step.times { move_searches_one_step_forward }
end
def move_searches_one_step_forward
bfs_one_step_forward
heuristic_one_step_forward
end
def bfs_one_step_forward
return if bfs.came_from.key?(grid.target)
# Only runs at the beginning of the search as setup.
if bfs.came_from.empty?
bfs.frontier << grid.star
bfs.came_from[grid.star] = nil
end
# A step in the search
unless bfs.frontier.empty?
# Takes the next frontier cell
new_frontier = bfs.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless bfs.came_from.key?(neighbor) || grid.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
bfs.frontier << neighbor
bfs.came_from[neighbor] = new_frontier
end
end
end
# Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line
# Comment this line and let a path generate to see the difference
bfs.frontier = bfs.frontier.sort_by { |cell| proximity_to_star(cell) }
# If the search found the target
if bfs.came_from.key?(grid.target)
# Calculate the path between the target and star
bfs_calc_path
end
end
# Calculates the path between the target and star for the breadth first search
# Only called when the breadth first search finds the target
def bfs_calc_path
# Start from the target
endpoint = grid.target
# And the cell it came from
next_endpoint = bfs.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells and store it
path = get_path_between(endpoint, next_endpoint)
bfs.path << path
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = bfs.came_from[endpoint]
# Continue till there are no more cells
end
end
# Moves the heuristic search forward one step
# Can be called from tick while the animation is playing
# Can also be called when recalculating the searches after the user edited the grid
def heuristic_one_step_forward
# Stop the search if the target has been found
return if heuristic.came_from.key?(grid.target)
# If the search has not begun
if heuristic.came_from.empty?
# Setup the search to begin from the star
heuristic.frontier << grid.star
heuristic.came_from[grid.star] = nil
end
# One step in the heuristic search
# Unless there are no more cells to explore from
unless heuristic.frontier.empty?
# Get the next cell to explore from
new_frontier = heuristic.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do |neighbor|
# That have not been visited and are not walls
unless heuristic.came_from.key?(neighbor) || grid.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
heuristic.frontier << neighbor
heuristic.came_from[neighbor] = new_frontier
end
end
end
# Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line
heuristic.frontier = heuristic.frontier.sort_by { |cell| proximity_to_star(cell) }
# Sort the frontier so cells that are close to the target are then prioritized
heuristic.frontier = heuristic.frontier.sort_by { |cell| heuristic_heuristic(cell) }
# If the search found the target
if heuristic.came_from.key?(grid.target)
# Calculate the path between the target and star
heuristic_calc_path
end
end
# Returns one-dimensional absolute distance between cell and target
# Returns a number to compare distances between cells and the target
def heuristic_heuristic(cell)
(grid.target.x - cell.x).abs + (grid.target.y - cell.y).abs
end
# Calculates the path between the target and star for the heuristic search
# Only called when the heuristic search finds the target
def heuristic_calc_path
# Start from the target
endpoint = grid.target
# And the cell it came from
next_endpoint = heuristic.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells and store it
path = get_path_between(endpoint, next_endpoint)
heuristic.path << path
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = heuristic.came_from[endpoint]
# Continue till there are no more cells
end
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors(cell)
neighbors = []
# Gets all the valid neighbors into the array
# From southern neighbor, clockwise
neighbors << [cell.x , cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y ] unless cell.x == 0
neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1
neighbors
end
# Finds the vertical and horizontal distance of a cell from the star
# and returns the larger value
# This method is used to have a zigzag pattern in the rendered path
# A cell that is [5, 5] from the star,
# is explored before over a cell that is [0, 7] away.
# So, if possible, the search tries to go diagonal (zigzag) first
def proximity_to_star(cell)
distance_x = (grid.star.x - cell.x).abs
distance_y = (grid.star.y - cell.y).abs
[distance_x, distance_y].max
end
# Methods that allow code to be more concise. Subdivides args.state, which is where all variables are stored.
def grid
state.grid
end
def buttons
state.buttons
end
def slider
state.slider
end
def bfs
state.bfs
end
def heuristic
state.heuristic
end
# Descriptive aliases for colors
def default_color
{ r: 221, g: 212, b: 213 }
end
def wall_color
{ r: 134, g: 134, b: 120 }
end
def visited_color
{ r: 204, g: 191, b: 179 }
end
def frontier_color
{ r: 103, g: 136, b: 204, a: 200 }
end
def path_color
{ r: 231, g: 230, b: 228 }
end
def button_color
[190, 190, 190] # Gray
end
end
# Method that is called by DragonRuby periodically
# Used for updating animations and calculations
def tick args
# Pressing r will reset the application
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
# Every tick, new args are passed, and the Breadth First Search tick is called
$heuristic_with_walls ||= Heuristic_With_Walls.new
$heuristic_with_walls.args = args
$heuristic_with_walls.tick
end
def reset
$heuristic_with_walls = nil
end
Path Finding Algorithms - A Star - main.rb
# ./samples/13_path_finding_algorithms/08_a_star/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html
# The A* Search works by incorporating both the distance from the starting point
# and the distance from the target in its heurisitic.
# It tends to find the correct (shortest) path even when the Greedy Best-First Search does not,
# and it explores less of the grid, and is therefore faster, than Dijkstra's Search.
class A_Star_Algorithm
attr_gtk
def tick
defaults
render
input
if dijkstra.came_from.empty?
calc_searches
end
end
def defaults
# Variables to edit the size and appearance of the grid
# Freely customizable to user's liking
grid.width ||= 15
grid.height ||= 15
grid.cell_size ||= 27
grid.rect ||= [0, 0, grid.width, grid.height]
grid.star ||= [0, 2]
grid.target ||= [11, 13]
grid.walls ||= {
[2, 2] => true,
[3, 2] => true,
[4, 2] => true,
[5, 2] => true,
[6, 2] => true,
[7, 2] => true,
[8, 2] => true,
[9, 2] => true,
[10, 2] => true,
[11, 2] => true,
[12, 2] => true,
[12, 3] => true,
[12, 4] => true,
[12, 5] => true,
[12, 6] => true,
[12, 7] => true,
[12, 8] => true,
[12, 9] => true,
[12, 10] => true,
[12, 11] => true,
[12, 12] => true,
[5, 12] => true,
[6, 12] => true,
[7, 12] => true,
[8, 12] => true,
[9, 12] => true,
[10, 12] => true,
[11, 12] => true,
[12, 12] => true
}
# What the user is currently editing on the grid
# We store this value, because we want to remember the value even when
# the user's cursor is no longer over what they're interacting with, but
# they are still clicking down on the mouse.
state.user_input ||= :none
# These variables allow the breadth first search to take place
# Came_from is a hash with a key of a cell and a value of the cell that was expanded from to find the key.
# Used to prevent searching cells that have already been found
# and to trace a path from the target back to the starting point.
# Frontier is an array of cells to expand the search from.
# The search is over when there are no more cells to search from.
# Path stores the path from the target to the star, once the target has been found
# It prevents calculating the path every tick.
dijkstra.came_from ||= {}
dijkstra.cost_so_far ||= {}
dijkstra.frontier ||= []
dijkstra.path ||= []
greedy.came_from ||= {}
greedy.frontier ||= []
greedy.path ||= []
a_star.frontier ||= []
a_star.came_from ||= {}
a_star.path ||= []
end
# All methods with render draw stuff on the screen
# UI has buttons, the slider, and labels
# The search specific rendering occurs in the respective methods
def render
render_labels
render_dijkstra
render_greedy
render_a_star
end
def render_labels
outputs.labels << [150, 450, "Dijkstra's"]
outputs.labels << [550, 450, "Greedy Best-First"]
outputs.labels << [1025, 450, "A* Search"]
end
def render_dijkstra
render_dijkstra_grid
render_dijkstra_star
render_dijkstra_target
render_dijkstra_visited
render_dijkstra_walls
render_dijkstra_path
end
def render_greedy
render_greedy_grid
render_greedy_star
render_greedy_target
render_greedy_visited
render_greedy_walls
render_greedy_path
end
def render_a_star
render_a_star_grid
render_a_star_star
render_a_star_target
render_a_star_visited
render_a_star_walls
render_a_star_path
end
# This method handles user input every tick
def input
# If the mouse was lifted this tick
if inputs.mouse.up
# Set current input to none
state.user_input = :none
end
# If the mouse was clicked this tick
if inputs.mouse.down
# Determine what the user is editing and appropriately edit the state.user_input variable
determine_input
end
# Process user input based on user_input variable and current mouse position
process_input
end
# Determines what the user is editing
# This method is called when the mouse is clicked down
def determine_input
# If the mouse is over the star in the first grid
if dijkstra_mouse_over_star?
# The user is editing the star from the first grid
state.user_input = :dijkstra_star
# If the mouse is over the star in the second grid
elsif greedy_mouse_over_star?
# The user is editing the star from the second grid
state.user_input = :greedy_star
# If the mouse is over the star in the third grid
elsif a_star_mouse_over_star?
# The user is editing the star from the third grid
state.user_input = :a_star_star
# If the mouse is over the target in the first grid
elsif dijkstra_mouse_over_target?
# The user is editing the target from the first grid
state.user_input = :dijkstra_target
# If the mouse is over the target in the second grid
elsif greedy_mouse_over_target?
# The user is editing the target from the second grid
state.user_input = :greedy_target
# If the mouse is over the target in the third grid
elsif a_star_mouse_over_target?
# The user is editing the target from the third grid
state.user_input = :a_star_target
# If the mouse is over a wall in the first grid
elsif dijkstra_mouse_over_wall?
# The user is removing a wall from the first grid
state.user_input = :dijkstra_remove_wall
# If the mouse is over a wall in the second grid
elsif greedy_mouse_over_wall?
# The user is removing a wall from the second grid
state.user_input = :greedy_remove_wall
# If the mouse is over a wall in the third grid
elsif a_star_mouse_over_wall?
# The user is removing a wall from the third grid
state.user_input = :a_star_remove_wall
# If the mouse is over the first grid
elsif dijkstra_mouse_over_grid?
# The user is adding a wall from the first grid
state.user_input = :dijkstra_add_wall
# If the mouse is over the second grid
elsif greedy_mouse_over_grid?
# The user is adding a wall from the second grid
state.user_input = :greedy_add_wall
# If the mouse is over the third grid
elsif a_star_mouse_over_grid?
# The user is adding a wall from the third grid
state.user_input = :a_star_add_wall
end
end
# Processes click and drag based on what the user is currently dragging
def process_input
if state.user_input == :dijkstra_star
process_input_dijkstra_star
elsif state.user_input == :greedy_star
process_input_greedy_star
elsif state.user_input == :a_star_star
process_input_a_star_star
elsif state.user_input == :dijkstra_target
process_input_dijkstra_target
elsif state.user_input == :greedy_target
process_input_greedy_target
elsif state.user_input == :a_star_target
process_input_a_star_target
elsif state.user_input == :dijkstra_remove_wall
process_input_dijkstra_remove_wall
elsif state.user_input == :greedy_remove_wall
process_input_greedy_remove_wall
elsif state.user_input == :a_star_remove_wall
process_input_a_star_remove_wall
elsif state.user_input == :dijkstra_add_wall
process_input_dijkstra_add_wall
elsif state.user_input == :greedy_add_wall
process_input_greedy_add_wall
elsif state.user_input == :a_star_add_wall
process_input_a_star_add_wall
end
end
def render_dijkstra_grid
# A large rect the size of the grid
outputs.solids << dijkstra_scale_up(grid.rect).merge(default_color)
outputs.lines << (0..grid.width).map { |x| dijkstra_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| dijkstra_horizontal_line(y) }
end
def render_greedy_grid
# A large rect the size of the grid
outputs.solids << greedy_scale_up(grid.rect).merge(default_color)
outputs.lines << (0..grid.width).map { |x| greedy_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| greedy_horizontal_line(y) }
end
def render_a_star_grid
# A large rect the size of the grid
outputs.solids << a_star_scale_up(grid.rect).merge(default_color)
outputs.lines << (0..grid.width).map { |x| a_star_vertical_line(x) }
outputs.lines << (0..grid.height).map { |y| a_star_horizontal_line(y) }
end
# Returns a vertical line for a column of the first grid
def dijkstra_vertical_line x
line = { x: x, y: 0, w: 0, h: grid.height }
line.transform_values { |v| v * grid.cell_size }
end
# Returns a horizontal line for a column of the first grid
def dijkstra_horizontal_line y
line = { x: 0, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Returns a vertical line for a column of the second grid
def greedy_vertical_line x
dijkstra_vertical_line(x + grid.width + 1)
end
# Returns a horizontal line for a column of the second grid
def greedy_horizontal_line y
line = { x: grid.width + 1, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Returns a vertical line for a column of the third grid
def a_star_vertical_line x
dijkstra_vertical_line(x + grid.width + 1 + grid.width + 1)
end
# Returns a horizontal line for a column of the third grid
def a_star_horizontal_line y
line = { x: grid.width + 1 + grid.width + 1, y: y, w: grid.width, h: 0 }
line.transform_values { |v| v * grid.cell_size }
end
# Renders the star on the first grid
def render_dijkstra_star
outputs.sprites << dijkstra_scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the star on the second grid
def render_greedy_star
outputs.sprites << greedy_scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the star on the third grid
def render_a_star_star
outputs.sprites << a_star_scale_up(grid.star).merge({ path: 'star.png' })
end
# Renders the target on the first grid
def render_dijkstra_target
outputs.sprites << dijkstra_scale_up(grid.target).merge({ path: 'target.png' })
end
# Renders the target on the second grid
def render_greedy_target
outputs.sprites << greedy_scale_up(grid.target).merge({ path: 'target.png' })
end
# Renders the target on the third grid
def render_a_star_target
outputs.sprites << a_star_scale_up(grid.target).merge({ path: 'target.png' })
end
# Renders the walls on the first grid
def render_dijkstra_walls
outputs.solids << grid.walls.map do |key, value|
dijkstra_scale_up(key).merge(wall_color)
end
end
# Renders the walls on the second grid
def render_greedy_walls
outputs.solids << grid.walls.map do |key, value|
greedy_scale_up(key).merge(wall_color)
end
end
# Renders the walls on the third grid
def render_a_star_walls
outputs.solids << grid.walls.map do |key, value|
a_star_scale_up(key).merge(wall_color)
end
end
# Renders the visited cells on the first grid
def render_dijkstra_visited
outputs.solids << dijkstra.came_from.map do |key, value|
dijkstra_scale_up(key).merge(visited_color)
end
end
# Renders the visited cells on the second grid
def render_greedy_visited
outputs.solids << greedy.came_from.map do |key, value|
greedy_scale_up(key).merge(visited_color)
end
end
# Renders the visited cells on the third grid
def render_a_star_visited
outputs.solids << a_star.came_from.map do |key, value|
a_star_scale_up(key).merge(visited_color)
end
end
# Renders the path found by the breadth first search on the first grid
def render_dijkstra_path
outputs.solids << dijkstra.path.map do |path|
dijkstra_scale_up(path).merge(path_color)
end
end
# Renders the path found by the greedy search on the second grid
def render_greedy_path
outputs.solids << greedy.path.map do |path|
greedy_scale_up(path).merge(path_color)
end
end
# Renders the path found by the a_star search on the third grid
def render_a_star_path
outputs.solids << a_star.path.map do |path|
a_star_scale_up(path).merge(path_color)
end
end
# Returns the rect for the path between two cells based on their relative positions
def get_path_between(cell_one, cell_two)
path = []
# If cell one is above cell two
if cell_one.x == cell_two.x && cell_one.y > cell_two.y
# Path starts from the center of cell two and moves upward to the center of cell one
path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4]
# If cell one is below cell two
elsif cell_one.x == cell_two.x && cell_one.y < cell_two.y
# Path starts from the center of cell one and moves upward to the center of cell two
path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4]
# If cell one is to the left of cell two
elsif cell_one.x > cell_two.x && cell_one.y == cell_two.y
# Path starts from the center of cell two and moves rightward to the center of cell one
path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4]
# If cell one is to the right of cell two
elsif cell_one.x < cell_two.x && cell_one.y == cell_two.y
# Path starts from the center of cell one and moves rightward to the center of cell two
path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4]
end
path
end
# In code, the cells are represented as 1x1 rectangles
# When drawn, the cells are larger than 1x1 rectangles
# This method is used to scale up cells, and lines
# Objects are scaled up according to the grid.cell_size variable
# This allows for easy customization of the visual scale of the grid
# This method scales up cells for the first grid
def dijkstra_scale_up(cell)
x = cell.x * grid.cell_size
y = cell.y * grid.cell_size
w = cell.w.zero? ? grid.cell_size : cell.w * grid.cell_size
h = cell.h.zero? ? grid.cell_size : cell.h * grid.cell_size
{x: x, y: y, w: w, h: h}
end
# Translates the given cell grid.width + 1 to the right and then scales up
# Used to draw cells for the second grid
# This method does not work for lines,
# so separate methods exist for the grid lines
def greedy_scale_up(cell)
# Prevents the original value of cell from being edited
cell = cell.clone
# Translates the cell to the second grid equivalent
cell.x += grid.width + 1
# Proceeds as if scaling up for the first grid
dijkstra_scale_up(cell)
end
# Translates the given cell (grid.width + 1) * 2 to the right and then scales up
# Used to draw cells for the third grid
# This method does not work for lines,
# so separate methods exist for the grid lines
def a_star_scale_up(cell)
# Prevents the original value of cell from being edited
cell = cell.clone
# Translates the cell to the second grid equivalent
cell.x += grid.width + 1
# Translates the cell to the third grid equivalent
cell.x += grid.width + 1
# Proceeds as if scaling up for the first grid
dijkstra_scale_up(cell)
end
# Signal that the user is going to be moving the star from the first grid
def dijkstra_mouse_over_star?
inputs.mouse.point.inside_rect?(dijkstra_scale_up(grid.star))
end
# Signal that the user is going to be moving the star from the second grid
def greedy_mouse_over_star?
inputs.mouse.point.inside_rect?(greedy_scale_up(grid.star))
end
# Signal that the user is going to be moving the star from the third grid
def a_star_mouse_over_star?
inputs.mouse.point.inside_rect?(a_star_scale_up(grid.star))
end
# Signal that the user is going to be moving the target from the first grid
def dijkstra_mouse_over_target?
inputs.mouse.point.inside_rect?(dijkstra_scale_up(grid.target))
end
# Signal that the user is going to be moving the target from the second grid
def greedy_mouse_over_target?
inputs.mouse.point.inside_rect?(greedy_scale_up(grid.target))
end
# Signal that the user is going to be moving the target from the third grid
def a_star_mouse_over_target?
inputs.mouse.point.inside_rect?(a_star_scale_up(grid.target))
end
# Signal that the user is going to be removing walls from the first grid
def dijkstra_mouse_over_wall?
grid.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(dijkstra_scale_up(wall))
end
false
end
# Signal that the user is going to be removing walls from the second grid
def greedy_mouse_over_wall?
grid.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(greedy_scale_up(wall))
end
false
end
# Signal that the user is going to be removing walls from the third grid
def a_star_mouse_over_wall?
grid.walls.each_key do | wall |
return true if inputs.mouse.point.inside_rect?(a_star_scale_up(wall))
end
false
end
# Signal that the user is going to be adding walls from the first grid
def dijkstra_mouse_over_grid?
inputs.mouse.point.inside_rect?(dijkstra_scale_up(grid.rect))
end
# Signal that the user is going to be adding walls from the second grid
def greedy_mouse_over_grid?
inputs.mouse.point.inside_rect?(greedy_scale_up(grid.rect))
end
# Signal that the user is going to be adding walls from the third grid
def a_star_mouse_over_grid?
inputs.mouse.point.inside_rect?(a_star_scale_up(grid.rect))
end
# Moves the star to the cell closest to the mouse in the first grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def process_input_dijkstra_star
old_star = grid.star.clone
unless dijkstra_cell_closest_to_mouse == grid.target
grid.star = dijkstra_cell_closest_to_mouse
end
unless old_star == grid.star
reset_searches
end
end
# Moves the star to the cell closest to the mouse in the second grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def process_input_greedy_star
old_star = grid.star.clone
unless greedy_cell_closest_to_mouse == grid.target
grid.star = greedy_cell_closest_to_mouse
end
unless old_star == grid.star
reset_searches
end
end
# Moves the star to the cell closest to the mouse in the third grid
# Only resets the search if the star changes position
# Called whenever the user is editing the star (puts mouse down on star)
def process_input_a_star_star
old_star = grid.star.clone
unless a_star_cell_closest_to_mouse == grid.target
grid.star = a_star_cell_closest_to_mouse
end
unless old_star == grid.star
reset_searches
end
end
# Moves the target to the grid closest to the mouse in the first grid
# Only reset_searchess the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def process_input_dijkstra_target
old_target = grid.target.clone
unless dijkstra_cell_closest_to_mouse == grid.star
grid.target = dijkstra_cell_closest_to_mouse
end
unless old_target == grid.target
reset_searches
end
end
# Moves the target to the cell closest to the mouse in the second grid
# Only reset_searchess the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def process_input_greedy_target
old_target = grid.target.clone
unless greedy_cell_closest_to_mouse == grid.star
grid.target = greedy_cell_closest_to_mouse
end
unless old_target == grid.target
reset_searches
end
end
# Moves the target to the cell closest to the mouse in the third grid
# Only reset_searchess the search if the target changes position
# Called whenever the user is editing the target (puts mouse down on target)
def process_input_a_star_target
old_target = grid.target.clone
unless a_star_cell_closest_to_mouse == grid.star
grid.target = a_star_cell_closest_to_mouse
end
unless old_target == grid.target
reset_searches
end
end
# Removes walls in the first grid that are under the cursor
def process_input_dijkstra_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if dijkstra_mouse_over_grid?
if grid.walls.has_key?(dijkstra_cell_closest_to_mouse)
grid.walls.delete(dijkstra_cell_closest_to_mouse)
reset_searches
end
end
end
# Removes walls in the second grid that are under the cursor
def process_input_greedy_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if greedy_mouse_over_grid?
if grid.walls.key?(greedy_cell_closest_to_mouse)
grid.walls.delete(greedy_cell_closest_to_mouse)
reset_searches
end
end
end
# Removes walls in the third grid that are under the cursor
def process_input_a_star_remove_wall
# The mouse needs to be inside the grid, because we only want to remove walls
# the cursor is directly over
# Recalculations should only occur when a wall is actually deleted
if a_star_mouse_over_grid?
if grid.walls.key?(a_star_cell_closest_to_mouse)
grid.walls.delete(a_star_cell_closest_to_mouse)
reset_searches
end
end
end
# Adds a wall in the first grid in the cell the mouse is over
def process_input_dijkstra_add_wall
if dijkstra_mouse_over_grid?
unless grid.walls.key?(dijkstra_cell_closest_to_mouse)
grid.walls[dijkstra_cell_closest_to_mouse] = true
reset_searches
end
end
end
# Adds a wall in the second grid in the cell the mouse is over
def process_input_greedy_add_wall
if greedy_mouse_over_grid?
unless grid.walls.key?(greedy_cell_closest_to_mouse)
grid.walls[greedy_cell_closest_to_mouse] = true
reset_searches
end
end
end
# Adds a wall in the third grid in the cell the mouse is over
def process_input_a_star_add_wall
if a_star_mouse_over_grid?
unless grid.walls.key?(a_star_cell_closest_to_mouse)
grid.walls[a_star_cell_closest_to_mouse] = true
reset_searches
end
end
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse helps with this
def dijkstra_cell_closest_to_mouse
# Closest cell to the mouse in the first grid
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Bound x and y to the grid
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse in the second grid helps with this
def greedy_cell_closest_to_mouse
# Closest cell grid to the mouse in the second
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Translate the cell to the first grid
x -= grid.width + 1
# Bound x and y to the first grid
x = 0 if x < 0
y = 0 if y < 0
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
# When the user grabs the star and puts their cursor to the far right
# and moves up and down, the star is supposed to move along the grid as well
# Finding the cell closest to the mouse in the third grid helps with this
def a_star_cell_closest_to_mouse
# Closest cell grid to the mouse in the second
x = (inputs.mouse.point.x / grid.cell_size).to_i
y = (inputs.mouse.point.y / grid.cell_size).to_i
# Translate the cell to the first grid
x -= (grid.width + 1) * 2
# Bound x and y to the first grid
x = 0 if x < 0
y = 0 if y < 0
x = grid.width - 1 if x > grid.width - 1
y = grid.height - 1 if y > grid.height - 1
# Return closest cell
[x, y]
end
def reset_searches
# Reset the searches
dijkstra.came_from = {}
dijkstra.cost_so_far = {}
dijkstra.frontier = []
dijkstra.path = []
greedy.came_from = {}
greedy.frontier = []
greedy.path = []
a_star.came_from = {}
a_star.frontier = []
a_star.path = []
end
def calc_searches
calc_dijkstra
calc_greedy
calc_a_star
# Move the searches forward to the current step
# state.current_step.times { move_searches_one_step_forward }
end
def calc_dijkstra
# Sets up the search to begin from the star
dijkstra.frontier << grid.star
dijkstra.came_from[grid.star] = nil
dijkstra.cost_so_far[grid.star] = 0
# Until the target is found or there are no more cells to explore from
until dijkstra.came_from.key?(grid.target) or dijkstra.frontier.empty?
# Take the next frontier cell. The first element is the cell, the second is the priority.
new_frontier = dijkstra.frontier.shift#[0]
# For each of its neighbors
adjacent_neighbors(new_frontier).each do | neighbor |
# That have not been visited and are not walls
unless dijkstra.came_from.key?(neighbor) or grid.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
dijkstra.frontier << neighbor
dijkstra.came_from[neighbor] = new_frontier
dijkstra.cost_so_far[neighbor] = dijkstra.cost_so_far[new_frontier] + 1
end
end
# Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line
# Comment this line and let a path generate to see the difference
dijkstra.frontier = dijkstra.frontier.sort_by {| cell | proximity_to_star(cell) }
dijkstra.frontier = dijkstra.frontier.sort_by {| cell | dijkstra.cost_so_far[cell] }
end
# If the search found the target
if dijkstra.came_from.key?(grid.target)
# Calculate the path between the target and star
dijkstra_calc_path
end
end
def calc_greedy
# Sets up the search to begin from the star
greedy.frontier << grid.star
greedy.came_from[grid.star] = nil
# Until the target is found or there are no more cells to explore from
until greedy.came_from.key?(grid.target) or greedy.frontier.empty?
# Take the next frontier cell
new_frontier = greedy.frontier.shift
# For each of its neighbors
adjacent_neighbors(new_frontier).each do | neighbor |
# That have not been visited and are not walls
unless greedy.came_from.key?(neighbor) or grid.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
greedy.frontier << neighbor
greedy.came_from[neighbor] = new_frontier
end
end
# Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line
# Comment this line and let a path generate to see the difference
greedy.frontier = greedy.frontier.sort_by {| cell | proximity_to_star(cell) }
# Sort the frontier so cells that are close to the target are then prioritized
greedy.frontier = greedy.frontier.sort_by {| cell | greedy_heuristic(cell) }
end
# If the search found the target
if greedy.came_from.key?(grid.target)
# Calculate the path between the target and star
greedy_calc_path
end
end
def calc_a_star
# Setup the search to start from the star
a_star.came_from[grid.star] = nil
a_star.cost_so_far[grid.star] = 0
a_star.frontier << grid.star
# Until there are no more cells to explore from or the search has found the target
until a_star.frontier.empty? or a_star.came_from.key?(grid.target)
# Get the next cell to expand from
current_frontier = a_star.frontier.shift
# For each of that cells neighbors
adjacent_neighbors(current_frontier).each do | neighbor |
# That have not been visited and are not walls
unless a_star.came_from.key?(neighbor) or grid.walls.key?(neighbor)
# Add them to the frontier and mark them as visited
a_star.frontier << neighbor
a_star.came_from[neighbor] = current_frontier
a_star.cost_so_far[neighbor] = a_star.cost_so_far[current_frontier] + 1
end
end
# Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line
# Comment this line and let a path generate to see the difference
a_star.frontier = a_star.frontier.sort_by {| cell | proximity_to_star(cell) }
a_star.frontier = a_star.frontier.sort_by {| cell | a_star.cost_so_far[cell] + greedy_heuristic(cell) }
end
# If the search found the target
if a_star.came_from.key?(grid.target)
# Calculate the path between the target and star
a_star_calc_path
end
end
# Calculates the path between the target and star for the breadth first search
# Only called when the breadth first search finds the target
def dijkstra_calc_path
# Start from the target
endpoint = grid.target
# And the cell it came from
next_endpoint = dijkstra.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells and store it
path = get_path_between(endpoint, next_endpoint)
dijkstra.path << path
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = dijkstra.came_from[endpoint]
# Continue till there are no more cells
end
end
# Returns one-dimensional absolute distance between cell and target
# Returns a number to compare distances between cells and the target
def greedy_heuristic(cell)
(grid.target.x - cell.x).abs + (grid.target.y - cell.y).abs
end
# Calculates the path between the target and star for the greedy search
# Only called when the greedy search finds the target
def greedy_calc_path
# Start from the target
endpoint = grid.target
# And the cell it came from
next_endpoint = greedy.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells and store it
path = get_path_between(endpoint, next_endpoint)
greedy.path << path
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = greedy.came_from[endpoint]
# Continue till there are no more cells
end
end
# Calculates the path between the target and star for the a_star search
# Only called when the a_star search finds the target
def a_star_calc_path
# Start from the target
endpoint = grid.target
# And the cell it came from
next_endpoint = a_star.came_from[endpoint]
while endpoint && next_endpoint
# Draw a path between these two cells and store it
path = get_path_between(endpoint, next_endpoint)
a_star.path << path
# And get the next pair of cells
endpoint = next_endpoint
next_endpoint = a_star.came_from[endpoint]
# Continue till there are no more cells
end
end
# Returns a list of adjacent cells
# Used to determine what the next cells to be added to the frontier are
def adjacent_neighbors(cell)
neighbors = []
# Gets all the valid neighbors into the array
# From southern neighbor, clockwise
neighbors << [cell.x , cell.y - 1] unless cell.y == 0
neighbors << [cell.x - 1, cell.y ] unless cell.x == 0
neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1
neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1
neighbors
end
# Finds the vertical and horizontal distance of a cell from the star
# and returns the larger value
# This method is used to have a zigzag pattern in the rendered path
# A cell that is [5, 5] from the star,
# is explored before over a cell that is [0, 7] away.
# So, if possible, the search tries to go diagonal (zigzag) first
def proximity_to_star(cell)
distance_x = (grid.star.x - cell.x).abs
distance_y = (grid.star.y - cell.y).abs
if distance_x > distance_y
return distance_x
else
return distance_y
end
end
# Methods that allow code to be more concise. Subdivides args.state, which is where all variables are stored.
def grid
state.grid
end
def dijkstra
state.dijkstra
end
def greedy
state.greedy
end
def a_star
state.a_star
end
# Descriptive aliases for colors
def default_color
{ r: 221, g: 212, b: 213 }
end
def wall_color
{ r: 134, g: 134, b: 120 }
end
def visited_color
{ r: 204, g: 191, b: 179 }
end
def path_color
{ r: 231, g: 230, b: 228 }
end
def button_color
[190, 190, 190] # Gray
end
end
# Method that is called by DragonRuby periodically
# Used for updating animations and calculations
def tick args
# Pressing r will reset the application
if args.inputs.keyboard.key_down.r
args.gtk.reset
reset
return
end
# Every tick, new args are passed, and the Breadth First Search tick is called
$a_star_algorithm ||= A_Star_Algorithm.new
$a_star_algorithm.args = args
$a_star_algorithm.tick
end
def reset
$a_star_algorithm = nil
end
Path Finding Algorithms - Tower Defense - main.rb
# ./samples/13_path_finding_algorithms/09_tower_defense/app/main.rb
# Contributors outside of DragonRuby who also hold Copyright:
# - Sujay Vadlakonda: https://github.com/sujayvadlakonda
# An example of some major components in a tower defence game
# The pathing of the tanks is determined by A* algorithm -- try editing the walls
# The turrets shoot bullets at the closest tank. The bullets are heat-seeking
def tick args
$gtk.reset if args.inputs.keyboard.key_down.r
defaults args
render args
calc args
end
def defaults args
args.outputs.background_color = wall_color
args.state.grid_size = 5
args.state.tile_size = 50
args.state.grid_start ||= [0, 0]
args.state.grid_goal ||= [4, 4]
# Try editing these walls to see the path change!
args.state.walls ||= {
[0, 4] => true,
[1, 3] => true,
[3, 1] => true,
# [4, 0] => true,
}
args.state.a_star.frontier ||= []
args.state.a_star.came_from ||= {}
args.state.a_star.path ||= []
args.state.tanks ||= []
args.state.tank_spawn_period ||= 60
args.state.tank_sprite_path ||= 'sprites/circle/white.png'
args.state.tank_speed ||= 1
args.state.turret_shoot_period = 10
# Turrets can be entered as [x, y] but are immediately mapped to hashes
# Walls are also added where the turrets are to prevent tanks from pathing over them
args.state.turrets ||= [
[2, 2]
].each { |turret| args.state.walls[turret] = true}.map do |x, y|
{
x: x * args.state.tile_size,
y: y * args.state.tile_size,
w: args.state.tile_size,
h: args.state.tile_size,
path: 'sprites/circle/gray.png',
range: 100
}
end
args.state.bullet_size ||= 25
args.state.bullets ||= []
args.state.bullet_path ||= 'sprites/circle/orange.png'
end
def render args
render_grid args
render_a_star args
args.outputs.sprites << args.state.tanks
args.outputs.sprites << args.state.turrets
args.outputs.sprites << args.state.bullets
end
def render_grid args
# Draw a square the size and color of the grid
args.outputs.solids << {
x: 0,
y: 0,
w: args.state.grid_size * args.state.tile_size,
h: args.state.grid_size * args.state.tile_size,
}.merge(grid_color)
# Draw lines across the grid to show tiles
(args.state.grid_size + 1).times do | value |
render_horizontal_line(args, value)
render_vertical_line(args, value)
end
# Render special tiles
render_tile(args, args.state.grid_start, start_color)
render_tile(args, args.state.grid_goal, goal_color)
args.state.walls.keys.each { |wall| render_tile(args, wall, wall_color) }
end
def render_vertical_line args, x
args.outputs.lines << {
x: x * args.state.tile_size,
y: 0,
w: 0,
h: args.state.grid_size * args.state.tile_size
}
end
def render_horizontal_line args, y
args.outputs.lines << {
x: 0,
y: y * args.state.tile_size,
w: args.state.grid_size * args.state.tile_size,
h: 0
}
end
def render_tile args, tile, color
args.outputs.solids << {
x: tile.x * args.state.tile_size,
y: tile.y * args.state.tile_size,
w: args.state.tile_size,
h: args.state.tile_size,
r: color[0],
g: color[1],
b: color[2]
}
end
def calc args
calc_a_star args
calc_tanks args
calc_turrets args
calc_bullets args
end
def calc_a_star args
# Only does this one time
return unless args.state.a_star.path.empty?
# Start the search from the grid start
args.state.a_star.frontier << args.state.grid_start
args.state.a_star.came_from[args.state.grid_start] = nil
# Until a path to the goal has been found or there are no more tiles to explore
until (args.state.a_star.came_from.key?(args.state.grid_goal) || args.state.a_star.frontier.empty?)
# For the first tile in the frontier
tile_to_expand_from = args.state.a_star.frontier.shift
# Add each of its neighbors to the frontier
neighbors(args, tile_to_expand_from).each do |tile|
args.state.a_star.frontier << tile
args.state.a_star.came_from[tile] = tile_to_expand_from
end
end
# Stop calculating a path if the goal was never reached
return unless args.state.a_star.came_from.key? args.state.grid_goal
# Fill path by tracing back from the goal
current_cell = args.state.grid_goal
while current_cell
args.state.a_star.path.unshift current_cell
current_cell = args.state.a_star.came_from[current_cell]
end
puts "The path has been calculated"
puts args.state.a_star.path
end
def calc_tanks args
spawn_tank args
move_tanks args
end
def move_tanks args
# Remove tanks that have reached the end of their path
args.state.tanks.reject! { |tank| tank[:a_star].empty? }
# Tanks have an array that has each tile it has to go to in order from a* path
args.state.tanks.each do | tank |
destination = tank[:a_star][0]
# Move the tank towards the destination
tank[:x] += copy_sign(args.state.tank_speed, ((destination.x * args.state.tile_size) - tank[:x]))
tank[:y] += copy_sign(args.state.tank_speed, ((destination.y * args.state.tile_size) - tank[:y]))
# If the tank has reached its destination
if (destination.x * args.state.tile_size) == tank[:x] &&
(destination.y * args.state.tile_size) == tank[:y]
# Set the destination to the next point in the path
tank[:a_star].shift
end
end
end
def calc_turrets args
return unless args.state.tick_count.mod_zero? args.state.turret_shoot_period
args.state.turrets.each do | turret |
# Finds the closest tank
target = nil
shortest_distance = turret[:range] + 1
args.state.tanks.each do | tank |
distance = distance_between(turret[:x], turret[:y], tank[:x], tank[:y])
if distance < shortest_distance
target = tank
shortest_distance = distance
end
end
# If there is a tank in range, fires a bullet
if target
args.state.bullets << {
x: turret[:x],
y: turret[:y],
w: args.state.bullet_size,
h: args.state.bullet_size,
path: args.state.bullet_path,
# Note that this makes it heat-seeking, because target is passed by reference
# Could do target.clone to make the bullet go to where the tank initially was
target: target
}
end
end
end
def calc_bullets args
# Bullets aim for the center of their targets
args.state.bullets.each { |bullet| move bullet, center_of(bullet[:target])}
args.state.bullets.reject! { |b| b.intersect_rect? b[:target] }
end
def center_of object
object = object.clone
object[:x] += 0.5
object[:y] += 0.5
object
end
def render_a_star args
args.state.a_star.path.map do |tile|
# Map each x, y coordinate to the center of the tile and scale up
[(tile.x + 0.5) * args.state.tile_size, (tile.y + 0.5) * args.state.tile_size]
end.inject do | point_a, point_b |
# Render the line between each point
args.outputs.lines << [point_a.x, point_a.y, point_b.x, point_b.y, a_star_color]
point_b
end
end
# Moves object to target at speed
def move object, target, speed = 1
if target.is_a? Hash
object[:x] += copy_sign(speed, target[:x] - object[:x])
object[:y] += copy_sign(speed, target[:y] - object[:y])
else
object[:x] += copy_sign(speed, target.x - object[:x])
object[:y] += copy_sign(speed, target.y - object[:y])
end
end
def distance_between a_x, a_y, b_x, b_y
(((b_x - a_x) ** 2) + ((b_y - a_y) ** 2)) ** 0.5
end
def copy_sign value, sign
return 0 if sign == 0
return value if sign > 0
-value
end
def spawn_tank args
return unless args.state.tick_count.mod_zero? args.state.tank_spawn_period
args.state.tanks << {
x: args.state.grid_start.x,
y: args.state.grid_start.y,
w: args.state.tile_size,
h: args.state.tile_size,
path: args.state.tank_sprite_path,
a_star: args.state.a_star.path.clone
}
end
def neighbors args, tile
[[tile.x, tile.y - 1],
[tile.x, tile.y + 1],
[tile.x + 1, tile.y],
[tile.x - 1, tile.y]].reject do |neighbor|
args.state.a_star.came_from.key?(neighbor) || tile_out_of_bounds?(args, neighbor) ||
args.state.walls.key?(neighbor)
end
end
def tile_out_of_bounds? args, tile
tile.x < 0 || tile.y < 0 || tile.x >= args.state.grid_size || tile.y >= args.state.grid_size
end
def grid_color
{ r: 133, g: 226, b: 144 }
end
def start_color
[226, 144, 133]
end
def goal_color
[226, 133, 144]
end
def wall_color
[133, 144, 226]
end
def a_star_color
[0, 0, 255]
end
14 Vr - Skybox - main.rb
# ./samples/14_vr/01_skybox/app/main.rb
require 'app/tick.rb'
def tick args
args.gtk.start_server! port: 9001, enable_in_prod: true
tick_game args
end
14 Vr - Skybox - tick.rb
# ./samples/14_vr/01_skybox/app/tick.rb
def skybox args, x, y, z, size
sprite = { a: 80, path: 'sprites/box.png' }
front = { x: x, y: y, z: z, w: size, h: size, **sprite }
front_720 = { x: x, y: y, z: z + 1, w: size, h: size * 9.fdiv(16), **sprite }
back = { x: x, y: y, z: z + size, w: size, h: size, **sprite }
bottom = { x: x, y: y - size.half, z: z + size.half, w: size, h: size, angle_x: 90, **sprite }
top = { x: x, y: y + size.half, z: z + size.half, w: size, h: size, angle_x: 90, **sprite }
left = { x: x - size.half, y: y, w: size, h: size, z: z + size.half, angle_y: 90, **sprite }
right = { x: x + size.half, y: y, w: size, h: size, z: z + size.half, angle_y: 90, **sprite }
args.outputs.sprites << [back,
left,
top,
bottom,
right,
front,
front_720]
end
def tick_game args
args.outputs.background_color = [0, 0, 0]
args.state.z ||= 0
args.state.scale ||= 0.05
if args.inputs.controller_one.key_down.a
if args.grid.name == :bottom_left
args.grid.origin_center!
else
args.grid.origin_bottom_left!
end
end
args.state.scale += args.inputs.controller_one.right_analog_x_perc * 0.01
args.state.z -= args.inputs.controller_one.right_analog_y_perc * 1.5
args.state.scale = args.state.scale.clamp(0.05, 1.0)
args.state.z = 0 if args.state.z < 0
args.state.z = 1280 if args.state.z > 1280
skybox args, 0, 0, args.state.z, 1280 * args.state.scale
render_guides args
end
def render_guides args
label_style = { alignment_enum: 1,
size_enum: -2,
vertical_alignment_enum: 0, r: 255, g: 255, b: 255 }
instructions = [
"controller position: #{args.inputs.controller_one.left_hand.x} #{args.inputs.controller_one.left_hand.y} #{args.inputs.controller_one.left_hand.z}",
"scale: #{args.state.scale.to_sf} (right analog left/right)",
"z: #{args.state.z.to_sf} (right analog up/down)",
"origin: :#{args.grid.name} (A button)",
]
args.outputs.labels << instructions.map_with_index do |text, i|
{ x: 640,
y: 100 + ((instructions.length - (i + 3)) * 22),
z: args.state.z + 2,
a: 255,
text: text,
** label_style,
alignment_enum: 1,
vertical_alignment_enum: 0 }
end
# lines for scaled box
size = 1280 * args.state.scale
size_16_9 = size * 9.fdiv(16)
args.outputs.primitives << [
{ x: size - 1280, y: size, z: 0, w: 1280 * 2, r: 128, g: 128, b: 128, a: 64 }.line!,
{ x: size - 1280, y: size, z: args.state.z + 2, w: 1280 * 2, r: 128, g: 128, b: 128, a: 255 }.line!,
{ x: size - 1280, y: size_16_9, z: 0, w: 1280 * 2, r: 128, g: 128, b: 128, a: 64 }.line!,
{ x: size - 1280, y: size_16_9, z: args.state.z + 2, w: 1280 * 2, r: 128, g: 128, b: 128, a: 255 }.line!,
{ x: size, y: size - 1280, z: 0, h: 1280 * 2, r: 128, g: 128, b: 128, a: 64 }.line!,
{ x: size, y: size - 1280, z: args.state.z + 2, h: 1280 * 2, r: 128, g: 128, b: 128, a: 255 }.line!,
{ x: size, y: size, z: args.state.z + 3, size_enum: -2,
vertical_alignment_enum: 0,
text: "#{size.to_sf}, #{size.to_sf}, #{args.state.z.to_sf}",
r: 255, g: 255, b: 255, a: 255 }.label!,
{ x: size, y: size_16_9, z: args.state.z + 3, size_enum: -2,
vertical_alignment_enum: 0,
text: "#{size.to_sf}, #{size_16_9.to_sf}, #{args.state.z.to_sf}",
r: 255, g: 255, b: 255, a: 255 }.label!,
]
xs = [
{ description: "left", x: 0, alignment_enum: 0 },
{ description: "center", x: 640, alignment_enum: 1 },
{ description: "right", x: 1280, alignment_enum: 2 },
]
ys = [
{ description: "bottom", y: 0, vertical_alignment_enum: 0 },
{ description: "center", y: 640, vertical_alignment_enum: 1 },
{ description: "center (720p)", y: 360, vertical_alignment_enum: 1 },
{ description: "top", y: 1280, vertical_alignment_enum: 2 },
{ description: "top (720p)", y: 720, vertical_alignment_enum: 2 },
]
args.outputs.primitives << xs.product(ys).map do |(xdef, ydef)|
[
{ x: xdef.x,
y: ydef.y,
z: args.state.z + 3,
text: "#{xdef.x.to_sf}, #{ydef.y.to_sf} #{args.state.z.to_sf}",
**label_style,
alignment_enum: xdef.alignment_enum,
vertical_alignment_enum: ydef.vertical_alignment_enum
},
{ x: xdef.x,
y: ydef.y - 20,
z: args.state.z + 3,
text: "#{ydef.description}, #{xdef.description}",
**label_style,
alignment_enum: xdef.alignment_enum,
vertical_alignment_enum: ydef.vertical_alignment_enum
}
]
end
args.outputs.primitives << xs.product(ys).map do |(xdef, ydef)|
[
{
x: xdef.x - 1280,
y: ydef.y,
w: 1280 * 2,
a: 64,
r: 128, g: 128, b: 128
}.line!,
{
x: xdef.x,
y: ydef.y - 720,
h: 720 * 2,
a: 64,
r: 128, g: 128, b: 128
}.line!,
].map do |p|
[
p.merge(z: 0, a: 64),
p.merge(z: args.state.z + 2, a: 255)
]
end
end
end
$gtk.reset
14 Vr - Top Down Rpg - main.rb
# ./samples/14_vr/02_top_down_rpg/app/main.rb
require 'app/tick.rb'
def tick args
args.gtk.start_server! port: 9001, enable_in_prod: true
tick_game args
end
14 Vr - Top Down Rpg - tick.rb
# ./samples/14_vr/02_top_down_rpg/app/tick.rb
class Game
attr_gtk
def tick
outputs.background_color = [0, 0, 0]
args.state.tile_size = 80
args.state.player_speed = 4
args.state.player ||= tile(args, 7, 3, 0, 128, 180)
generate_map args
# adds walls, goal, and player to args.outputs.solids so they appear on screen
args.outputs.solids << args.state.goal
args.outputs.solids << args.state.walls
args.outputs.solids << args.state.player
args.outputs.solids << args.state.walls.map { |s| s.to_hash.merge(z: 2, g: 80) }
args.outputs.solids << args.state.walls.map { |s| s.to_hash.merge(z: 10, g: 255, a: 50) }
# if player's box intersects with goal, a label is output onto the screen
if args.state.player.intersect_rect? args.state.goal
args.outputs.labels << { x: 640,
y: 360,
z: 10,
text: "YOU'RE A GOD DAMN WIZARD, HARRY.",
size_enum: 10,
alignment_enum: 1,
vertical_alignment_enum: 1,
r: 255,
g: 255,
b: 255 }
end
move_player args, -1, 0 if args.inputs.keyboard.left || args.inputs.controller_one.left # x position decreases by 1 if left key is pressed
move_player args, 1, 0 if args.inputs.keyboard.right || args.inputs.controller_one.right # x position increases by 1 if right key is pressed
move_player args, 0, -1 if args.inputs.keyboard.up || args.inputs.controller_one.down # y position increases by 1 if up is pressed
move_player args, 0, 1 if args.inputs.keyboard.down || args.inputs.controller_one.up # y position decreases by 1 if down is pressed
end
# Sets position, size, and color of the tile
def tile args, x, y, *color
[x * args.state.tile_size, # sets definition for array using method parameters
y * args.state.tile_size, # multiplying by tile_size sets x and y to correct position using pixel values
args.state.tile_size,
args.state.tile_size,
*color]
end
# Creates map by adding tiles to the wall, as well as a goal (that the player needs to reach)
def generate_map args
return if args.state.area
# Creates the area of the map. There are 9 rows running horizontally across the screen
# and 16 columns running vertically on the screen. Any spot with a "1" is not
# open for the player to move into (and is green), and any spot with a "0" is available
# for the player to move in.
args.state.area = [
[1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,],
[1, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1,], # the "2" represents the goal
[1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,],
[1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
].reverse # reverses the order of the area collection
# By reversing the order, the way that the area appears above is how it appears
# on the screen in the game. If we did not reverse, the map would appear inverted.
#The wall starts off with no tiles.
args.state.walls = []
# If v is 1, a green tile is added to args.state.walls.
# If v is 2, a black tile is created as the goal.
args.state.area.map_2d do |y, x, v|
if v == 1
args.state.walls << tile(args, x, y, 0, 255, 0) # green tile
elsif v == 2 # notice there is only one "2" above because there is only one single goal
args.state.goal = tile(args, x, y, 180, 0, 0) # black tile
end
end
end
# Allows the player to move their box around the screen
def move_player args, *vector
box = args.state.player.shift_rect(vector) # box is able to move at an angle
# If the player's box hits a wall, it is not able to move further in that direction
return if args.state.walls
.any_intersect_rect?(box)
# Player's box is able to move at angles (not just the four general directions) fast
args.state.player =
args.state.player
.shift_rect(vector.x * args.state.player_speed, # if we don't multiply by speed, then
vector.y * args.state.player_speed) # the box will move extremely slow
end
end
$game = Game.new
def tick_game args
$game.args = args
$game.tick
end
$gtk.reset
14 Vr - Space Invaders - main.rb
# ./samples/14_vr/03_space_invaders/app/main.rb
require 'app/tick.rb'
def tick args
args.gtk.start_server! port: 9001, enable_in_prod: true
tick_game args
end
14 Vr - Space Invaders - tick.rb
# ./samples/14_vr/03_space_invaders/app/tick.rb
class Game
attr_gtk
def tick
grid.origin_center!
defaults
outputs.background_color = [0, 0, 0]
args.outputs.sprites << state.enemies.map { |e| enemy_prefab e }.to_a
end
def defaults
state.enemy_sprite_size = 64
state.row_size = 16
state.max_rows = 20
state.enemies ||= 32.map_with_index do |i|
x = i % 16
y = i.idiv 16
{ row: y, col: x }
end
end
def enemy_prefab enemy
if enemy.row > state.max_rows
raise "#{enemy}"
end
relative_row = enemy.row + 1
z = 50 - relative_row * 10
x = (enemy.col * state.enemy_sprite_size) - (state.enemy_sprite_size * state.row_size).idiv(2)
enemy_sprite(x, enemy.row * 10 + 100, z * 10, enemy)
end
def enemy_sprite x, y, z, meta
index = 0.frame_index count: 2, hold_for: 50, repeat: true
{ x: x,
y: y,
z: z,
w: state.enemy_sprite_size,
h: state.enemy_sprite_size,
path: 'sprites/enemy.png',
source_x: 128 * index,
source_y: 0,
source_w: 128,
source_h: 128,
meta: meta }
end
end
$game = Game.new
def tick_game args
$game.args = args
$game.tick
end
$gtk.reset
14 Vr - Let There Be Light - main.rb
# ./samples/14_vr/04_let_there_be_light/app/main.rb
require 'app/tick.rb'
def tick args
args.gtk.start_server! port: 9001, enable_in_prod: true
tick_game args
end
14 Vr - Let There Be Light - tick.rb
# ./samples/14_vr/04_let_there_be_light/app/tick.rb
class Game
attr_gtk
def tick
grid.origin_center!
defaults
state.angle_shift_x ||= 180
state.angle_shift_y ||= 180
if inputs.controller_one.right_analog_y_perc.round(2) != 0.00
args.state.star_distance += (inputs.controller_one.right_analog_y_perc * 0.25) ** 2 * inputs.controller_one.right_analog_y_perc.sign
state.star_distance = state.star_distance.clamp(state.min_star_distance, state.max_star_distance)
state.star_sprites = calc_star_primitives
elsif inputs.controller_one.down
args.state.star_distance += (1.0 * 0.25) ** 2
state.star_distance = state.star_distance.clamp(state.min_star_distance, state.max_star_distance)
state.star_sprites = calc_star_primitives
elsif inputs.controller_one.up
args.state.star_distance -= (1.0 * 0.25) ** 2
state.star_distance = state.star_distance.clamp(state.min_star_distance, state.max_star_distance)
state.star_sprites = calc_star_primitives
end
render
end
def calc_star_primitives
args.state.stars.map do |s|
w = (32 * state.star_distance).clamp(1, 32)
h = (32 * state.star_distance).clamp(1, 32)
x = (state.max.x * state.star_distance) * s.xr
y = (state.max.y * state.star_distance) * s.yr
z = state.center.z + (state.max.z * state.star_distance * 10 * s.zr)
angle_x = Math.atan2(z - 600, y).to_degrees + 90
angle_y = Math.atan2(z - 600, x).to_degrees + 90
draw_x = x - w.half
draw_y = y - 40 - h.half
draw_z = z
{ x: draw_x,
y: draw_y,
z: draw_z,
b: 255,
w: w,
h: h,
angle_x: angle_x,
angle_y: angle_y,
path: 'sprites/star.png' }
end
end
def render
outputs.background_color = [0, 0, 0]
if state.star_distance <= 1.0
text_alpha = (1 - state.star_distance) * 255
args.outputs.labels << { x: 0, y: 50, text: "Let there be light.", r: 255, g: 255, b: 255, size_enum: 1, alignment_enum: 1, a: text_alpha }
args.outputs.labels << { x: 0, y: 25, text: "(right analog: up/down)", r: 255, g: 255, b: 255, size_enum: -2, alignment_enum: 1, a: text_alpha }
end
args.outputs.sprites << state.star_sprites
end
def random_point
r = { xr: 2.randomize(:ratio) - 1,
yr: 2.randomize(:ratio) - 1,
zr: 2.randomize(:ratio) - 1 }
if (r.xr ** 2 + r.yr ** 2 + r.zr ** 2) > 1.0
return random_point
else
return r
end
end
def defaults
state.max_star_distance ||= 100
state.min_star_distance ||= 0.001
state.star_distance ||= 0.001
state.star_angle ||= 0
state.center.x ||= 0
state.center.y ||= 0
state.center.z ||= 30
state.max.x ||= 640
state.max.y ||= 640
state.max.z ||= 50
state.stars ||= 1500.map do
random_point
end
state.star_sprites ||= calc_star_primitives
end
end
$game = Game.new
def tick_game args
$game.args = args
$game.tick
end
$gtk.reset
14 Vr - Draw A Cube - main.rb
# ./samples/14_vr/05_draw_a_cube/app/main.rb
require 'app/tick.rb'
def tick args
args.gtk.start_server! port: 9001, enable_in_prod: true
tick_game args
end
14 Vr - Draw A Cube - tick.rb
# ./samples/14_vr/05_draw_a_cube/app/tick.rb
def cube args, x, y, z, size
sprite = { w: size, h: size, path: 'sprites/square/blue.png', a: 80 }
back = { x: x, y: y, z: z - size.half + 1, **sprite }
front = { x: x, y: y, z: z + size.half - 1, **sprite }
top = { x: x, y: y + size.half - 1, z: z, angle_x: 90, **sprite }
bottom = { x: x, y: y - size.half + 1, z: z, angle_x: 90, **sprite }
left = { x: x - size.half + 1, y: y, z: z, angle_y: 90, **sprite }
right = { x: x + size.half - 1, y: y, z: z, angle_y: 90, **sprite }
args.outputs.sprites << [back,