Welcome link
Welcome to DragonRuby Game Toolkit!
The information contained here is all available in your the zip file at ./docs/docs.html
. You can browse the docs in a local website by starting up DragonRuby and going to http://localhost:9001
.
Community link
Our Discord server is extremely supportive and helpful. It's the best place to get answers to your questions. The developers of DragonRuby are also on this server if you have any feedback or bug reports.
The Link to Our Discord Server is: http://discord.dragonruby.org.
The News Letter will keep you in the loop with regards to current DragonRuby Events: http://dragonrubydispatch.com.
Book link
Brett Chalupa (one of our community members) has written a book to help you get started: https://book.dragonriders.community/
Tutorial Video link
Here are some videos to help you get the lay of the land.
- Building Tetris - Part 1: https://youtu.be/xZMwRSbC4rY
- Building Tetris - Part 2: https://youtu.be/C3LLzDUDgz4
Getting Started Tutorial link
This is a tutorial written by Ryan C Gordon (a Juggernaut in the industry who has contracted to Valve, Epic, Activision, and EA... check out his Wikipedia page: https://en.wikipedia.org/wiki/Ryan_C._Gordon).
Introduction link
Welcome!
Here's just a little push to get you started if you're new to programming or game development.
If you want to write a game, it's no different than writing any other program for any other framework: there are a few simple rules that might be new to you, but more or less programming is programming no matter what you are building.
Did you not know that? Did you think you couldn't write a game because you're a "web guy" or you're writing Java at a desk job? Stop letting people tell you that you can't, because you already have everything you need.
Here, we're going to be programming in a language called "Ruby." In the interest of full disclosure, I (Ryan Gordon) wrote the C parts of this toolkit and Ruby looks a little strange to me (Amir Rajan wrote the Ruby parts, discounting the parts I mangled), but I'm going to walk you through the basics because we're all learning together, and if you mostly think of yourself as someone that writes C (or C++, C#, Objective-C), PHP, or Java, then you're only a step behind me right now.
Prerequisites link
Here's the most important thing you should know: Ruby lets you do some complicated things really easily, and you can learn that stuff later. I'm going to show you one or two cool tricks, but that's all.
Do you know what an if statement is? A for-loop? An array? That's all you'll need to start.
The Game Loop link
Ok, here are few rules with regards to game development with GTK:
- Your game is all going to happen under one function ...
- that runs 60 times a second ...
- and has to tell the computer what to draw each time.
That's an entire video game in one run-on sentence.
Here's that function. You're going to want to put this in mygame/app/main.rb, because that's where we'll look for it by default. Load it up in your favorite text editor.
def tick args args.outputs.labels << [580, 400, 'Hello World!'] end
Now run dragonruby
...did you get a window with "Hello World!" written in it? Good, you're officially a game developer!
Breakdown Of The tick
Method link
mygame/app/main.rb
, is where the Ruby source code is located. This looks a little strange, so I'll break it down line by line. In Ruby, a '#' character starts a single-line comment, so I'll talk about this inline.
# This "def"ines a function, named "tick," which takes a single argument # named "args". DragonRuby looks for this function and calls it every # frame, 60 times a second. "args" is a magic structure with lots of # information in it. You can set variables in there for your own game state, # and every frame it will updated if keys are pressed, joysticks moved, # mice clicked, etc. def tick args # One of the things in "args" is the "outputs" object that your game uses # to draw things. Afraid of rendering APIs? No problem. In DragonRuby, # you use arrays to draw things and we figure out the details. # If you want to draw text on the screen, you give it an array (the thing # in the [ brackets ]), with an X and Y coordinate and the text to draw. # The "<<" thing says "append this array onto the list of them at # args.outputs.labels) args.outputs.labels << [580, 400, 'Hello World!'] end
Once your tick
function finishes, we look at all the arrays you made and figure out how to draw it. You don't need to know about graphics APIs. You're just setting up some arrays! DragonRuby clears out these arrays every frame, so you just need to add what you need _right now_ each time.
Rendering A Sprite link
Now let's spice this up a little.
We're going to add some graphics. Each 2D image in DragonRuby is called a "sprite," and to use them, you just make sure they exist in a reasonable file format (png, jpg, gif, bmp, etc) and specify them by filename. The first time you use one, DragonRuby will load it and keep it in video memory for fast access in the future. If you use a filename that doesn't exist, you get a fun checkerboard pattern!
There's a "dragonruby.png" file included, just to get you started. Let's have it draw every frame with our text:
def tick args args.outputs.labels << [580, 400, 'Hello World!'] args.outputs.sprites << [576, 100, 128, 101, 'dragonruby.png'] end
(Pro Tip: you don't have to restart DragonRuby to test your changes; when you save main.rb, DragonRuby will notice and reload your program.)
That .sprites
line says "add a sprite to the list of sprites we're drawing, and draw it at position (576, 100) at a size of 128x101 pixels". You can find the image to draw at dragonruby.png.
Coordinate System and Virtual Canvas link
Quick note about coordinates: (0, 0) is the bottom left corner of the screen, and positive numbers go up and to the right. This is more "geometrically correct," even if it's not how you remember doing 2D graphics, but we chose this for a simpler reason: when you're making Super Mario Brothers and you want Mario to jump, you should be able to add to Mario's y position as he goes up and subtract as he falls. It makes things easier to understand.
Also: your game screen is _always_ 1280x720 pixels. If you resize the window, we will scale and letterbox everything appropriately, so you never have to worry about different resolutions.
Ok, now we have an image on the screen, let's animate it:
def tick args args.state.rotation ||= 0 args.outputs.labels << [580, 400, 'Hello World!' ] args.outputs.sprites << [576, 100, 128, 101, 'dragonruby.png', args.state.rotation] args.state.rotation -= 1 end
Now you can see that this function is getting called a lot!
Game State link
Here's a fun Ruby thing: args.state.rotation ||= 0
is shorthand for "if args.state.rotation isn't initialized, set it to zero." It's a nice way to embed your initialization code right next to where you need the variable.
args.state
is a place you can hang your own data. It's an open data structure that allows you to define properties that are arbitrarily nested. You don't need to define any kind of class.
In this case, the current rotation of our sprite, which is happily spinning at 60 frames per second. If you don't specify rotation (or alpha, or color modulation, or a source rectangle, etc), DragonRuby picks a reasonable default, and the array is ordered by the most likely things you need to tell us: position, size, name.
There Is No Delta Time link
One thing we decided to do in DragonRuby is not make you worry about delta time: your function runs at 60 frames per second (about 16 milliseconds) and that's that. Having to worry about framerate is something massive triple-AAA games do, but for fun little 2D games? You'd have to work really hard to not hit 60fps. All your drawing is happening on a GPU designed to run Fortnite quickly; it can definitely handle this.
Since we didn't make you worry about delta time, you can just move the rotation by 1 every time and it works without you having to keep track of time and math. Want it to move faster? Subtract 2.
Handling User Input link
Now, let's move that image around.
def tick args args.state.rotation ||= 0 args.state.x ||= 576 args.state.y ||= 100 if args.inputs.mouse.click args.state.x = args.inputs.mouse.click.point.x - 64 args.state.y = args.inputs.mouse.click.point.y - 50 end args.outputs.labels << [580, 400, 'Hello World!'] args.outputs.sprites << [args.state.x, args.state.y, 128, 101, 'dragonruby.png', args.state.rotation] args.state.rotation -= 1 end
Everywhere you click your mouse, the image moves there. We set a default location for it with args.state.x ||= 576
, and then we change those variables when we see the mouse button in action. You can get at the keyboard and game controllers in similar ways.
Coding On A Raspberry Pi link
We have only tested DragonRuby on a Raspberry Pi 3, Models B and B+, but we believe it _should_ work on any model with comparable specs.
If you're running DragonRuby Game Toolkit on a Raspberry Pi, or trying to run a game made with the Toolkit on a Raspberry Pi, and it's really really slow-- like one frame every few seconds--then there's likely a simple fix.
You're probably running a desktop environment: menus, apps, web browsers, etc. This is okay! Launch the terminal app and type:
do raspi-config
It'll ask you for your password (if you don't know, try "raspberry"), and then give you a menu of options. Find your way to "Advanced Options", then "GL Driver", and change this to "GL (Full KMS)" ... not "fake KMS," which is also listed there. Save and reboot. In theory, this should fix the problem.
If you're _still_ having problems and have a Raspberry Pi 2 or better, go back to raspi-config and head over to "Advanced Options", "Memory split," and give the GPU 256 megabytes. You might be able to avoid this for simple games, as this takes RAM away from the system and reserves it for graphics. You can also try 128 megabytes as a gentler option.
Note that you can also run DragonRuby without X11 at all: if you run it from a virtual terminal it will render fullscreen and won't need the "Full KMS" option. This might be attractive if you want to use it as a game console sort of thing, or develop over ssh, or launch it from RetroPie, etc.
Conclusion link
There is a lot more you can do with DragonRuby, but now you've already got just about everything you need to make a simple game. After all, even the most fancy games are just creating objects and moving them around. Experiment a little. Add a few more things and have them interact in small ways. Want something to go away? Just don't add it to args.output
anymore.
Starting a New DragonRuby Project link
The DRGTK zip that contains the engine is a complete, self contained project structure. To create a new project, unzip the zip file again in its entirety and use that as a starting point for another game. This is the recommended approach to starting a new project.
Rationale link
The DRGTK binary/package in its entirety is designed to be committed with your source code (it’s why we keep it small). It’s to protect “shelf life”. 3 years from now we might be on a vastly different version of the engine. But you know that the code you’ve written will definitely work with the version that was committed to source control. It's strongly recommended that you do **not** keep DragonRuby Game Toolkit in a shared location and instead unzip a clean copy for ever game. That being said, You can optionally pass a directory when starting up DragonRuby from the terminal: ./dragonruby ./non-defualt-game-directory
.
Deploying To Itch.io link
Once you've built your game, you're all set to deploy! Good luck in your game dev journey and if you get stuck, come to the Discord channel!
Creating Your Game Landing Page link
Log into Itch.io and go to https://itch.io/game/new.
- Title: Give your game a Title. This value represents your `gametitle`.
- Project URL: Set your project url. This value represents your `gameid`.
- Classification: Keep this as Game.
- Kind of Project: Select HTML from the drop down list. Don't worry, the HTML project type _also supports binary downloads_.
- Uploads: Skip this section for now.
You can fill out all the other options later.
Update Your Game's Metadata link
Point your text editor at mygame/metadata/game_metadata.txt and make it look like this:
NOTE: Remove the #
at the beginning of each line.
devid=bob devtitle=Bob The Game Developer gameid=mygame gametitle=My Game version=0.1
The devid
property is the username you use to log into Itch.io. The devtitle
is your name or company name (it can contain spaces). The gameid
is the Project URL value. The gametitle
is the name of your game (it can contain spaces). The version
can be any major.minor
number format.
Building Your Game For Distribution link
Open up the terminal and run this from the command line:
./dragonruby-publish --only-package mygame
(if you're on Windows, don't put the "./" on the front. That's a Mac and Linux thing.)
A directory called ./build
will be created that contains your binaries. You can upload this to Itch.io manually.
Browser Game Settings link
For the HTML version of your game, after you upload the zip file, check the checkbox labeled This file will be played in the browser
.
IMPORTANT: Be sure to set the Viewport dimensions
to 1280x720
for landscape games or your game will not be positioned correctly on your Itch.io page.
IMPORTANT: Be sure to set the Viewport dimensions
to 540x960
for portrait games or your game will not be positioned correctly on your Itch.io page.
For subsequent updates you can use an automated deployment to Itch.io:
./dragonruby-publish mygame
DragonRuby will package _and publish_ your game to itch.io! Tell your friends to go to your game's very own webpage and buy it!
If you make changes to your game, just re-run dragonruby-publish and it'll update the downloads for you.
Consider Adding Pause When Game is In Background link
It's a good idea to pause the game if it doesn't have focus. Here's an example of how to do that
def tick args # if the keyboard doesn't have focus, and the game is in production mode, and it isn't the first tick if !args.inputs.keyboard.has_focus && args.gtk.production && args.state.tick_count != 0 args.outputs.background_color = [0, 0, 0] args.outputs.labels << { x: 640, y: 360, text: "Game Paused (click to resume).", alignment_enum: 1, r: 255, g: 255, b: 255 } # consider setting all audio volume to 0.0 else # perform your regular tick function end end
If you want your game to run at full speed even when it's in the background, add the following line to mygame/metadata/cvars.txt
:
renderer.background_sleep=0
Consider Adding a Request to Review Your Game In-Game link
Getting reviews of your game are extremely important and it's recommended that you put an option to review within the game itself. You can use args.gtk.open_url
plus a review URL. Here's an example:
def tick args # render the review button args.state.review_button ||= { x: 640 - 50, y: 360 - 25, w: 100, h: 50, path: :pixel, r: 0, g: 0, b: 0 } args.outputs.sprites << args.state.review_button args.outputs.labels << { x: 640, y: 360, anchor_x: 0.5, anchor_y: 0.5, text: "Review" } # check to see if the review button was clicked if args.inputs.mouse.intersect_rect? args.state.review_button # open platform specific review urls if args.gtk.platform? :ios # your app id is provided at Apple's Developer Portal (numeric value) args.gtk.openurl "itms-apps://itunes.apple.com/app/idYOURGAMEID?action=write-review" elsif args.gtk.platform? :android # your app id is the name of your android package args.gtk.openurl ""https://play.google.com/store/apps/details?id=YOURGAMEID" elsif args.gtk.platform? :web # if they are playing the web version of the game, take them to the purchase page on itch args.gtk.openurl "https://amirrajan.itch.io/YOURGAMEID/purchase" else # if they are playing the desktop version of the game, take them to itch's rating page args.gtk.openurl "https://amirrajan.itch.io/YOURGAMEID/rate?source=game" end end end
Deploying To Mobile Devices link
If you have a Pro subscription, you also have the capability to deploy to mobile devices.
To deploy to iOS, you need to have a Mac running MacOS Catalina, an iOS device, and an active/paid Developer Account with Apple. From the Console type: $wizards.ios.start
and you will be guided through the deployment process.
To deploy to Android, you need to have an Android emulator/device, and an environment that is able to run Android SDK. dragonruby-publish
will create an APK for you. From there, you can sign the APK and install it to your device. The signing and installation procedure varies from OS to OS. Here's an example of what the command might look like:
> adb logcat -e mygame # you'll want to run this in a separate terminal > keytool -genkey -v -keystore mygame.keystore -alias mygame -keyalg RSA -keysize 2048 -validity 10000 > apksigner sign --ks mygame.keystore mygame-android.apk > adb install mygame-android.apk
Deploying To Steam link
If you have a Indie or Pro subscription, you also get streamlined deployment to Steam via dragonruby-publish
. Please note that games developed using the Standard license can deploy to Steam using the Steamworks toolchain https://partner.steamgames.com/doc/store/releasing.
Testing on Your Steam Deck link
Easy Setup link
- Run
dragonruby-publish --only-package
. - Find the Linux build of your game under the
./builds
directory and load it onto an SD Card. - Restart the Steam Deck in Desktop Mode.
- Copy your game binary onto an SD card.
- Find the game on the SD card and double click binary.
Advanced Setup link
- Restart the Steam Deck in Desktop Mode.
- Open up Konsole and set an admin password via
passwd
. - Disable readonly mode:
sudo steamos-readonly disable
. - Update pacman
sudo pacman-key --populate archlinux
. - Update sshd_config
sudo vim /etc/ssh/sshd_config
and uncomment thePubkeyAuthentication yes
line. - Enable ssh:
sudo systemctl enable sshd
. - Start ssh:
sudo systemctl start sshd
. - Run
dragonruby-publish --only-package
. - Use
scp
to copy the game over from your dev machine without needing an SD Card:scp -R ./builds/SOURCE.bin deck@IP_ADDRESS:/home/deck/Downloads
Note: Steps 2 through 7 need only be done once.
Note: scp
comes pre-installed on Mac and Linux. You can download the tool for Windows from https://winscp.net/eng/index.php
Setting up the game on the Partner Site link
Getting your App ID link
You'll need to create a product on Steam. This is unfortunately manual and requires identity verification for taxation purposes. Valve offers pretty robust documentation on all this, though. Eventually, you'll have an App ID for your game.
Go to https://partner.steamgames.com/apps/view/$APPID, where $APPID is your game's App ID.
Specifing Supported Operating Systems for your game link
Find the "Supported Operating Systems" section and make sure these things are checked:
- Windows: 64 Bit Only
- macOS: 64 Bit (Intel) and Apple Silicon
- Linux: Including SteamOS
Click the "Save" button below it.
Setting up SteamPipe Depots link
Click the "SteamPipe" tab at the top of the page, click on "depots"
Click the "Add a new depot" button. Give it a name like "My Game Name Linux Depot" and take whatever depot ID it offers you.
You'll see this new depot is listed on the page now. Fix its settings:
- Language: All Languages
- For DLC: Base App
- Operating System: Linux + SteamOS
- Architecture: 64-bit OS only
- Platform: All
Do this again, make a "My Game Name Windows Depot", set it to the same things, except "Operating System," which should be "Windows," of course.
Do this again, make a "My Game Name Mac Depot", set it to the same things, except "Operating System," which should be "macOS," of course.
Push the big green "Save" button on the page. Now we have a place to upload platform-specific builds of your game.
Setting up Launch Options link
Click on the "Installation" tab near the top of the page, then "General Installation".
Under "Launch Options," click the "Add new launch option" button, edit the new section that just popped up, and set it like this:
(Whenever you see "mygamename" in here, this should be whatever your game_metadata's "gameid" value is set to. If you see "My Game Name", it's whatever your game_metadata's "gametitle" value is set to, but you'll have to check in case we mangled it to work as a filename.)
- Executable: mygamename.exe
- Launch Type: Launch (Default)
- Operating System: Windows
- CPU Architecture: 64-bit only
- Everything else can be default/blank.
Click the "Update" button on that section.
Add another launch option, as before:
- Executable: My Game Name.app
- Launch Type: Launch (Default)
- Operating System: macOS
Add another launch option, as before:
- Executable: mygamename
- Launch Type: Launch (Default)
- Operating System: Linux + SteamOS
- CPU Architecture: 64-bit only
Publish Changes link
Go to the "Publish" tab at near the top of the page. Click the "View Diffs" button and make sure it looks sane (it should just be the things we've changed in here), then click "Prepare for Publishing", then "Publish to Steam" and follow the instructions to publish these changes.
Go to https://partner.steamgames.com/apps/associated/$APPID For each package, make sure all three depots are included.
Configuring dragonruby-publish
link
You only have to do this part once when first setting up your game.
Go add a text file to your game's metadata
directory called steam_metadata.txt
... note that this file will be filtered out dragonruby-publish
packages the game and will not be distributed with the published game.
steam.publish=true steam.branch=public steam.username=AAA steam.appid=BBB steam.linux_depotid=CCC steam.windows_depotid=DDD steam.mac_depotid=EEE
If steam.publish is set to false
then dragonruby-publish will not attempt to upload to Steam. false
is the default if this file, or this setting, is missing.
Where "AAA" is the login name on the Steamworks Partner Site to use for publishing builds, "BBB" is your game-specific AppID provided by Steam, "CCC", "DDD", and "EEE" are the DepotIDs you created for Linux, Windows, and macOS builds, respectively.
Setting a branch live link
Once your build is uploaded, you can assign it to a specific branch through the interface on the Partner site. You can make arbitrary branches here, like "beta" or "nightly" or "fixing-weird-bug" or whatever. The one that goes to the end users without them switching branches, is "default" and you should assume this is where paying customers live, so be careful before you set a build live there.
You can have dragonruby-publish set the builds it publishes live on a branch immediately, if you prefer. Simply add...
steam.branch=XXX
...to steam_metadata.txt, where "XXX" is the branch name from the partner website. If this is blank or unspecified, it will _not_ set the build live on _any_ branch. Setting the value to public
will push to production.
A reasonable strategy is to create a (possibly passworded) branch called "staging" and have dragonruby-publish always push to there automatically. Then you can test from a Steam install, pushing as often as you like, and when you are satisfied, manually set the latest build live on default for the general public to download.
If you are feeling brave, you can always just set all published builds live on default, too. After all, if you break it, you can always just push a fix right away. :) (or use the Partner Site to roll back to a known-good build, you know.)
Publishing Build link
Run dragonuby-publish as you normally would. When it is time to publish to Steam, it will set up any tools it needs, attempt to log you into Steam, and upload the latest version of your game.
Steam login is handled by Valve's steamcmd
command line program, not dragonruby-publish
. DragonRuby does not ever have access to your login credentials. You may need to take steps to get an authorization token in place if necessary, so you don't have to deal with Steam Guard in automated build processes (documentation on how to do this is forthcoming, or read Valve's SteamCMD manual for details).
You (currently) have to set the new build live on the partner site before users will receive it. Optionally automating this step is coming soon!
Questions/Need Help? link
You probably have several. Please come visit the Discord and ask questions, and we'll do our best to help, and update this document.
DragonRuby's Philosophy link
The following tenants of DragonRuby are what set us apart from other game engines. Given that Game Toolkit is a relatively new engine, there are definitely features that are missing. So having a big check list of "all the cool things" is not this engine's forte. This is compensated with a strong commitment to the following principles.
Challenge The Status Quo link
Game engines of today are in a local maximum and don't take into consideration the challenges of this day and age. Unity and GameMaker specifically rot your brain. It's not sufficient to say:
But that's how we've always done it.
It's a hard pill to swallow, but forget blindly accepted best practices and try to figure out the underlying motivation for a specific approach to game development. Collaborate with us.
Continuity of Design link
There is a programming idiom in software called "The Pit of Success". The term normalizes upfront pain as a necessity/requirement in the hopes that the investment will yield dividends "when you become successful" or "when the code becomes more complicated". This approach to development is strongly discouraged by us. It leads to over-architected and unnecessary code; creates barriers to rapid prototyping and shipping a game; and overwhelms beginners who are new to the engine or programming in general.
DragonRuby's philosophy is to provide multiple options across the "make it fast" vs "make it right" spectrum, with incremental/intuitive transitions between the options provided. A concrete example of this philosophy would be render primitives: the spectrum of options allows renderable constructs that take the form of tuples/arrays (easy to pickup, simple, and fast to code/prototype with), hashes (a little more work, but gives you the ability to add additional properties), open and strict entities (more work than hashes, but yields cleaner apis), and finally - if you really need full power/flexibility in rendering - classes (which take the most amount of code and programming knowledge to create).
Release Early and Often link
The biggest mistake game devs make is spending too much time in isolation building their game. Release something, however small, and release it soon.
Stop worrying about everything being pixel perfect. Don't wait until your game is 100% complete. Build your game publicly and iterate. Post in the #show-and-tell channel in the community Discord. You'll find a lot of support and encouragement there.
Real artists ship. Remember that.
Sustainable And Ethical Monetization link
We all aspire to put food on the table doing what we love. Whether it is building games, writing tools to support game development, or anything in between.
Charge a fair amount of money for the things you create. It's expected and encouraged within the community. Give what you create away for free to those that can't afford it.
If you are gainfully employed, pay full price for the things you use. If you do end up getting something at a discount, pay the difference "forward" to someone else.
Sustainable And Ethical Open Source link
This goes hand in hand with sustainable and ethical monetization. The current state of open source is not sustainable. There is an immense amount of contributor burnout. Users of open source expect everything to be free, and few give back. This is a problem we want to fix (we're still trying to figure out the best solution).
So, don't be "that guy" in the Discord that says "DragonRuby should be free and open source!" You will be personally flogged by Amir.
People Over Entities link
We prioritize the endorsement of real people over faceless entities. This game engine, and other products we create, are not insignificant line items of a large company. And you aren't a generic "commodity" or "corporate resource". So be active in the community Discord and you'll reap the benefits as more devs use DragonRuby.
Building A Game Should Be Fun And Bring Happiness link
We will prioritize the removal of pain. The aesthetics of Ruby make it such a joy to work with, and we want to capture that within the engine.
Real World Application Drives Features link
We are bombarded by marketing speak day in and day out. We don't do that here. There are things that are really great in the engine, and things that need a lot of work. Collaborate with us so we can help you reach your goals. Ask for features you actually need as opposed to anything speculative.
We want DragonRuby to *actually* help you build the game you want to build (as opposed to sell you something piece of demoware that doesn't work).
Frequently Asked Questions, Comments, and Concerns link
Here are questions, comments, and concerns that frequently come up.
Frequently Asked Questions link
What is DragonRuby LLP? link
DragonRuby LLP is a partnership of four devs who came together with the goal of bringing the aesthetics and joy of Ruby, everywhere possible.
Under DragonRuby LLP, we offer a number of products (with more on the way):
- Game Toolkit (GTK): A 2D game engine that is compatible with modern gaming platforms.
- RubyMotion (RM): A compiler toolchain that allows you to build native, cross-platform mobile apps. http://rubymotion.com
All of the products above leverage a shared core called DragonRuby.
NOTE: From an official branding standpoint each one of the products is suffixed with "A DragonRuby LLP Product" tagline. Also, DragonRuby is _one word, title cased_.
NOTE: We leave the "A DragonRuby LLP Product" off of this one because that just sounds really weird.
NOTE: Devs who use DragonRuby are "Dragon Riders/Riders of Dragons". That's a bad ass identifier huh?
What is DragonRuby? link
The response to this question requires a few subparts. First we need to clarify some terms. Specifically _language specification_ vs _runtime_.
Okay... so what is the difference between a language specification and a runtime?
A runtime is an _implementation_ of a language specification. When people say "Ruby," they are usually referring to "the Ruby 3.0+ language specification implemented via the CRuby/MRI Runtime."
But, there are many Ruby Runtimes: CRuby/MRI, JRuby, Truffle, Rubinius, Artichoke, and (last but certainly not least) DragonRuby.
Okay... what language specification does DragonRuby use then?
DragonRuby's goal is to be compliant with the ISO/IEC 30170:2012 standard. It's syntax is Ruby 2.x compatible, but also contains semantic changes that help it natively interface with platform specific libraries.
So... why another runtime?
The elevator pitch is:
DragonRuby is a Multilevel Cross-platform Runtime. The "multiple levels" within the runtime allows us to target platforms no other Ruby can target: PC, Mac, Linux, Raspberry Pi, WASM, iOS, Android, Nintendo Switch, PS4, Xbox, and Stadia.
What does Multilevel Cross-platform mean?
There are complexities associated with targeting all the platforms we support. Because of this, the runtime had to be architected in such a way that new platforms could be easily added (which lead to us partitioning the runtime internally):
- Level 1 we leverage a good portion of mRuby.
- Level 2 consists of optimizations to mRuby we've made given that our target platforms are well known.
- Level 3 consists of portable C libraries and their Ruby C-Extensions.
Levels 1 through 3 are fairly commonplace in many runtime implementations (with level 1 being the most portable, and level 3 being the fastest). But the DragonRuby Runtime has taken things a bit further:
- Level 4 consists of shared abstractions around hardware I/O and operating system resources. This level leverages open source and proprietary components within Simple DirectMedia Layer (a low level multimedia component library that has been in active development for 22 years and counting).
- Level 5 is a code generation layer which creates metadata that allows for native interoperability with host runtime libraries. It also includes OS specific message pump orchestrations.
- Level 6 is a Ahead of Time/Just in Time Ruby compiler built with LLVM. This compiler outputs _very_ fast platform specific bitcode, but only supports a subset of the Ruby language specification.
These levels allow us to stay up to date with open source implementations of Ruby; provide fast, native code execution on proprietary platforms; ensure good separation between these two worlds; and provides a means to add new platforms without going insane.
Cool cool. So given that I understand everything to this point, can we answer the original question? What is DragonRuby?
DragonRuby is a Ruby runtime implementation that takes all the lessons we've learned from MRI/CRuby, and merges it with the latest and greatest compiler and OSS technologies.
How is DragonRuby different than MRI? link
DragonRuby supports a subset of MRI apis. Our target is to support all of mRuby's standard lib. There are challenges to this given the number of platforms we are trying to support (specifically console).
Does DragonRuby support Gems?
DragonRuby does not support gems because that requires the installation of MRI Ruby on the developer's machine (which is a non-starter given that we want DragonRuby to be a zero dependency runtime). While this seems easy for Mac and Linux, it is much harder on Windows and Raspberry Pi. mRuby has taken the approach of having a git repository for compatible gems and we will most likely follow suite: https://github.com/mruby/mgem-list.
Does DragonRuby have a REPL/IRB?
You can use DragonRuby's Console within the game to inspect object and execute small pieces of code. For more complex pieces of code create a file called repl.rb
and put it in mygame/app/repl.rb
:
- Any code you write in there will be executed when you change the file. You can organize different pieces of code using the
repl
method:
repl do puts "hello world" puts 1 + 1 end
- If you use the `repl` method, the code will be executed and the DragonRuby Console will automatically open so you can see the results (on Mac and Linux, the results will also be printed to the terminal).
- All
puts
statements will also be saved tologs/puts.txt
. So if you want to stay in your editor and not look at the terminal, or the DragonRuby Console, you cantail
this file.
4. To ignore code in repl.rb
, instead of commenting it out, prefix repl
with the letter x
and it'll be ignored.
xrepl do # <------- line is prefixed with an "x" puts "hello world" puts 1 + 1 end # This code will be executed when you save the file. repl do puts "Hello" end repl do puts "This code will also be executed." end # use xrepl to "comment out" code xrepl do puts "This code will not be executed because of the x in front of repl". end
Does DragonRuby support pry
or have any other debugging facilities?
pry
is a gem that assumes you are using the MRI Runtime (which is incompatible with DragonRuby). Eventually DragonRuby will have a pry based experience that is compatible with a debugging infrastructure called LLDB. Take the time to read about LLDB as it shows the challenges in creating something that is compatible.
You can use DragonRuby's replay capabilities to troubleshoot:
- DragonRuby is hot loaded which gives you a very fast feedback loop (if the game throws an exception, it's because of the code you just added).
- Use
./dragonruby mygame --record
to create a game play recording that you can use to find the exception (you can replay a recording by executing./dragonruby mygame --replay last_replay.txt
or through the DragonRuby Console using$gtk.recording.start_replay "last_replay.txt"
. - DragonRuby also ships with a unit testing facility. You can invoke the following command to run a test:
./dragonruby . --eval some_ruby_file.rb --no-tick
. - Get into the habit of adding debugging facilities within the game itself. You can add drawing primitives to
args.outputs.debug
that will render on top of your game but will be ignored in a production release. - Debugging something that runs at 60fps is (imo) not that helpful. The exception you are seeing could have been because of a change that occurred many frames ago.
Frequent Comments About Ruby as a Language Choice link
But Ruby is dead. link
Let's check the official source for the answer to this question: isrubydead.com: https://isrubydead.com/.
On a more serious note, Ruby's _quantity_ levels aren't what they used to be. And that's totally fine. Everyone chases the new and shiny.
What really matters is _quality/maturity_. Here's a StackOverflow Survey sorted by highest paid developers: https://insights.stackoverflow.com/survey/2021#section-top-paying-technologies-top-paying-technologies.
Let's stop making this comment shall we?
But Ruby is slow. link
That doesn't make any sense. A language specification can't be slow... it's a language spec. Sure, an _implementation/runtime_ can be slow though, but then we'd have to talk about which runtime.
Here's a some quick demonstrations of how well DragonRuby Game Toolkit Performs:
- DragonRuby vs Unity: https://youtu.be/MFR-dvsllA4
- DragonRuby vs PyGame: https://youtu.be/fuRGs6j6fPQ
Dynamic languages are slow. link
They are certainly slower than statically compiled languages. With the processing power and compiler optimizations we have today, dynamic languages like Ruby are _fast enough_.
Unless you are writing in some form of intermediate representation by hand, your language of choice also suffers this same fallacy of slow. Like, nothing is faster than a low level assembly-like language. So unless you're writing in that, let's stop making this comment.
NOTE: If you _are_ hand writing LLVM IR, we are always open to bringing on new partners with such a skill set. Email us ^_^.
Frequent Concerns link
DragonRuby is not open source. That's not right. link
The current state of open source is unsustainable. Contributors work for free, most all open source repositories are severely under-staffed, and burnout from core members is rampant.
We believe in open source very strongly. Parts of DragonRuby are in fact, open source. Just not all of it (for legal reasons, and because the IP we've created has value). And we promise that we are looking for (or creating) ways to _sustainably_ open source everything we do.
If you have ideas on how we can do this, email us!
If the reason above isn't sufficient, then definitely use something else.
All this being said, we do have parts of the engine open sourced on GitHub: https://github.com/dragonruby/dragonruby-game-toolkit-contrib/
DragonRuby is for pay. You should offer a free version. link
If you can afford to pay for DragonRuby, you should (and will). We don't tell authors that they should give us their books for free, and only require payment if we read the entire thing. It's time we stop asking that of software products.
That being said, we will _never_ put someone out financially. We have income assistance for anyone that can't afford a license to any one of our products.
You qualify for a free, unrestricted license to DragonRuby products if any of the following items pertain to you:
- Your income is below $2,000.00 (USD) per month.
- You are under 18 years of age.
- You are a student of any type: traditional public school, home schooling, college, bootcamp, or online.
- You are a teacher, mentor, or parent who wants to teach a kid how to code.
- You work/worked in public service or at a charitable organization: for example public office, army, or any 501(c)(3) organization.
Just contact Amir at amir.rajan@dragonruby.org with a short explanation of your current situation and he'll set you up. No questions asked.
But still, you should offer a free version. So I can try it out and see if I like it. link
You can try our web-based sandbox environment at http://fiddle.dragonruby.org. But it won't do the runtime justice. Or just come to our Discord Channel at http://discord.dragonruby.org and ask questions. We'd be happy to have a one on one video chat with you and show off all the cool stuff we're doing.
Seriously just buy it. Get a refund if you don't like it. We make it stupid easy to do so.
I still think you should do a free version. Think of all people who would give it a shot. link
Free isn't a sustainable financial model. We don't want to spam your email. We don't want to collect usage data off of you either. We just want to provide quality toolchains to quality developers (as opposed to a large quantity of developers).
The people that pay for DragonRuby and make an effort to understand it are the ones we want to build a community around, partner with, and collaborate with. So having that small monetary wall deters entitled individuals that don't value the same things we do.
What if I build something with DragonRuby, but DragonRuby LLP becomes insolvent. link
We want to be able to work on the stuff we love, every day of our lives. And we'll go to great lengths to make that continues.
But, in the event that sad day comes, our partnership bylaws state that _all_ DragonRuby IP that can be legally open sourced, will be released under a permissive license.
RECIPIES: link
How To Determine What Frame You Are On link
There is a property on state
called tick_count
that is incremented by DragonRuby every time the tick
method is called. The following code renders a label that displays the current tick_count
.
def tick args args.outputs.labels << [10, 670, "#{args.state.tick_count}"] end
How To Get Current Framerate link
Current framerate is a top level property on the Game Toolkit Runtime and is accessible via args.gtk.current_framerate
.
def tick args args.outputs.labels << [10, 710, "framerate: #{args.gtk.current_framerate.round}"] end
How To Render A Sprite Using An Array link
All file paths should use the forward slash /
*not* backslash . Game Toolkit includes a number of sprites in the
sprites
folder (everything about your game is located in the mygame
directory).
The following code renders a sprite with a width
and height
of 100
in the center of the screen.
args.outputs.sprites
is used to render a sprite.
def tick args args.outputs.sprites << [ 640 - 50, # X 360 - 50, # Y 100, # W 100, # H 'sprites/square-blue.png' # PATH ] end
More Sprite Properties As An Array link
Here are all the properties you can set on a sprite.
def tick args args.outputs.sprites << [ 100, # X 100, # Y 32, # W 64, # H 'sprites/square-blue.png', # PATH 0, # ANGLE 255, # ALPHA 0, # RED_SATURATION 255, # GREEN_SATURATION 0 # BLUE_SATURATION ] end
Different Sprite Representations link
Using ordinal positioning can get a little unruly given so many properties you have control over.
You can represent a sprite as a Hash
:
def tick args args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: 'sprites/square-blue.png', angle: 0, a: 255, r: 255, g: 255, b: 255, # source_ properties have origin of bottom left source_x: 0, source_y: 0, source_w: -1, source_h: -1, # tile_ properties have origin of top left tile_x: 0, tile_y: 0, tile_w: -1, tile_h: -1, flip_vertically: false, flip_horizontally: false, angle_anchor_x: 0.5, angle_anchor_y: 1.0, blendmode_enum: 1 # labels anchor/alignment (default is nil) # if these values are provided, they will be used over alignment_enum and vertical_alignment_enum anchor_x: 0.5, anchor_y: 0.5 } end
The blendmode_enum
value can be set to 0
(no blending), 1
(alpha blending), 2
(additive blending), 3
(modulo blending), 4
(multiply blending).
You can represent a sprite as an object
:
# Create type with ALL sprite properties AND primitive_marker class Sprite attr_accessor :x, :y, :w, :h, :path, :angle, :a, :r, :g, :b, :source_x, :source_y, :source_w, :source_h, :tile_x, :tile_y, :tile_w, :tile_h, :flip_horizontally, :flip_vertically, :angle_anchor_x, :angle_anchor_y, :blendmode_enum, :anchor_x, :anchor_y def primitive_marker :sprite end end class BlueSquare < Sprite def initialize opts @x = opts[:x] @y = opts[:y] @w = opts[:w] @h = opts[:h] @path = 'sprites/square-blue.png' end end def tick args args.outputs.sprites << (BlueSquare.new x: 640 - 50, y: 360 - 50, w: 50, h: 50) end
How To Render A Label link
args.outputs.labels
is used to render labels.
Labels are how you display text. This code will go directly inside of the def tick args
method.
Here is the minimum code:
def tick args # X Y TEXT args.outputs.labels << [640, 360, "I am a black label."] end
A Colored Label link
def tick args # A colored label # X Y TEXT, RED GREEN BLUE ALPHA args.outputs.labels << [640, 360, "I am a redish label.", 255, 128, 128, 255] end
Extended Label Properties link
def tick args # A colored label # X Y TEXT SIZE ALIGNMENT RED GREEN BLUE ALPHA FONT FILE args.outputs.labels << [ 640, # X 360, # Y "Hello world", # TEXT 0, # SIZE_ENUM 1, # ALIGNMENT_ENUM 0, # RED 0, # GREEN 0, # BLUE 255, # ALPHA "fonts/coolfont.ttf" # FONT ] end
A SIZE_ENUM
of 0
represents "default size". A negative
value will decrease the label size. A positive
value will increase the label's size.
An ALIGNMENT_ENUM
of 0
represents "left aligned". 1
represents "center aligned". 2
represents "right aligned".
Rendering A Label As A Hash
link
You can add additional metadata about your game within a label, which requires you to use a `Hash` instead.
If you use a Hash
to render a label, you can set the label's size using either SIZE_ENUM
or SIZE_PX
. If both options are provided, SIZE_PX
will be used.
def tick args args.outputs.labels << { x: 200, y: 550, text: "dragonruby", # size specification can be either size_enum or size_px size_enum: 2, size_px: 22, alignment_enum: 1, r: 155, g: 50, b: 50, a: 255, font: "fonts/manaspc.ttf", vertical_alignment_enum: 0, # 0 is bottom, 1 is middle, 2 is top anchor_x: 0.5, anchor_y: 0.5 # You can add any properties you like (this will be ignored/won't cause errors) game_data_one: "Something", game_data_two: { value_1: "value", value_2: "value two", a_number: 15 } } end
Getting The Size Of A Piece Of Text link
You can get the render size of any string using args.gtk.calcstringbox
.
def tick args # TEXT SIZE_ENUM FONT w, h = args.gtk.calcstringbox("some string", 0, "font.ttf") # NOTE: The SIZE_ENUM and FONT are optional arguments. # Render a label showing the w and h of the text: args.outputs.labels << [ 10, 710, # This string uses Ruby's string interpolation literal: #{} "'some string' has width: #{w}, and height: #{h}." ] end
Rendering Labels With New Line Characters And Wrapping link
You can use a strategy like the following to create multiple labels from a String.
def tick args long_string = "Lorem ipsum dolor sit amet, consectetur adipiscing elitteger dolor velit, ultricies vitae libero vel, aliquam imperdiet enim." max_character_length = 30 long_strings_split = args.string.wrapped_lines long_string, max_character_length args.outputs.labels << long_strings_split.map_with_index do |s, i| { x: 10, y: 600 - (i * 20), text: s } end end
How To Play A Sound link
Sounds that end .wav
will play once:
def tick args # Play a sound every second if (args.state.tick_count % 60) == 0 args.outputs.sounds << 'something.wav' end end
Sounds that end .ogg
is considered background music and will loop:
def tick args # Start a sound loop at the beginning of the game if args.state.tick_count == 0 args.outputs.sounds << 'background_music.ogg' end end
If you want to play a .ogg
once as if it were a sound effect, you can do:
def tick args # Play a sound every second if (args.state.tick_count % 60) == 0 args.gtk.queue_sound 'some-ogg.ogg' end end
Using args.state
To Store Your Game State link
args.state
is a open data structure that allows you to define properties that are arbitrarily nested. You don't need to define any kind of class
.
To initialize your game state, use the ||=
operator. Any value on the right side of ||=
will only be assigned _once_.
To assign a value every frame, just use the =
operator, but _make sure_ you've initialized a default value.
def tick args # initialize your game state ONCE args.state.player.x ||= 0 args.state.player.y ||= 0 args.state.player.hp ||= 100 # increment the x position of the character by one every frame args.state.player.x += 1 # Render a sprite with a label above the sprite args.outputs.sprites << [ args.state.player.x, args.state.player.y, 32, 32, "player.png" ] args.outputs.labels << [ args.state.player.x, args.state.player.y - 50, args.state.player.hp ] end
Accessing files link
DragonRuby uses a sandboxed filesystem which will automatically read from and write to a location appropriate for your platform so you don't have to worry about theses details in your code. You can just use gtk.read_file
, gtk.write_file
, and gtk.append_file
with a relative path and the engine will take care of the rest.
The data directories that will be written to in a production build are:
- Windows:
C:\Users\[username]\AppData\Roaming\[devtitle]\[gametitle]
- MacOS:
$HOME/Library/Application Support/[gametitle]
- Linux:
$HOME/.local/share/[gametitle]
- HTML5: The data will be written to the browser's IndexedDB.
The values in square brackets are the values you set in your app/metadata/game_metadata.txt
file.
When reading files, the engine will first look in the game's data directory and then in the game directory itself. This means that if you write a file to the data directory that already exists in your game directory, the file in the data directory will be used instead of the one that is in your game.
When running a development build you will directly write to your game directory (and thus overwrite existing files). This can be useful for built-in development tools like level editors.
For more details on the implementation of the sandboxed filesystem, see Ryan C. Gordon's PhysicsFS documentation: https://icculus.org/physfs/
Troubleshoot Performance link
- If you're using
Array
s for your primitives (args.outputs.sprites << []
), useHash
instead (args.outputs.sprites << { x: ... }
). - If you're using
Entity
for your primitives (args.outputs.sprites << args.state.new_entity
), useStrictEntity
instead (args.outputs.sprites << args.state.new_entity_strict
). - Use
.each
instead of.map
if you don't care about the return value. - When concatenating primitives to outputs, do them in bulk. Instead of:
args.state.bullets.each do |bullet| args.outputs.sprites << bullet.sprite end
do
args.outputs.sprites << args.state.bullets.map do |b| b.sprite end
5. Use args.outputs.static_
variant for things that don't change often (take a look at the Basic Gorillas sample app and Dueling Starships sample app to see how static_
is leveraged.
6. Consider using a render_target
if you're doing some form of a camera that moves a lot of primitives (take a look at the Render Target sample apps for more info).
Runtime
link
The GTK::Runtime
class is the core of DragonRuby. It is globally accessible via $gtk
or inside of the tick
method through args
.
def tick args args.gtk # accessible like this $gtk # or like this end
Indie and Pro Functions link
The following functions are only available at the Indie and Pro License tiers.
get_pixels
link
Given a file_path
to a sprite, this function returns a one dimensional array of hexadecimal values representing the ARGB of each pixel in a sprite.
See the following sample app for a full demonstration of how to use this function: ./samples/07_advanced_rendering/06_pixel_arrays_from_file
dlopen
link
Loads a precompiled C Extension into your game.
See the sample apps at ./samples/12_c_extensions
for detailed walkthroughs of creating C extensions.
Environment and Utility Functions link
The following functions will help in interacting with the OS and rendering pipeline.
calcstringbox
link
Returns the render width and render height as a tuple for a piece of text. The parameters this method takes are:
text
: the text you want to get the width and height of.size_enum
: number representing the render size for the text. This parameter is optional and defaults to0
which represents a baseline font size in units specific to DragonRuby (a negative value denotes a size smaller than what would be comfortable to read on a handheld device postive values above0
represent larger font sizes).font
: path to a font file that the width and height will be based off of. This field is optional and defaults to the DragonRuby's default font.
def tick args text = "a piece of text" size_enum = 5 # "large font size" # path is relative to your game directory (eg mygame/fonts/courier-new.ttf) font = "fonts/courier-new.ttf" # get the render width and height string_w, string_h = args.gtk.calcstringbox text, size_enum, font # render the label args.outputs.labels << { x: 100, y: 100, text: text, size_enum: size_enum, font: font } # render a border around the label based on the results from calcstringbox args.outputs.borders << { x: 100, y: 100, w: string_w, h: string_h, r: 0, g: 0, b: 0 } end
request_quit
link
Call this function to exit your game. You will be given one additional tick if you need to perform any housekeeping before that game closes.
def tick args # exit the game after 600 frames (10 seconds) if args.state.tick_count == 600 args.gtk.request_quit end end
quit_requested?
link
This function will return true
if the game is about to exit (either from the user closing the game or if request_quit
was invoked).
set_window_fullscreen
link
This function takes in a single boolean parameter. true
to make the game fullscreen, false
to return the game back to windowed mode.
def tick args # make the game full screen after 600 frames (10 seconds) if args.state.tick_count == 600 args.gtk.set_window_fullscreen true end # return the game to windowed mode after 20 seconds if args.state.tick_count == 1200 args.gtk.set_window_fullscreen false end end
window_fullscreen?
link
Returns true if the window is currently in fullscreen mode.
set_window_scale
link
This function takes in a float value and uses that to resize the game window to a percentage of 1280x720 (or 720x1280 in portrait mode). The valid scale options are 0.1, 0.25, 0.5, 0.75, 1.25, 1.5, 2.0, 2.5, 3.0, and 4.0. The float value you pass in will be floored to the nearest valid scale option.
platform?
link
You can ask DragonRuby which platform your game is currently being run on. This can be useful if you want to perform different pieces of logic based on where the game is running.
The raw platform string value is available via args.gtk.platform
which takes in a symbol
representing the platform's categorization/mapping.
You can see all available platform categorizations via the args.gtk.platform_mappings
function.
Here's an example of how to use args.gtk.platform? category_symbol
:
def tick args if args.gtk.platform? :macos args.outputs.labels << { x: 640, y: 360, text: "I am running on MacOS.", alignment_enum: 1 } elsif args.gtk.platform? :win args.outputs.labels << { x: 640, y: 360, text: "I am running on Windows.", alignment_enum: 1 } elsif args.gtk.platform? :linux args.outputs.labels << { x: 640, y: 360, text: "I am running on Linux.", alignment_enum: 1 } elsif args.gtk.platform? :web args.outputs.labels << { x: 640, y: 360, text: "I am running on a web page.", alignment_enum: 1 } elsif args.gtk.platform? :android args.outputs.labels << { x: 640, y: 360, text: "I am running on Android.", alignment_enum: 1 } elsif args.gtk.platform? :ios args.outputs.labels << { x: 640, y: 360, text: "I am running on iOS.", alignment_enum: 1 } end end
production?
link
Returns true if the game is being run in a released/shipped state.
platform_mappings
link
These are the current platform categorizations (args.gtk.platform_mappings
):
{ "Mac OS X" => [:desktop, :macos, :osx, :mac, :macosx], "Windows" => [:desktop, :windows, :win], "Linux" => [:desktop, :linux, :nix], "Emscripten" => [:web, :wasm, :html, :emscripten], "iOS" => [:mobile, :ios, ], "Android" => [:mobile, :android], }
Given the mappings above, args.gtk.platform? :desktop
would return true
if the game is running on a player's computer irrespective of OS (MacOS, Linux, and Windows are all categorized as :desktop
platforms).
open_url
link
Given a uri represented as a string. This fuction will open the uri in the user's default browser.
def tick args # open a url after 600 frames (10 seconds) if args.state.tick_count == 600 args.gtk.open_url "http://dragonruby.org" end end
system
link
Given an OS dependent cli command represented as a string, this function executes the command and puts
the results to the DragonRuby Console (returns nil
).
def tick args # execute ls on the current directory in 10 seconds if args.state.tick_count == 600 args.gtk.system "ls ." end end
exec
link
Given an OS dependent cli command represented as a string, this function executes the command and returns a string
representing the results.
def tick args # execute ls on the current directory in 10 seconds if args.state.tick_count == 600 results = args.gtk.exec "ls ." puts "The results of the command are:" puts results end end
show_cursor
link
Shows the mouse cursor.
hide_cursor
link
Hides the mouse cursor.
cursor_shown?
link
Returns true
if the mouse cursor is visible.
set_mouse_grab
link
Takes in a numeric parameter representing the mouse grab mode.
0
: Ungrabs the mouse.1
: Grabs the mouse.2
: Hides the cursor, grabs the mouse and puts it in relative position mode accessible viaargs.inputs.mouse.relative_(x|y)
.
set_system_cursor
link
Takes in a string value of "arrow"
, "ibeam"
, "wait"
, or "hand"
and sets the mouse curosor to the corresponding system cursor (if available on the OS).
set_cursor
link
Replaces the mouse cursor with a sprite. Takes in a path
to the sprite, and optionally an x
and y
value representing the realtive positioning the sprite will have to the mouse cursor.
def tick args if args.state.tick_count == 0 # assumes a sprite of size 80x80 and centers the sprite # relative to the cursor position. args.gtk.set_cursor "sprites/square/blue.png", 40, 40 end end
File IO Functions link
The following functions give you the ability to interact with the file system.
list_files
link
This function takes in one parameter. The parameter is the directory path and assumes the the game directory is the root. The method returns an Array
of String
representing all files within the directory. Use stat_file
to determine whether a specific path is a file or a directory.
stat_file
link
This function takes in one parameter. The parameter is the file path and assumes the the game directory is the root. The method returns nil
if the file doesn't exist otherwise it returns a Hash
with the following information:
# { # path: String, # file_size: Int, # mod_time: Int, # create_time: Int, # access_time: Int, # readonly: Boolean, # file_type: Symbol (:regular, :directory, :symlink, :other), # } def tick args if args.inputs.mouse.click args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}." end file_info = args.gtk.stat_file "last-mouse-click.txt" if file_info args.outputs.labels << { x: 30, y: 30.from_top, text: file_info.to_s, size_enum: -3 } else args.outputs.labels << { x: 30, y: 30.from_top, text: "file does not exist, click to create file", size_enum: -3 } end end
read_file
link
Given a file path, a string will be returned representing the contents of the file. nil
will be returned if the file does not exist. You can use stat_file
to get additional information of a file.
write_file
link
This function takes in two parameters. The first parameter is the file path and assumes the the game directory is the root. The second parameter is the string that will be written. The method **overwrites** whatever is currently in the file. Use append_file
to append to the file as opposed to overwriting.
def tick args if args.inputs.mouse.click args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}." end end
append_file
link
This function takes in two parameters. The first parameter is the file path and assumes the the game directory is the root. The second parameter is the string that will be written. The method appends to whatever is currently in the file (a new file is created if one does not alread exist). Use write_file
to overwrite the file's contents as opposed to appending.
def tick args if args.inputs.mouse.click args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}." end end
delete_file
link
This function takes in a single parameters. The parameter is the file path that should be deleted. This function will raise an exception if the path requesting to be deleted does not exist.
Notes:
- Use
delete_if_exist
to only delete the file if it exists. - Use
stat_file
to determine if a path exists. - Use
list_files
to determine if a directory is empty. - You cannot delete files outside of your sandboxed game environment.
Here is a list of reasons an exception could be raised:
- If the path is not found. - If the path is still open (for reading or writing). - If the path is not a file or directory. - If the path is a circular symlink. - If you do not have permissions to delete the path. - If the directory attempting to be deleted is not empty.
def tick args if args.inputs.mouse.click args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}." end end
delete_file_if_exist
link
Has the same behavior as delete_file
except this function does not throw an exception.
XML and JSON link
The following functions help with parsing xml and json.
parse_json
link
Given a json string, this function returns a hash representing the json data.
sh = args.gtk.parse_json '{ "name": "John Doe", "aliases": ["JD"] }' structure of hash: { "name"=>"John Doe", "aliases"=>["JD"] }
parse_json_file
link
Same behavior as parse_json_file
except a file path is read for the json string.
parse_xml
link
Given xml data as a string, this function will return a hash that represents the xml data in the following recursive structure:
type: :element, name: "Person", children: [...]
parse_xml_file
link
Function has the same behavior as parse_xml
except that the parameter must be a file path that contains xml contents.
Network IO Functions link
The following functions help with interacting with the network.
http_get
link
Returns an object that represents an http response which will eventually have a value. This http_get method is invoked asynchronously. Check for completion before attempting to read results.
def tick args # perform an http get and print the response when available args.state.result ||= args.gtk.http_get "https://httpbin.org/html" if args.state.result && args.state.result[:complete] && !args.state.printed if args.state.result[:http_response_code] == 200 puts "The response was successful. The body is:" puts args.state.result[:response_data] else puts "The response failed. Status code:" puts args.state.result[:http_response_code] end # set a flag denoting that the response has been printed args.state.printed = true # show the console args.gtk.show_console end end
http_post
link
Returns an object that represents an http response which will eventually have a value. This http_post method is invoked asynchronously. Check for completion before attempting to read results.
- First parameter: The url to send the request to.
- Second parameter: Hash that represents form fields to send.
- Third parameter: Headers. Note: Content-Type must be form encoded flavor. If you are unsure of what to pass in, set the content type to application/x-www-form-urlencoded
def tick args # perform an http get and print the response when available args.state.form_fields ||= { "userId" => "#{Time.now.to_i}" } args.state.result ||= args.gtk.http_post "http://httpbin.org/post", form_fields, ["Content-Type: application/x-www-form-urlencoded"] if args.state.result && args.state.result[:complete] && !args.state.printed if args.state.result[:http_response_code] == 200 puts "The response was successful. The body is:" puts args.state.result[:response_data] else puts "The response failed. Status code:" puts args.state.result[:http_response_code] end # set a flag denoting that the response has been printed args.state.printed = true # show the console args.gtk.show_console end end
http_post_body
link
Returns an object that represents an http response which will eventually have a value. This http_post_body method is invoked asynchronously. Check for completion before attempting to read results.
- First parameter: The url to send the request to.
- Second parameter: String that represents the body that will be sent
- Third parameter: Headers. Be sure to populate the Content-Type that matches the data you are sending.
def tick args # perform an http get and print the response when available args.state.json ||= "{ "userId": "#{Time.now.to_i}"}" args.state.result ||= args.gtk.http_post_body "http://httpbin.org/post", args.state.json, ["Content-Type: application/json", "Content-Length: #{args.state.json.length}"] if args.state.result && args.state.result[:complete] && !args.state.printed if args.state.result[:http_response_code] == 200 puts "The response was successful. The body is:" puts args.state.result[:response_data] else puts "The response failed. Status code:" puts args.state.result[:http_response_code] end # set a flag denoting that the response has been printed args.state.printed = true # show the console args.gtk.show_console end end
start_server!
link
Starts a in-game http server that can be process http requests. When your game is running in development mode. A dev server is started at http://localhost:9001
You can start an in-game http server in production via:
def tick args # server explicitly enabled in production args.gtk.start_server! port: 9001, enable_in_prod: true end
Here's how you would responde to http requests:
def tick args # server explicitly enabled in production args.gtk.start_server! port: 9001, enable_in_prod: true # loop through pending requests and respond to them args.inputs.http_requests.each do |request| puts "#{request}" request.respond 200, "ok" end end
Developer Support Functions link
The following functions help support the development process. It is not recommended to use this functions in "production" game logic.
version
link
Returns a string representing the version of DragonRuby you are running.
version_pro?
link
Returns true
if the version of DragonRuby is NOT Standard Edition.
reset
link
Resets DragonRuby's internal state as if it were just started. args.state.tick_count
is set to 0
and args.state
is cleared of any values. This function is helpful when you are developing your game and want to reset everything as if the game just booted up.
def tick args end # reset the game if this file is hotloaded/required # (removes the need to press "r" when I file is updated) $gtk.reset
NOTE: args.gtk.reset
does not reset global variables or instance of classes you have have constructed.
reset_next_tick
link
Has the same behavior as reset
except the reset occurs before tick
is executed again. reset
resets the environment immediately (while the tick
method is inflight). It's recommended that reset
should be called outside of the tick method (invoked when a file is saved/hotloaded), and reset_next_tick
be used inside of the tick
method so you don't accidentally blow away state the your game depends on to complete the current tick
without exceptions.
def tick args # reset the game if "r" is pressed on the keyboard if args.inputs.keyboard.key_down.r args.gtk.reset_next_tick # use reset_next_tick instead of reset end end # reset the game if this file is hotloaded/required # (removes the need to press "r" when I file is updated) $gtk.reset
reset_sprite
link
Sprites when loaded are cached. This method invalidates the cache record of a sprite so that updates on from the disk can be loaded.
calcspritebox
link
Given a path to a sprite, this method returns the width
and height
of a sprite as a tuple.
NOTE: This method should be used for development purposes only and is expensive to call every frame. Do not use this method to set the size of sprite when rendering (hard code those values since you know what they are beforehand).
current_framerate
link
Returns a float value representing the framerate of your game. This is an approximation/moving average of your framerate and should eventually settle to 60fps.
def tick args # render a label to the screen that shows the current framerate # formatted as a floating point number with two decimal places args.outputs.labels << { x: 30, y: 30.from_top, text: "#{args.gtk.current_framerate.to_sf}" } end
framerate_diagnostics_primitives
link
Returns a set of primitives that can be rendered to the screen which provide more detailed information about the speed of your simulation (framerate, draw call count, mouse position, etc).
def tick args args.outputs.primitives << args.gtk.framerate_diagnostics_primitives end
warn_array_primitives!
link
This function helps you audit your game of usages of array-based primitives. While array-based primitives are simple to create and use, they are slower to process than Hash
or Class
based primitives.
def tick args # enable array based primitives warnings args.gtk.warn_array_primitives! # array-based primitive elsewhere in code # an log message will be posted giving the location of the array # based primitive usage args.outputs.sprites << [100, 100, 200, 200, "sprites/square/blue.png"] # instead of using array based primitives, migrate to hashes as needed args.outputs.sprites << { x: 100, y: 100, w: 200, h: 200, path: "sprites/square/blue.png" } end
benchmark
link
You can use this function to compare the relative performance of blocks of code.
def tick args # press r to run benchmark if args.inputs.keyboard.key_down.r args.gtk.console.show args.gtk.benchmark iterations: 1000, # number of iterations # label for experiment using_numeric_map: -> () { # experiment body v = 100.map_with_index do |i| i * 100 end }, # label for experiment using_numeric_times: -> () { # experiment body v = [] 100.times do |i| v << i * 100 end } end end
notify!
link
Given a string, this function will present a message at the bottom of your game. This method is only invoked in dev mode and is useful for debugging.
An optional parameter of duration (number value representing ticks) can also be passed in. The default value if 300
ticks (5 seconds).
def tick args if args.inputs.mouse.click args.gtk.notify! "Mouse was clicked!" end if args.inputs.keyboard.key_down.r # optional duration parameter args.gtk.notify! "R key was pressed!", 600 # present message for 10 seconds/600 frames end end
notify_extended!
link
Has similar behavior as notify! except you have additional options to show messages in a production environment.
def tick args if args.inputs.mouse.click args.gtk.notify_extended! message: "message", duration: 300, env: :prod end end
slowmo!
link
Given a numeric value representing the factor of 60fps. This function will bring your simulation loop down to slower rate. This method is intended to be used for debugging purposes.
def tick args # set your simulation speed to (15 fps): args.gtk.slowmo! 4 # set your simulation speed to (1 fps): args.gtk.slowmo! 60 # set your simulation speed to (30 fps): args.gtk.slowmo! 2 end
Remove this line from your tick method will automatically set your simulation speed back to 60 fps.
show_console
link
Shows the DragonRuby console. Useful when debugging/customizing an in-game dev workflow.
hide_console
link
Shows the DragonRuby console. Useful when debugging/customizing an in-game dev workflow.
enable_console
link
Enables the DragonRuby Console so that it can be presented by pressing the tilde key (the key next to the number 1 key).
disable_console
link
Disables the DragonRuby Console so that it won't show up even if you press the tilde key or call args.gtk.show_console
.
start_recording
link
Resets the game to tick 0
and starts recording gameplay. Useful for visual regression tests/verification.
stop_recording
link
Function takes in a destination file for the currently recording gameplay. This file can be used to replay a recording.
cancel_recording
link
Function cancels a gameplay recording session and discards the replay.
start_replay
link
Given a file that represents a recording, this method will run the recording against the current codebase.
You can start a replay from the command line also:
first argument: the game directory --replay switch is the file path relative to the game directory --speed switch is optional. a value of 4 will run the replay and game at 4x speed cli command example is in the context of Linux and Mac, for Windows the binary would be ./dragonruby.exe dragonruby ./mygame --replay ./replay.txt --speed 4
stop_replay
link
Function stops a replay that is currently executing.
get_base_dir
link
Returns the path to the location of the dragonruby binary. In production mode, this value will be the same as the value returned by get_game_dir
. Function should only be used for debugging/development workflows.
get_game_dir
link
Returns the location within sandbox storage that the game is running. When developing your game, this value will be your mygame
directory. In production, it'll return a value that is OS specific (eg the Roaming directory on Windows or the Application Support directory on Mac).
Invocations of ~(write|append)_file will write to this sandboxed directory.
get_game_dir_url
link
Returns a url encoded string representing the sandbox location for game data.
open_game_dir
link
Opens the game directory in the OS's file explorer. This should be used for debugging purposes only.
write_file_root
link
Given a file path and contents, the contents will be written to a directory outside of the game directory. This method should be used for development purposes only. In production this method will write to the same sandboxed location as write_file
.
append_file_root
link
Has the same behavior as write_file_root
except that it appends the contents as opposed to overwriting them.
argv
link
Returns a string representing the command line arguments passed to the DragonRuby binary. This should be used for development/debugging purposes only.
cli_arguments
link
Returns a Hash
for command line arguments in the format of --switch value
(two hyphens preceding the switch flag with the value seperated by a space). This should be used for development/debugging purposes only.
reload_history
link
Returns a Hash
representing the code files that have be loaded for your game along with timings for the events. This should be used for development/debugging purposes only.
reload_history_pending
link
Returns a Hash
for files that have been queued for reload, but haven't been processed yet. This should be used for development/debugging purposes only.
reload_if_needed
link
Given a file name, this function will queue the file for reload if it's been modified. An optional second parameter can be passed in to signify if the file should be forced loaded regardless of modified time (true
means to force load, false
means to load only if the file has been modified). This function should be used for development/debugging purposes only.
args.state
link
Store your game state inside of this state
. Properties with arbitrary nesting is allowed and a backing Entity will be created on your behalf.
def tick args args.state.player.x ||= 0 args.state.player.y ||= 0 end
args.state.*.entity_id
link
Entities automatically receive an entity_id
of type Fixnum
.
args.state.*.entity_type
link
Entities can have an entity_type
which is represented as a Symbol
.
args.state.*.created_at
link
Entities have created_at
set to args.state.tick_count
when they are created.
args.state.*.created_at_elapsed
link
Returns the elapsed number of ticks since creation.
args.state.*.global_created_at
link
Entities have global_created_at
set to Kernel.global_tick_count
when they are created.
args.state.*.global_created_at_elapsed
link
Returns the elapsed number of global ticks since creation.
args.state.*.as_hash
link
Entity cast to a Hash
so you can update values as if you were updating a Hash
.
args.state.new_entity
link
Creates a new Entity with a type
, and initial properties. An option block can be passed to change the newly created entity:
def tick args args.state.player ||= args.state.new_entity :player, x: 0, y: 0 do |e| e.max_hp = 100 e.hp = e.max_hp * rand end end
args.state.new_entity_strict
link
Creates a new Strict Entity. While Entities created via args.state.new_entity
can have new properties added later on, Entities created using args.state.new_entity
must define all properties that are allowed during its initialization. Attempting to add new properties after initialization will result in an exception.
args.state.tick_count
link
Returns the current tick of the game. args.state.tick_count
is 0
when the game is first started or if the game is reset via $gtk.reset
.
args.inputs
link
Access using input using args.inputs
.
args.inputs.up
link
Returns true
if: the up
arrow or w
key is pressed or held on the keyboard
; or if up
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted upwards.
args.inputs.down
link
Returns true
if: the down
arrow or s
key is pressed or held on the keyboard
; or if down
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted downwards.
args.inputs.left
link
Returns true
if: the left
arrow or a
key is pressed or held on the keyboard
; or if left
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted to the left.
args.inputs.right
link
Returns true
if: the right
arrow or d
key is pressed or held on the keyboard
; or if right
is pressed or held on controller_one
; or if the left_analog
on controller_one
is tilted to the right.
args.inputs.left_right
link
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.left
and args.inputs.right
.
args.state.player[:x] += args.inputs.left_right * args.state.speed
args.inputs.up_down
link
Returns -1
(down), 0
(neutral), or +1
(up) depending on results of args.inputs.down
and args.inputs.up
.
args.state.player[:y] += args.inputs.up_down * args.state.speed
args.inputs.text
OR args.inputs.history
link
Returns a string that represents the last key that was pressed on the keyboard.
args.inputs.mouse
link
Represents the user's mouse.
args.inputs.mouse.has_focus
link
Return's true if the game has mouse focus.
args.inputs.mouse.x
link
Returns the current x
location of the mouse.
args.inputs.mouse.y
link
Returns the current y
location of the mouse.
args.inputs.mouse.inside_rect? rect
link
Return. args.inputs.mouse.inside_rect?
takes in any primitive that responds to x, y, w, h
:
args.inputs.mouse.inside_circle? center_point, radius
link
Returns true
if the mouse is inside of a specified circle. args.inputs.mouse.inside_circle?
takes in any primitive that responds to x, y
(which represents the circle's center), and takes in a radius
:
args.inputs.mouse.moved
link
Returns true
if the mouse has moved on the current frame.
args.inputs.mouse.button_left
link
Returns true
if the left mouse button is down.
args.inputs.mouse.button_middle
link
Returns true
if the middle mouse button is down.
args.inputs.mouse.button_right
link
Returns true
if the right mouse button is down.
args.inputs.mouse.button_bits
link
Returns a bitmask for all buttons on the mouse: 1
for a button in the down
state, 0
for a button in the up
state.
args.inputs.mouse.wheel
link
Represents the mouse wheel. Returns nil
if no mouse wheel actions occurred.
args.inputs.mouse.wheel.x
link
Returns the negative or positive number if the mouse wheel has changed in the x
axis.
args.inputs.mouse.wheel.y
link
Returns the negative or positive number if the mouse wheel has changed in the y
axis.
args.inputs.mouse.click
OR .down
, .previous_click
, .up
link
The properties args.inputs.mouse.(click|down|previous_click|up)
each return nil
if the mouse button event didn't occur. And return an Entity that has an x
, y
properties along with helper functions to determine collision: inside_rect?
, inside_circle
.
args.inputs.controller_(one-four)
link
Represents controllers connected to the usb ports.
args.inputs.controller_(one-four).up
link
Returns true
if up
is pressed or held on the directional or left analog.
args.inputs.controller_(one-four).down
link
Returns true
if down
is pressed or held on the directional or left analog.
args.inputs.controller_(one-four).left
link
Returns true
if left
is pressed or held on the directional or left analog.
args.inputs.controller_(one-four).right
link
Returns true
if right
is pressed or held on the directional or left analog.
args.inputs.controller_(one-four).left_right
link
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.controller_(one-four).left
and args.inputs.controller_(one-four).right
.
args.inputs.controller_(one-four).up_down
link
Returns -1
(down), 0
(neutral), or +1
(up) depending on results of args.inputs.controller_(one-four).up
and args.inputs.controller_(one-four).down
.
args.inputs.controller_(one-four).(left_analog_x_raw|right_analog_x_raw)
link
Returns the raw integer value for the analog's horizontal movement (-32,000 to +32,000
).
args.inputs.controller_(one-four).left_analog_y_raw|right_analog_y_raw)
link
Returns the raw integer value for the analog's vertical movement (-32,000 to +32,000
).
args.inputs.controller_(one-four).left_analog_x_perc|right_analog_x_perc)
link
Returns a number between -1
and 1
which represents the percentage the analog is moved horizontally as a ratio of the maximum horizontal movement.
args.inputs.controller_(one-four).left_analog_y_perc|right_analog_y_perc)
link
Returns a number between -1
and 1
which represents the percentage the analog is moved vertically as a ratio of the maximum vertical movement.
args.inputs.controller_(one-four).directional_up
link
Returns true
if up
is pressed or held on the directional.
args.inputs.controller_(one-four).directional_down
link
Returns true
if down
is pressed or held on the directional.
args.inputs.controller_(one-four).directional_left
link
Returns true
if left
is pressed or held on the directional.
args.inputs.controller_(one-four).directional_right
link
Returns true
if right
is pressed or held on the directional.
args.inputs.controller_(one-four).(a|b|x|y|l1|r1|l2|r2|l3|r3|start|select)
link
Returns true
if the specific button is pressed or held.
args.inputs.controller_(one-four).truthy_keys
link
Returns a collection of Symbol
s that represent all keys that are in the pressed or held state.
args.inputs.controller_(one-four).key_down
link
Returns true
if the specific button was pressed on this frame. args.inputs.controller_(one-four).key_down.BUTTON
will only be true on the frame it was pressed.
args.inputs.controller_(one-four).key_held
link
Returns true
if the specific button is being held. args.inputs.controller_(one-four).key_held.BUTTON
will be true for all frames after key_down
(until released).
args.inputs.controller_(one-four).key_up
link
Returns true
if the specific button was released. args.inputs.controller_(one-four).key_up.BUTTON
will be true only on the frame the button was released.
args.inputs.keyboard
link
Represents the user's keyboard
args.inputs.keyboard.has_focus
link
Returns true
if the game has keyboard focus.
args.inputs.keyboard.up
link
Returns true
if up
or w
is pressed or held on the keyboard.
args.inputs.keyboard.down
link
Returns true
if down
or s
is pressed or held on the keyboard.
args.inputs.keyboard.left
link
Returns true
if left
or a
is pressed or held on the keyboard.
args.inputs.keyboard.right
link
Returns true
if right
or d
is pressed or held on the keyboard.
args.inputs.keyboard.left_right
link
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.keyboard.left
and args.inputs.keyboard.right
.
args.inputs.keyboard.up_down
link
Returns -1
(left), 0
(neutral), or +1
(right) depending on results of args.inputs.keyboard.up
and args.inputs.keyboard.up
.
keyboard properties link
The following properties represent keys on the keyboard and are available on args.inputs.keyboard.KEY
, args.inputs.keyboard.key_down.KEY
, args.inputs.keyboard.key_held.KEY
, and args.inputs.keyboard.key_up.KEY
:
alt
meta
control
shift
ctrl_KEY
(dynamic method, egargs.inputs.keyboard.ctrl_a
)exclamation_point
zero
-nine
backspace
delete
escape
enter
tab
(open|close)_round_brace
(open|close)_curly_brace
(open|close)_square_brace
colon
semicolon
equal_sign
hyphen
space
dollar_sign
double_quotation_mark
single_quotation_mark
backtick
tilde
period
comma
pipe
underscore
a
-z
shift
control
alt
meta
left
right
up
down
pageup
pagedown
char
plus
at
forward_slash
back_slash
asterisk
less_than
greater_than
carat
ampersand
superscript_two
circumflex
question_mark
section_sign
ordinal_indicator
raw_key
left_right
up_down
directional_vector
truthy_keys
inputs.keyboard.keys
link
Returns a Hash
with all keys on the keyboard in their respective state. The Hash
contains the following keys
:down
:held
:down_or_held
:up
args.inputs.touch
link
Returns a Hash
representing all touch points on a touch device. This api is only available in Indie, and Pro versions.
args.inputs.finger_left
link
Returns a Hash
with x
and y
denoting a touch point that is on the left side of the screen. This api is only available in Indie, and Pro versions.
args.inputs.finger_right
link
Returns a Hash
with x
and y
denoting a touch point that is on the right side of the screen. This api is only available in Indie, and Pro versions.
args.outputs
link
Outputs is how you render primitives to the screen. The minimal setup for rendering something to the screen is via a tick
method defined in mygame/app/main.rb
def tick args args.outputs.solids << [0, 0, 100, 100] args.outputs.sprites << [100, 100, 100, 100, "sprites/square/blue.png"] args.outputs.labels << [200, 200, "Hello World"] args.outputs.lines << [300, 300, 400, 400] end
Primitives are rendered first-in, first-out. The rendering order (sorted by bottom-most to top-most):
solids
sprites
primitives
: Accepts all render primitives. Useful when you want to bypass the default rendering orders for rendering (eg. rendering solids on top of sprites).labels
lines
borders
debug
: Accepts all render primitives. Use this to render primitives for debugging (production builds of your game will not render this layer).
args.outputs.background_color
link
Set args.outputs.background_color
to an Array
with RGB
values (eg. [255, 255, 255]
for the color white).
args.outputs.sounds
link
Send a file path to this collection to play a sound. The sound file must be under the mygame
directory.
args.outputs.sounds << "sounds/jump.wav"
args.outputs.solids
link
Send a Primitive to this collection to render a filled in rectangle to the screen. This collection is cleared at the end of every frame.
args.outputs.static_solids
link
Send a Primitive to this collection to render a filled in rectangle to the screen. This collection is not cleared at the end of every frame. And objects can be mutated by reference.
args.outputs.sprites
, .static_sprites
link
Send a Primitive to this collection to render a sprite to the screen.
args.outputs.primitives
, .static_primitives
link
Send a Primitive of any type and it'll be rendered. The Primitive must have a primitive_marker
that returns :solid
, :sprite
, :label
, :line
, :border
.
args.outputs.labels
, .static_labels
link
Send a Primitive to this collection to render text to the screen.
args.outputs.lines
, .static_lines
link
Send a Primitive to this collection to render a line to the screen.
args.outputs.borders
, .static_borders
link
Send a Primitive to this collection to render an unfilled rectangle to the screen.
args.outputs.debug
, .static_debug
link
Send any Primitive to this collection which represents things you render to the screen for debugging purposes. Primitives in this collection will not be rendered in a production release of your game.
args.easing
link
A set of functions that allow you to determine the current progression of an easing function.
args.easing.ease start_tick, current_tick, duration, easing_functions
link
Given a start, current, duration, and easing function names, ease
returns a number between 0 and 1 that represents the progress of an easing function.
The built in easing definitions you have access to are :identity
, :flip
, :quad
, :cube
, :quart
, and :quint
.
This example will move a box at a linear speed from 0 to 1280.
def tick args start_time = 10 duration = 60 current_progress = args.easing.ease start_time, args.state.tick_count, duration, :identity args.outputs.solids << { x: 1280 * current_progress, y: 360, w: 10, h: 10 } end
args.easing.ease_spline start_tick, current_tick, duration, spline
link
Given a start, current, duration, and a multiple bezier values, this function returns a number between 0 and 1 that represents the progress of an easing function.
This example will move a box at a linear speed from 0 to 1280 and then back to 0 using two bezier definitions (represented as an array with four values).
def tick args start_time = 10 duration = 60 spline = [ [ 0, 0.25, 0.75, 1.0], [1.0, 0.75, 0.25, 0] ] current_progress = args.easing.ease_spline start_time, args.state.tick_count, duration, spline args.outputs.solids << { x: 1280 * current_progress, y: 360, w: 10, h: 10 } end
args.string
link
Useful string functions not included in Ruby core libraries.
args.string.wrapped_lines string, max_character_length
link
This function will return a collection of strings given an input string
and max_character_length
. The collection of strings returned will split the input string into strings of length <= max_character_length
.
The following example takes a string with new lines and creates a label for each one. Labels (args.outputs.labels
) ignore newline characters \n
.
def tick args long_string = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. teger dolor velit, ultricies vitae libero vel, aliquam imperdiet enim." max_character_length = 30 long_strings_split = args.string.wrapped_lines long_string, max_character_length args.outputs.labels << long_strings_split.map_with_index do |s, i| { x: 10, y: 600 - (i * 20), text: s } end end
args.grid
link
Returns the virtual grid for the game.
args.grid.name
link
Returns either :origin_bottom_left
or :origin_center
.
args.grid.bottom
link
Returns the y
value that represents the bottom of the grid.
args.grid.top
link
Returns the y
value that represents the top of the grid.
args.grid.left
link
Returns the x
value that represents the left of the grid.
args.grid.right
link
Returns the x
value that represents the right of the grid.
args.grid.rect
link
Returns a rectangle Primitive that represents the grid.
args.grid.origin_bottom_left!
link
Change the grids coordinate system to 0, 0 at the bottom left corner.
args.grid.origin_center!
link
Change the grids coordinate system to 0, 0 at the center of the screen.
args.grid.w
link
Returns the grid's width (always 1280).
args.grid.h
link
Returns the grid's height (always 720).
Audio
link
Hash that contains audio sources that are playing. If you want to add a new sound add a hash with keys/values as in the following example:
def tick args # The values below (except for input of course) are the default values that apply if you don't # specify the value in the hash. args.audio[:my_audio] = { input: 'sound/boom.wav', # Filename x: 0.0, y: 0.0, z: 0.0, # Relative position to the listener, x, y, z from -1.0 to 1.0 gain: 1.0, # Volume (0.0 to 1.0) pitch: 1.0, # Pitch of the sound (1.0 = original pitch) paused: false, # Set to true to pause the sound at the current playback position looping: false, # Set to true to loop the sound/music until you stop it } end
Sounds that don't specify looping: true
will be removed automatically from the hash after the playback ends. Looping sounds or sounds that should stop early must be removed manually.
When you assign a hash to an audio output, a :length
key will be added to the hash on the following tick. This will tell you the duration of the audio file in seconds (float).
Audio synthesis link
Instead of a path to an audio file you can specify an array [channels, sample_rate, sound_source]
for input
to procedurally generate sound. You do this by providing an array of float values between -1.0 and 1.0 that describe the waveform you want to play.
channels
is the number of channels: 1 = mono, 2 = stereosample_rate
is the number of values per seconds you will provide to describe the audio wavesound_source
The source of your sound. See below
Sound source link
A sound source can be one of two things:
- A
Proc
object that is called on demand to generate the next samples to play. Every call should generate enough samples for at least 0.1 to 0.5 seconds to get continuous playback without audio skips. The audio will continue playing endlessly until removed, so thelooping
option will have no effect. - An array of sample values that will be played back once. This is useful for procedurally generated one-off SFX.
looping
will work as expected
When you specify 2 for channels
, then the generated sample array will be played back in an interleaved manner. The first element is the first sample for the left channel, the second element is the first sample for the right channel, the third element is the second sample for the left channel etc.
Example: link
def tick args sample_rate = 48000 generate_sine_wave = lambda do frequency = 440.0 # A5 samples_per_period = (sample_rate / frequency).ceil one_period = samples_per_period.map_with_index { |i| Math.sin((2 * Math::PI) * (i / samples_per_period)) } one_period * frequency # Generate 1 second worth of sound end args.audio[:my_audio] ||= { input: [1, sample_rate, generate_sine_wave] } end
Easing
link
This function will give you a float value between 0
and 1
that represents a percentage. You need to give the funcation a start_tick
, current_tick
, duration, and easing definitions
.
This YouTube video is a fantastic introduction to easing functions: https://www.youtube.com/watch?v=mr5xkf6zSzk
Example link
This example shows how to fade in a label at frame 60 over two seconds (120 ticks). The :identity
definition implies a linear fade: f(x) -> x
.
def tick args fade_in_at = 60 current_tick = args.state.tick_count duration = 120 percentage = args.easing.ease fade_in_at, current_tick, duration, :identity alpha = 255 * percentage args.outputs.labels << { x: 640, y: 320, text: "#{percentage.to_sf}", alignment_enum: 1, a: alpha } end
Easing Definitions link
There are a number of easing definitions availble to you:
:identity
link
The easing definition for :identity
is f(x) = x
. For example, if start_tick
is 0
, current_tick
is 50
, and duration
is 100
, then args.easing.ease 0, 50, 100, :identity
will return 0.5
(since tick 50
is half way between 0
and 100
).
:flip
link
The easing definition for :flip
is f(x) = 1 - x
. For example, if start_tick
is 0
, current_tick
is 10
, and duration
is 100
, then args.easing.ease 0, 10, 100, :flip
will return 0.9
(since tick 10
means 100% - 10%).
:quad
, :cube
, :quart
, :quint
link
These are the power easing definitions. :quad
is f(x) = x * x
(x
squared), :cube
is f(x) = x * x * x
(x
cubed), etc.
The power easing definitions represent Smooth Start easing (the percentage changes slow at first and speeds up at the end).
Example
Here is an example of Smooth Start (the percentage changes slow at first and speeds up at the end).
def tick args start_tick = 60 current_tick = args.state.tick_count duration = 120 percentage = args.easing.ease start_tick, current_tick, duration, :quad start_x = 100 end_x = 1180 distance_x = end_x - start_x final_x = start_x + (distance_x * percentage) start_y = 100 end_y = 620 distance_y = end_y - start_y final_y = start_y + (distance_y * percentage) args.outputs.labels << { x: final_x, y: final_y, text: "#{percentage.to_sf}", alignment_enum: 1 } end
Combining Easing Definitions link
The base easing definitions can be combined to create common easing functions.
Example
Here is an example of Smooth Stop (the percentage changes fast at first and slows down at the end).
def tick args start_tick = 60 current_tick = args.state.tick_count duration = 120 # :flip, :quad, :flip is Smooth Stop percentage = args.easing.ease start_tick, current_tick, duration, :flip, :quad, :flip start_x = 100 end_x = 1180 distance_x = end_x - start_x final_x = start_x + (distance_x * percentage) start_y = 100 end_y = 620 distance_y = end_y - start_y final_y = start_y + (distance_y * percentage) args.outputs.labels << { x: final_x, y: final_y, text: "#{percentage.to_sf}", alignment_enum: 1 } end
Custom Easing Functions link
You can define your own easing functions by passing in a lambda
as a definition
or extending the Easing
module.
Example - Using Lambdas
This easing function goes from 0
to 1
for the first half of the ease, then 1
to 0
for the second half of the ease.
def tick args fade_in_at = 60 current_tick = args.state.tick_count duration = 600 easing_lambda = lambda do |percentage, start_tick, duration| fx = percentage if fx < 0.5 fx = percentage * 2 else fx = 1 - (percentage - 0.5) * 2 end fx end percentage = args.easing.ease fade_in_at, current_tick, duration, easing_lambda alpha = 255 * percentage args.outputs.labels << { x: 640, y: 320, a: alpha, text: "#{percentage.to_sf}", alignment_enum: 1 } end
Example - Extending Easing Definitions
If you don't want to create a lambda, you can register an easing definition like so:
# 1. Extend the Easing module module Easing def self.saw_tooth x if x < 0.5 x * 2 else 1 - (x - 0.5) * 2 end end end def tick args fade_in_at = 60 current_tick = args.state.tick_count duration = 600 # 2. Reference easing definition by name percentage = args.easing.ease fade_in_at, current_tick, duration, :saw_tooth alpha = 255 * percentage args.outputs.labels << { x: 640, y: 320, a: alpha, text: "#{percentage.to_sf}", alignment_enum: 1 } end
pixel_arrays
link
A PixelArray
object with a width, height and an Array of pixels which are hexadecimal color values in ABGR format.
NOTE: This is an Indie/Pro feature and not available in the Standard license.
You can create a pixel array like this:
w = 200 h = 100 args.pixel_array(:my_pixel_array).w = w args.pixel_array(:my_pixel_array).h = h
You'll also need to fill the pixels with values, if they are nil
, the array will render with the checkerboard texture. You can use #00000000 to fill with transparent pixels if desired.
gs.pixel_array(:my_pixel_array).pixels.fill #FF00FF00, 0, w * h
Note: To convert from rgb hex (like skyblue #87CEEB) to abgr hex, you split it in pairs pair (eg 87
CE
EB
) and reverse the order (eg EB
CE
87
) add join them again: #EBCE87
. Then add the alpha component in front ie: FF
for full opacity: #FFEBCE87
.
You can draw it by using the symbol for :path
args.outputs.sprites << { x: 500, y: 300, w: 200, h: 100, path: :my_pixel_array) }
If you want access a specific x, y position, you can do it like this for a bottom-left coordinate system:
x = 150 y = 33 args.pixel_array(:my_pixel_array).pixels[(height - y) * width + x] = 0xFFFFFFFF
Related Sample Apps link
- Animation using pixel arrays:
./samples/07_advanced_rendering/06_pixel_arrays
- Load a pixel array from a png:
./samples/07_advanced_rendering/06_pixel_arrays_from_file/
Outputs
link
Outputs is how you render primitives to the screen. The minimal setup for rendering something to the screen is via a tick
method defined in mygame/app/main.rb
def tick args args.outputs.solids << [0, 0, 100, 100] args.outputs.sprites << [100, 100, 100, 100, "sprites/square/blue.png"] args.outputs.labels << [200, 200, "Hello World"] args.outputs.lines << [300, 300, 400, 400] end
Render Order link
Primitives are rendered first-in, first-out. The rendering order (sorted by bottom-most to top-most):
solids
sprites
primitives
: Accepts all render primitives. Useful when you want to bypass the default rendering orders for rendering (eg. rendering solids on top of sprites).labels
lines
borders
debug
: Accepts all render primitives. Use this to render primitives for debugging (production builds of your game will not render this layer).
Solids
link
Add primitives to this collection to render a solid to the screen.
Rendering a solid using an Array link
Creates a solid black rectangle located at 100, 100. 160 pixels wide and 90 pixels tall.
def tick args # X Y WIDTH HEIGHT args.outputs.solids << [100, 100, 160, 90] end
Rendering a solid using an Array with colors and alpha link
The value for the color and alpha is a number between 0
and 255
. The alpha property is optional and will be set to 255
if not specified.
Creates a green solid rectangle with an opacity of 50%.
def tick args # X Y WIDTH HEIGHT RED GREEN BLUE ALPHA args.outputs.solids << [100, 100, 160, 90, 0, 255, 0, 128] end
Rendering a solid using a Hash link
If you want a more readable invocation. You can use the following hash to create a solid. Any parameters that are not specified will be given a default value. The keys of the hash can be provided in any order.
def tick args args.outputs.solids << { x: 0, y: 0, w: 100, h: 100, r: 0, g: 255, b: 0, a: 255 } end
Rendering a solid using a Class link
You can also create a class with solid properties and render it as a primitive. ALL properties must be on the class. *Additionally*, a method called primitive_marker
must be defined on the class.
Here is an example:
# Create type with ALL solid properties AND primitive_marker class Solid attr_accessor :x, :y, :w, :h, :r, :g, :b, :a, :anchor_x, :anchor_y def primitive_marker :solid # or :border end end # Inherit from type class Square < Solid # constructor def initialize x, y, size self.x = x self.y = y self.w = size self.h = size end end def tick args # render solid/border args.outputs.solids << Square.new(10, 10, 32) end
Borders
link
Add primitives to this collection to render an unfilled solid to the screen. Take a look at the documentation for Outputs#solids.
The only difference between the two primitives is where they are added.
Instead of using args.outputs.solids
:
def tick args # X Y WIDTH HEIGHT args.outputs.solids << [100, 100, 160, 90] end
You have to use args.outputs.borders
:
def tick args # X Y WIDTH HEIGHT args.outputs.borders << [100, 100, 160, 90] end
Sprites
link
Add primitives to this collection to render a sprite to the screen.
Rendering a sprite using an Array link
Creates a sprite of a white circle located at 100, 100. 160 pixels wide and 90 pixels tall.
def tick args # X Y WIDTH HEIGHT PATH args.outputs.sprites << [100, 100, 160, 90, "sprites/circle/white.png] end
Rendering a sprite using an Array with colors and alpha link
The value for the color and alpha is a number between 0
and 255
. The alpha property is optional and will be set to 255
if not specified.
Creates a green circle sprite with an opacity of 50%.
def tick args # X Y WIDTH HEIGHT PATH ANGLE ALPHA RED GREEN BLUE args.outputs.sprites << [100, 100, 160, 90, "sprites/circle/white.png", 0, 128, 0, 255, 0] end
Rendering a sprite using a Hash link
If you want a more readable invocation. You can use the following hash to create a sprite. Any parameters that are not specified will be given a default value. The keys of the hash can be provided in any order.
def tick args args.outputs.sprites << { x: 0, y: 0, w: 100, h: 100, path: "sprites/circle/white.png", angle: 0, a: 255, r: 0, g: 255, b: 0 } end
Rendering a solid using a Class link
You can also create a class with solid/border properties and render it as a primitive. ALL properties must be on the class. *Additionally*, a method called primitive_marker
must be defined on the class.
Here is an example:
# Create type with ALL sprite properties AND primitive_marker class Sprite attr_accessor :x, :y, :w, :h, :path, :angle, :angle_anchor_x, :angle_anchor_y, :tile_x, :tile_y, :tile_w, :tile_h, :source_x, :source_y, :source_w, :source_h, :flip_horizontally, :flip_vertically, :a, :r, :g, :b def primitive_marker :sprite end end # Inherit from type class Circle < Sprite # constructor def initialize x, y, size, path self.x = x self.y = y self.w = size self.h = size self.path = path end def serlialize {x:self.x, y:self.y, w:self.w, h:self.h, path:self.path} end def inspect serlialize.to_s end def to_s serlialize.to_s end end def tick args # render circle sprite args.outputs.sprites << Circle.new(10, 10, 32,"sprites/circle/white.png") end
Labels
link
Add primitives to this collection to render a label.
Rendering a label using an Array link
Labels represented as Arrays/Tuples:
def tick args # X Y TEXT SIZE_ENUM args.outputs.labels << [175 + 150, 610 - 50, "Smaller label.", 0] end
Here are all the properties that you can set with a label represented as an Array. It's recommended to move over to using Hashes once you've specified a lot of properties.
def tick args args.outputs.labels << [ 640, # X 360, # Y "Hello world", # TEXT 0, # SIZE_ENUM 1, # ALIGNMENT_ENUM 0, # RED 0, # GREEN 0, # BLUE 255, # ALPHA "fonts/coolfont.ttf" # FONT ] end d
Rendering a label using a Hash link
def tick args args.outputs.labels << { x: 200, y: 550, text: "dragonruby", size_enum: 2, alignment_enum: 1, # 0 = left, 1 = center, 2 = right r: 155, g: 50, b: 50, a: 255, font: "fonts/manaspc.ttf", vertical_alignment_enum: 0 # 0 = bottom, 1 = center, 2 = top } end
Screenshots
link
Add a hash to this collection to take a screenshot and save as png file. The keys of the hash can be provided in any order.
def tick args args.outputs.screenshots << { x: 0, y: 0, w: 100, h: 100, # Which portion of the screen should be captured path: 'screenshot.png', # Output path of PNG file (inside game directory) r: 255, g: 255, b: 255, a: 0 # Optional chroma key } end
Chroma key (Making a color transparent) link
By specifying the r, g, b and a keys of the hash you change the transparency of a color in the resulting PNG file. This can be useful if you want to create files with transparent background like spritesheets. The transparency of the color specified by r
, g
, b
will be set to the transparency specified by a
.
The example above sets the color white (255, 255, 255) as transparent.
Mouse
link
The mouse is accessible via args.inputs.mouse
:
def tick args # Rendering a label that shows the mouse's x and y position (via args.inputs.mouse). args.outputs.labels << [ 10, 710, "The mouse's position is: #{args.inputs.mouse.x} #{args.inputs.mouse.y}." ] end
The mouse has the following properties.
args.inputs.mouse.x
: Returns the x position of the mouse.args.inputs.mouse.y
: Returns the y position of the mouse.args.inputs.mouse.moved
: Returns true if the mouse moved during the tick.args.inputs.mouse.moved_at
: Returns the tick_count (args.state.tick_count
) that the mouse was moved at. This property will benil
if the mouse didn't move.args.inputs.mouse.global_moved_at
: Returns the global tick_count (Kernel.global_tick_count
) that the mouse was moved at. This property will benil
if the mouse didn't move.args.inputs.mouse.click
: Returns aGTK::MousePoint
for that specific frame (args.state.tick_count
) if the mouse button was pressed.args.inputs.mouse.previous_click
: Returns aGTK::MousePoint
for the previous frame (args.state.tick_count - 1
) if the mouse button was pressed.args.inputs.mouse.up
: Returns true if for that specific frame (args.state.tick_count
) if the mouse button was released.args.inputs.mouse.point
|args.inputs.mouse.position
: Returns anArray
which contains thex
andy
position of the mouse.args.inputs.mouse.has_focus
: Returns true if the game window has the mouse's focus.args.inputs.mouse.wheel
: Returns anGTK::OpenEntity
that contains anx
andy
property which represents how much the wheel has moved. If the wheel has not moved within the tick, this property will benil
.args.inputs.mouse.button_left
: Returns true if the left mouse button is down.args.inputs.mouse.button_right
: Returns true if the right mouse button is down.args.inputs.mouse.button_middle
: Returns true if the middle mouse button is down.args.inputs.mouse.button_bits
: Gives the bits for each mouse button and its current state.
OpenEntity
link
OpenEntity
is accessible within the DragonRuby's top level tick
function via the args.state
property.
def tick args args.state.x ||= 100 args.outputs.labels << [10, 710, "value of x is: #{args.state.x}."] end
The primary benefit of using args.state
as opposed to instance variables is that GTK::OpenEntity
allows for arbitrary nesting of properties without the need to create intermediate objects.
For example:
def tick args # intermediate player object does not need to be created args.state.player.x ||= 100 args.state.player.y ||= 100 args.outputs.labels << [ 10, 710, "player x, y is:#{args.state.player.x}, #{args.state.player.y}." ] end
as_hash
link
Returns a reference to the GTK::OpenEntity
as a Hash
. This property is useful when you want to treat args.state
as a Hash
and invoke methods such as Hash#each
.
Example:
def tick args args.state.x ||= 100 args.state.y ||= 100 values = args.state .as_hash .map { |k, v| "#{k} #{v}" } args.outputs.labels << values.map.with_index do |v, i| [ 10, 710 - (30 * i), v ] end end
Array
link
The Array class has been extend to provide methods that will help in common game development tasks. Array is one of the most powerful classes in Ruby and a very fundamental component of Game Toolkit.
map_2d
link
Assuming the array is an array of arrays, Given a block, each 2D array index invoked against the block. A 2D array is a common way to store data/layout for a stage.
repl do stage = [ [:enemy, :empty, :player], [:empty, :empty, :empty], [:enemy, :empty, :enemy], ] occupied_tiles = stage.map_2d do |row, col, tile| if tile == :empty nil else [row, col, tile] end end.reject_nil puts "Stage:" puts stage puts "Occupied Tiles" puts occupied_tiles end
include_any?
link
Given a collection of items, the function will return true
if any of self
's items exists in the collection of items passed in:
any_intersect_rect?
link
Assuming the array contains objects that respond to left
, right
, top
, bottom
, this method returns true
if any of the elements within the array intersect the object being passed in. You are given an optional parameter called tolerance
which informs how close to the other rectangles the elements need to be for it to be considered intersecting.
The default tolerance is set to 0.1
, which means that the primitives are not considered intersecting unless they are overlapping by more than 0.1
.
repl do # Here is a player class that has position and implement # the ~attr_rect~ contract. class Player attr_rect attr_accessor :x, :y, :w, :h def initialize x, y, w, h @x = x @y = y @w = w @h = h end def serialize { x: @x, y: @y, w: @w, h: @h } end def inspect "#{serialize}" end def to_s "#{serialize}" end end # Here is a definition of two walls. walls = [ [10, 10, 10, 10], { x: 20, y: 20, w: 10, h: 10 }, ] # Display the walls. puts "Walls." puts walls puts "" # Check any_intersect_rect? on player player = Player.new 30, 20, 10, 10 puts "Is Player #{player} touching wall?" puts (walls.any_intersect_rect? player) # => false # The value is false because of the default tolerance is 0.1. # The overlap of the player rect and any of the wall rects is # less than 0.1 (for those that intersect). puts "" player = Player.new 9, 10, 10, 10 puts "Is Player #{player} touching wall?" puts (walls.any_intersect_rect? player) # => true puts "" end
map
link
The function given a block returns a new Enumerable
of values.
Example of using Array#map
in conjunction with args.state
and args.outputs.sprites
to render sprites to the screen.
def tick args # define the colors of the rainbow in ~args.state~ # as an ~Array~ of ~Hash~es with :order and :name. # :order will be used to determine render location # and :name will be used to determine sprite path. args.state.rainbow_colors ||= [ { order: 0, name: :red }, { order: 1, name: :orange }, { order: 2, name: :yellow }, { order: 3, name: :green }, { order: 4, name: :blue }, { order: 5, name: :indigo }, { order: 6, name: :violet }, ] # render sprites diagonally to the screen # with a width and height of 50. args.outputs .sprites << args.state .rainbow_colors .map do |color| # <-- ~Array#map~ usage [ color[:order] * 50, color[:order] * 50, 50, 50, "sprites/square-#{color[:name]}.png" ] end end
each
link
The function, given a block, invokes the block for each item in the Array
. Array#each
is synonymous to foreach constructs in other languages.
Example of using Array#each
in conjunction with args.state
and args.outputs.sprites
to render sprites to the screen:
def tick args # define the colors of the rainbow in ~args.state~ # as an ~Array~ of ~Hash~es with :order and :name. # :order will be used to determine render location # and :name will be used to determine sprite path. args.state.rainbow_colors ||= [ { order: 0, name: :red }, { order: 1, name: :orange }, { order: 2, name: :yellow }, { order: 3, name: :green }, { order: 4, name: :blue }, { order: 5, name: :indigo }, { order: 6, name: :violet }, ] # render sprites diagonally to the screen # with a width and height of 50. args.state .rainbow_colors .map do |color| # <-- ~Array#each~ usage args.outputs.sprites << [ color[:order] * 50, color[:order] * 50, 50, 50, "sprites/square-#{color[:name]}.png" ] end end
reject_nil
link
Returns an Enumerable
rejecting items that are nil
, this is an alias for Array#compact
:
repl do a = [1, nil, 4, false, :a] puts a.reject_nil # => [1, 4, false, :a] puts a.compact # => [1, 4, false, :a] end
reject_false
link
Returns an `Enumerable` rejecting items that are `nil` or `false`.
repl do a = [1, nil, 4, false, :a] puts a.reject_false # => [1, 4, :a] end
product
link
Returns all combinations of values between two arrays.
Here are some examples of using product
. Paste the following code at the bottom of main.rb and save the file to see the results:
repl do a = [0, 1] puts a.product # => [[0, 0], [0, 1], [1, 0], [1, 1]] end
repl do a = [ 0, 1] b = [:a, :b] puts a.product b # => [[0, :a], [0, :b], [1, :a], [1, :b]] end
Numeric
link
The Numeric
class has been extend to provide methods that will help in common game development tasks.
frame_index
link
This function is helpful for determining the index of frame-by-frame sprite animation. The numeric value self
represents the moment the animation started.
frame_index
takes three additional parameters:
- How many frames exist in the sprite animation.
- How long to hold each animation for.
- Whether the animation should repeat.
frame_index
will return nil
if the time for the animation is out of bounds of the parameter specification.
Example using variables:
def tick args start_looping_at = 0 number_of_sprites = 6 number_of_frames_to_show_each_sprite = 4 does_sprite_loop = true sprite_index = start_looping_at.frame_index number_of_sprites, number_of_frames_to_show_each_sprite, does_sprite_loop sprite_index ||= 0 args.outputs.sprites << [ 640 - 50, 360 - 50, 100, 100, "sprites/dragon-#{sprite_index}.png" ] end
Example using named parameters:
def tick args start_looping_at = 0 sprite_index = start_looping_at.frame_index count: 6, hold_for: 4, repeat: true, tick_count_override: args.state.tick_count sprite_index ||= 0 args.outputs.sprites << [ 640 - 50, 360 - 50, 100, 100, "sprites/dragon-#{sprite_index}.png" ] end
elapsed_time
link
For a given number, the elapsed frames since that number is returned. `Kernel.tick_count` is used to determine how many frames have elapsed. An optional numeric argument can be passed in which will be used instead of `Kernel.tick_count`.
Here is an example of how elapsed_time can be used.
def tick args args.state.last_click_at ||= 0 # record when a mouse click occurs if args.inputs.mouse.click args.state.last_click_at = args.state.tick_count end # Use Numeric#elapsed_time to determine how long it's been if args.state.last_click_at.elapsed_time > 120 args.outputs.labels << [10, 710, "It has been over 2 seconds since the mouse was clicked."] end end
And here is an example where the override parameter is passed in:
def tick args args.state.last_click_at ||= 0 # create a state variable that tracks time at half the speed of args.state.tick_count args.state.simulation_tick = args.state.tick_count.idiv 2 # record when a mouse click occurs if args.inputs.mouse.click args.state.last_click_at = args.state.simulation_tick end # Use Numeric#elapsed_time to determine how long it's been if (args.state.last_click_at.elapsed_time args.state.simulation_tick) > 120 args.outputs.labels << [10, 710, "It has been over 4 seconds since the mouse was clicked."] end end
elapsed?
link
Returns true if Numeric#elapsed_time
is greater than the number. An optional parameter can be passed into elapsed?
which is added to the number before evaluating whether elapsed?
is true.
Example usage (no optional parameter):
def tick args args.state.box_queue ||= [] if args.state.box_queue.empty? args.state.box_queue << { name: :red, destroy_at: args.state.tick_count + 60 } args.state.box_queue << { name: :green, destroy_at: args.state.tick_count + 60 } args.state.box_queue << { name: :blue, destroy_at: args.state.tick_count + 120 } end boxes_to_destroy = args.state .box_queue .find_all { |b| b[:destroy_at].elapsed? } if !boxes_to_destroy.empty? puts "boxes to destroy count: #{boxes_to_destroy.length}" end boxes_to_destroy.each { |b| puts "box #{b} was elapsed? on #{args.state.tick_count}." } args.state.box_queue -= boxes_to_destroy end
Example usage (with optional parameter):
def tick args args.state.box_queue ||= [] if args.state.box_queue.empty? args.state.box_queue << { name: :red, create_at: args.state.tick_count + 120, lifespan: 60 } args.state.box_queue << { name: :green, create_at: args.state.tick_count + 120, lifespan: 60 } args.state.box_queue << { name: :blue, create_at: args.state.tick_count + 120, lifespan: 120 } end # lifespan is passed in as a parameter to ~elapsed?~ boxes_to_destroy = args.state .box_queue .find_all { |b| b[:create_at].elapsed? b[:lifespan] } if !boxes_to_destroy.empty? puts "boxes to destroy count: #{boxes_to_destroy.length}" end boxes_to_destroy.each { |b| puts "box #{b} was elapsed? on #{args.state.tick_count}." } args.state.box_queue -= boxes_to_destroy end
new?
link
Returns true if Numeric#elapsed_time == 0
. Essentially communicating that number is equal to the current frame.
Example usage:
def tick args args.state.box_queue ||= [] if args.state.box_queue.empty? args.state.box_queue << { name: :red, create_at: args.state.tick_count + 60 } end boxes_to_spawn_this_frame = args.state .box_queue .find_all { |b| b[:create_at].new? } boxes_to_spawn_this_frame.each { |b| puts "box #{b} was new? on #{args.state.tick_count}." } args.state.box_queue -= boxes_to_spawn_this_frame end
Kernel
link
Kernel in the DragonRuby Runtime has patches for how standard out is handled and also contains a unit of time in games called a tick.
tick_count
link
Returns the current tick of the game. This value is reset if you call $gtk.reset.
global_tick_count
link
Returns the current tick of the application from the point it was started. This value is never reset.
Geometry
link
The Geometry module
contains methods for calculations that are frequently used in game development. For convenience, this module
is mixed into Hash
, Array
, and DragonRuby's Entity
class. It is also available in a functional variant at args.geometry
.
Many of the geometric functions assume the objects have a certain shape:
Points
are assumed to respond tox, y
.Rectangles
are assumed to respond tox, y, w, h
.Lines
are assumed to respond tox, y, x2, y2
.
def tick args # Geometry is mixed into Hash, Array, and Entity # define to rectangles rect_1 = { x: 0, y: 0, w: 100, h: 100 } rect_2 = { x: 50, y: 50, w: 100, h: 100 } # call geometry method function from instance of a Hash class puts rect_1.intersect_rect?(rect_2) # OR # use the geometry methods functionally puts args.geometry.intersect_rect?(rect_1, rect_2) end
intersect_rect?
link
Invocation variants:
instance.intersect_rect?(other, tolerance)
args.geometry.intersect_rect?(rect_1, rect_2, tolerance)
args.inputs.mouse.intersect_rect?(other, tolerance)
Given two rectangle primitives this function will return true
or false
depending on if the two rectangles intersect or not. An optional final parameter can be passed in representing the tolerence
of overlap needed to be considered a true intersection. The default value of tolerance
is 0.1
which keeps the function from returning true if only the edges of the rectangles overlap.
:anchor_x
, and anchor_y
is taken into consideration if the objects respond to these methods.
Here is an example where one rectangle is stationary, and another rectangle is controlled using directional input. The rectangles change color from blue to read if they intersect.
def tick args # define a rectangle in state and position it # at the center of the screen with a color of blue args.state.box_1 ||= { x: 640 - 20, y: 360 - 20, w: 40, h: 40, r: 0, g: 0, b: 255 } # create another rectangle in state and position it # at the far left center args.state.box_2 ||= { x: 0, y: 360 - 20, w: 40, h: 40, r: 0, g: 0, b: 255 } # take the directional input and use that to move the second rectangle around # increase or decrease the x value based on if left or right is held args.state.box_2.x += args.inputs.left_right * 5 # increase or decrease the y value based on if up or down is held args.state.box_2.y += args.inputs.up_down * 5 # change the colors of the rectangles based on whether they # intersect or not if args.state.box_1.intersect_rect? args.state.box_2 args.state.box_1.r = 255 args.state.box_1.g = 0 args.state.box_1.b = 0 args.state.box_2.r = 255 args.state.box_2.g = 0 args.state.box_2.b = 0 else args.state.box_1.r = 0 args.state.box_1.g = 0 args.state.box_1.b = 255 args.state.box_2.r = 0 args.state.box_2.g = 0 args.state.box_2.b = 255 end # render the rectangles as border primitives on the screen args.outputs.borders << args.state.box_1 args.outputs.borders << args.state.box_2 end
inside_rect?
link
Invocation variants:
instance.inside_rect?(other)
args.geometry.inside_rect?(rect_1, rect_2)
Given two rectangle primitives this function will return true
or false
depending on if the first rectangle (or self
) is inside of the second rectangle.
Here is an example where one rectangle is stationary, and another rectangle is controlled using directional input. The rectangles change color from blue to read if the movable rectangle is entirely inside the stationary rectangle.
:anchor_x
, and anchor_y
is taken into consideration if the objects respond to these methods.
def tick args # define a rectangle in state and position it # at the center of the screen with a color of blue args.state.box_1 ||= { x: 640 - 40, y: 360 - 40, w: 80, h: 80, r: 0, g: 0, b: 255 } # create another rectangle in state and position it # at the far left center args.state.box_2 ||= { x: 0, y: 360 - 10, w: 20, h: 20, r: 0, g: 0, b: 255 } # take the directional input and use that to move the second rectangle around # increase or decrease the x value based on if left or right is held args.state.box_2.x += args.inputs.left_right * 5 # increase or decrease the y value based on if up or down is held args.state.box_2.y += args.inputs.up_down * 5 # change the colors of the rectangles based on whether they # intersect or not if args.state.box_2.inside_rect? args.state.box_1 args.state.box_1.r = 255 args.state.box_1.g = 0 args.state.box_1.b = 0 args.state.box_2.r = 255 args.state.box_2.g = 0 args.state.box_2.b = 0 else args.state.box_1.r = 0 args.state.box_1.g = 0 args.state.box_1.b = 255 args.state.box_2.r = 0 args.state.box_2.g = 0 args.state.box_2.b = 255 end # render the rectangles as border primitives on the screen args.outputs.borders << args.state.box_1 args.outputs.borders << args.state.box_2 end
scale_rect
link
Given a Rectangle
this function returns a new rectangle with a scaled size.
ratio
: the ratio by which to scale the rect. A ratio of 2 will double the dimensions of the rect while a ratio of 0.5 will halve its dimensions.anchor_x
andanchor_y
specify the point within the rect from which to resize it. Setting both to 0 will affect the width and height of the rect, leaving x and y unchanged. Setting both to 0.5 will scale all sides of the rect proportionally from the center.
def tick args # a rect at the center of the screen args.state.rect_1 ||= { x: 640 - 20, y: 360 - 20, w: 40, h: 40 } # render the rect args.outputs.borders << args.state.rect_1 # the rect half the size with the x and y position unchanged args.outputs.borders << args.state.rect_1.scale_rect(0.5) # the rect double the size, repositioned in the center given anchor optional arguments args.outputs.borders << args.state.rect_1.scale_rect(2, 0.5, 0.5) end
scale_rect_extended
link
The behavior is similar to scale_rect
except that you can independently control the scale of each axis. The parameters are all named:
percentage_x
: percentage to change the width (default value of 1.0)percentage_y
: percentage to change the height (default value of 1.0)anchor_x
: anchor repositioning of x (default value of 0.0)anchor_y
: anchor repositioning of y (default value of 0.0)
def tick args baseline_rect = { x: 640 - 20, y: 360 - 20, w: 40, h: 40 } args.state.rect_1 ||= baseline_rect args.state.rect_2 ||= baseline_rect.scale_rect_extended(percentage_x: 2, percentage_y: 0.5, anchor_x: 0.5, anchor_y: 1.0) args.outputs.borders << args.state.rect_1 args.outputs.borders << args.state.rect_2 end
anchor_rect
link
Returns a new rect that is anchored by an anchor_x
and anchor_y
value. The width and height of the rectangle is taken into consideration when determining the anchor position:
def tick args args.state.rect ||= { x: 640, y: 360, w: 100, h: 100 } # rect's center: 640 + 50, 360 + 50 args.outputs.borders << args.state.rect.anchor_rect(0, 0) # rect's center: 640, 360 args.outputs.borders << args.state.rect.anchor_rect(0.5, 0.5) # rect's center: 640, 360 args.outputs.borders << args.state.rect.anchor_rect(0.5, 0) end
angle_from
link
Invocation variants:
args.geometry.angle_from start_point, end_point
start_point.angle_from end_point
Returns an angle in degrees from the end_point
to the start_point
(if you want the value in radians, you can call .to_radians
on the value returned):
def tick args rect_1 ||= { x: 0, y: 0, } rect_2 ||= { x: 100, y: 100, } angle = rect_1.angle_from rect_2 # returns 225 degrees angle_radians = angle.to_radians args.outputs.labels << { x: 30, y: 30.from_top, text: "#{angle}, #{angle_radians}" } angle = args.geometry.angle_from rect_1, rect_2 # returns 225 degrees angle_radians = angle.to_radians args.outputs.labels << { x: 30, y: 60.from_top, text: "#{angle}, #{angle_radians}" } end
angle_to
link
Invocation variants:
args.geometry.angle_to start_point, end_point
start_point.angle_to end_point
Returns an angle in degrees to the end_point
from the start_point
(if you want the value in radians, you can call .to_radians
on the value returned):
def tick args rect_1 ||= { x: 0, y: 0, } rect_2 ||= { x: 100, y: 100, } angle = rect_1.angle_to rect_2 # returns 45 degrees angle_radians = angle.to_radians args.outputs.labels << { x: 30, y: 30.from_top, text: "#{angle}, #{angle_radians}" } angle = args.geometry.angle_to rect_1, rect_2 # returns 45 degrees angle_radians = angle.to_radians args.outputs.labels << { x: 30, y: 60.from_top, text: "#{angle}, #{angle_radians}" } end
distance
link
Returns the distance between two points;
def tick args rect_1 ||= { x: 0, y: 0, } rect_2 ||= { x: 100, y: 100, } distance = args.geometry.distance rect_1, rect_2 args.outputs.labels << { x: 30, y: 30.from_top, text: "#{distance}" } args.outputs.lines << { x: rect_1.x, y: rect_1.y, x2: rect_2.x, y2: rect_2.y } end
point_inside_circle?
link
Invocation variants:
point_1.point_inside_circle? circle_center, circle_radius
args.geometry.point_inside_circle? point_1, circle_center, circle_radius
Returns true
if a point is inside of a circle defined as a center point and radius.
def tick args # define circle center args.state.circle_center ||= { x: 640, y: 360 } # define circle radius args.state.circle_radius ||= 100 # define point args.state.point_1 ||= { x: 100, y: 100 } # allow point to be moved using keyboard args.state.point_1.x += args.inputs.left_right * 5 args.state.point_1.y += args.inputs.up_down * 5 # determine if point is inside of circle intersection = args.geometry.point_inside_circle? args.state.point_1, args.state.circle_center, args.state.circle_radius # render point as a square args.outputs.sprites << { x: args.state.point_1.x - 20, y: args.state.point_1.y - 20, w: 40, h: 40, path: "sprites/square/blue.png" } # if there is an intersection, render a red circle # otherwise render a blue circle if intersection args.outputs.sprites << { x: args.state.circle_center.x - args.state.circle_radius, y: args.state.circle_center.y - args.state.circle_radius, w: args.state.circle_radius * 2, h: args.state.circle_radius * 2, path: "sprites/circle/red.png", a: 128 } else args.outputs.sprites << { x: args.state.circle_center.x - args.state.circle_radius, y: args.state.circle_center.y - args.state.circle_radius, w: args.state.circle_radius * 2, h: args.state.circle_radius * 2, path: "sprites/circle/blue.png", a: 128 } end end
center_inside_rect
link
Invocation variants:
target_rect.center_inside_rect reference_rect
args.geometry.center_inside_rect target_rect, reference_rect
Given a target rect and a reference rect, the target rect is centered inside the reference rect (a new rect is returned).
def tick args rect_1 = { x: 0, y: 0, w: 100, h: 100 } rect_2 = { x: 640 - 100, y: 360 - 100, w: 200, h: 200 } centered_rect = args.geometry.center_inside_rect rect_1, rect_2 # OR # centered_rect = rect_1.center_inside_rect rect_2 args.outputs.solids << rect_1.merge(r: 255) args.outputs.solids << rect_2.merge(b: 255) args.outputs.solids << centered_rect.merge(g: 255) end
ray_test
link
Given a point and a line, ray_test
returns one of the following symbols based on the location of the point relative to the line: :left
, :right
, :on
def tick args # create a point based off of the mouse location point = { x: args.inputs.mouse.x, y: args.inputs.mouse.y } # draw a line from the bottom left to the top right line = { x: 0, y: 0, x2: 1280, y2: 720 } # perform ray_test on point and line ray = args.geometry.ray_test point, line # output the results of ray test at mouse location args.outputs.labels << { x: point.x, y: point.y + 25, text: "#{ray}", alignment_enum: 1, vertical_alignment_enum: 1, } # render line args.outputs.lines << line # render point args.outputs.solids << { x: point.x - 5, y: point.y - 5, w: 10, h: 10 } end
line_rise_run
link
Given a line, this function returns a Hash with x
and y
keys representing a normalized representation of the rise and run of the line.
def tick args # draw a line from the bottom left to the top right line = { x: 0, y: 0, x2: 1280, y2: 720 } # get rise and run of line rise_run = args.geometry.line_rise_run line # output the rise and run of line args.outputs.labels << { x: 640, y: 360, text: "#{rise_run}", alignment_enum: 1, vertical_alignment_enum: 1, } # render the line args.outputs.lines << line end
rotate_point
link
Given a point and an angle in degrees, a new point is returned that is rotated around the origin by the degrees amount. An optional third argument can be provided to rotate the angle around a point other than the origin.
def tick args args.state.rotate_amount ||= 0 args.state.rotate_amount += 1 if args.state.rotate_amount >= 360 args.state.rotate_amount = 0 end point_1 = { x: 100, y: 100 } # rotate point around 0, 0 rotated_point_1 = args.geometry.rotate_point point_1, args.state.rotate_amount args.outputs.solids << { x: rotated_point_1.x - 5, y: rotated_point_1.y - 5, w: 10, h: 10 } point_2 = { x: 640 + 100, y: 360 + 100 } # rotate point around center screen rotated_point_2 = args.geometry.rotate_point point_2, args.state.rotate_amount, x: 640, y: 360 args.outputs.solids << { x: rotated_point_2.x - 5, y: rotated_point_2.y - 5, w: 10, h: 10 } end
find_intersect_rect
link
Given a rect and a collection of rects, find_intersect_rect
returns the first rect that intersects with the the first parameter.
:anchor_x
, and anchor_y
is taken into consideration if the objects respond to these methods.
If you find yourself doing this:
collision = args.state.terrain.find { |t| t.intersect_rect? args.state.player }
Consider using find_intersect_rect
instead (it's more descriptive and faster):
collision = args.geometry.find_intersect_rect args.state.player, args.state.terrain
find_all_intersect_rect
link
Given a rect and a collection of rects, find_all_intersect_rect
returns all rects that intersects with the the first parameter.
:anchor_x
, and anchor_y
is taken into consideration if the objects respond to these methods.
If you find yourself doing this:
collisions = args.state.terrain.find_all { |t| t.intersect_rect? args.state.player }
Consider using find_all_intersect_rect
instead (it's more descriptive and faster):
collisions = args.geometry.find_all_intersect_rect args.state.player, args.state.terrain
find_intersect_rect_quad_tree
link
This is a faster collision algorithm for determining if a rectangle intersects any rectangle in an array. In order to use find_intersect_rect_quad_tree
, you must first generate a quad tree data structure using create_quad_tree
. Use this function if find_intersect_rect
isn't fast enough.
def tick args # create a player args.state.player ||= { x: 640 - 10, y: 360 - 10, w: 20, h: 20 } # allow control of player movement using arrow keys args.state.player.x += args.inputs.left_right * 5 args.state.player.y += args.inputs.up_down * 5 # generate 40 random rectangles args.state.boxes ||= 40.map do { x: 1180 * rand + 50, y: 620 * rand + 50, w: 100, h: 100 } end # generate a quad tree based off of rectangles. # the quad tree should only be generated once for # a given array of rectangles. if the rectangles # change, then the quad tree must be regenerated args.state.quad_tree ||= args.geometry.quad_tree_create args.state.boxes # use quad tree and find_intersect_rect_quad_tree to determine collision with player collision = args.geometry.find_intersect_rect_quad_tree args.state.player, args.state.quad_tree # if there is a collision render a red box if collision args.outputs.solids << collision.merge(r: 255) end # render player as green args.outputs.solids << args.state.player.merge(g: 255) # render boxes as borders args.outputs.borders << args.state.boxes end
create_quad_tree
link
Generates a quad tree from an array of rectangles. See find_intersect_rect_quad_tree
for usage.
Source Code link
Follows is a source code listing for all files that have been open sourced. This code can be found in the ./samples
directory.
Samples link
Learn Ruby Optional - Beginner Ruby Primer - automation.rb link
# ./samples/00_learn_ruby_optional/00_beginner_ruby_primer/app/automation.rb # ========================================================================== # _ _ ________ __ _ _____ _____ _______ ______ _ _ _ _ _ _ # | | | | ____\ \ / / | | |_ _|/ ____|__ __| ____| \ | | | | | | # | |__| | |__ \ \_/ / | | | | | (___ | | | |__ | \| | | | | | # | __ | __| \ / | | | | \___ \ | | | __| | . ` | | | | | # | | | | |____ | | | |____ _| |_ ____) | | | | |____| |\ |_|_|_|_| # |_| |_|______| |_| |______|_____|_____/ |_| |______|_| \_(_|_|_|_) # # # | # | # | # | # | # | # | # | # | # | # \ | / # \ | / # + # # If you are new to the programming language Ruby, then you may find the # following code a bit overwhelming. Come back to this file when you have # a better grasp of Ruby and Game Toolkit. # # What follows is an automations script # that can be run via terminal: # ./samples/00_beginner_ruby_primer $ ../../dragonruby . --eval app/automation.rb # ========================================================================== $gtk.reset $gtk.scheduled_callbacks.clear $gtk.schedule_callback 10 do $gtk.console.set_command 'puts "Hello DragonRuby!"' end $gtk.schedule_callback 20 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 30 do $gtk.console.set_command 'outputs.solids << [910, 200, 100, 100, 255, 0, 0]' end $gtk.schedule_callback 40 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 50 do $gtk.console.set_command 'outputs.solids << [1010, 200, 100, 100, 0, 0, 255]' end $gtk.schedule_callback 60 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 70 do $gtk.console.set_command 'outputs.sprites << [1110, 200, 100, 100, "sprites/dragon_fly_0.png"]' end $gtk.schedule_callback 80 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 90 do $gtk.console.set_command "outputs.labels << [1210, 200, state.tick_count, 0, 255, 0]" end $gtk.schedule_callback 100 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 110 do $gtk.console.set_command "state.sprite_frame = state.tick_count.idiv(4).mod(6)" end $gtk.schedule_callback 120 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 130 do $gtk.console.set_command "outputs.labels << [1210, 170, state.sprite_frame, 0, 255, 0]" end $gtk.schedule_callback 140 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 150 do $gtk.console.set_command "state.sprite_path = \"sprites/dragon_fly_\#{state.sprite_frame}.png\"" end $gtk.schedule_callback 160 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 170 do $gtk.console.set_command "outputs.labels << [910, 330, \"path: \#{state.sprite_path}\", 0, 255, 0]" end $gtk.schedule_callback 180 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 190 do $gtk.console.set_command "outputs.sprites << [910, 330, 370, 370, state.sprite_path]" end $gtk.schedule_callback 200 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 300 do $gtk.console.set_command ":wq" end $gtk.schedule_callback 400 do $gtk.console.eval_the_set_command end
Learn Ruby Optional - Beginner Ruby Primer - main.rb link
# ./samples/00_learn_ruby_optional/00_beginner_ruby_primer/app/main.rb # ========================================================================== # _ _ ________ __ _ _____ _____ _______ ______ _ _ _ _ _ _ # | | | | ____\ \ / / | | |_ _|/ ____|__ __| ____| \ | | | | | | # | |__| | |__ \ \_/ / | | | | | (___ | | | |__ | \| | | | | | # | __ | __| \ / | | | | \___ \ | | | __| | . ` | | | | | # | | | | |____ | | | |____ _| |_ ____) | | | | |____| |\ |_|_|_|_| # |_| |_|______| |_| |______|_____|_____/ |_| |______|_| \_(_|_|_|_) # # # | # | # | # | # | # | # | # | # | # | # \ | / # \ | / # + # # If you are new to the programming language Ruby, then you may find the # following code a bit overwhelming. This sample is only designed to be # run interactively (as opposed to being manipulated via source code). # # Start up this sample and follow along by visiting: # https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-primer.mp4 # # It is STRONGLY recommended that you work through all the samples before # looking at the code in this file. # ========================================================================== class TutorialOutputs attr_accessor :solids, :sprites, :labels, :lines, :borders def initialize @solids = [] @sprites = [] @labels = [] @lines = [] @borders = [] end def tick @solids ||= [] @sprites ||= [] @labels ||= [] @lines ||= [] @borders ||= [] @solids.each { |p| $gtk.args.outputs.reserved << p.solid } @sprites.each { |p| $gtk.args.outputs.reserved << p.sprite } @labels.each { |p| $gtk.args.outputs.reserved << p.label } @lines.each { |p| $gtk.args.outputs.reserved << p.line } @borders.each { |p| $gtk.args.outputs.reserved << p.border } end def clear @solids.clear @sprites.clear @labels.clear @borders.clear end end def defaults state.reset_button ||= state.new_entity( :button, label: [1190, 68, "RESTART", -2, 0, 0, 0, 0].label, background: [1160, 38, 120, 50, 255, 255, 255].solid ) $gtk.log_level = :off end def tick_reset_button return unless state.hello_dragonruby_confirmed $gtk.args.outputs.reserved << state.reset_button.background $gtk.args.outputs.reserved << state.reset_button.label if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.reset_button.background) restart_tutorial end end def seperator @seperator = "=" * 80 end def tick_intro queue_message "Welcome to the DragonRuby GTK primer! Try typing the code below and press ENTER: puts \"Hello DragonRuby!\" " end def tick_hello_dragonruby return unless console_has? "Hello DragonRuby!", "puts " $gtk.args.state.hello_dragonruby_confirmed = true queue_message "Well HELLO to you too! If you ever want to RESTART the tutorial, just click the \"RESTART\" button in the bottom right-hand corner. Let's continue shall we? Type the code below and press ENTER: outputs.solids << [910, 200, 100, 100, 255, 0, 0] " end def tick_explain_solid return unless $tutorial_outputs.solids.any? {|s| s == [910, 200, 100, 100, 255, 0, 0]} queue_message "Sweet! The code: outputs.solids << [910, 200, 100, 100, 255, 0, 0] Does the following: 1. GET the place where SOLIDS go: outputs.solids 2. Request that a new SOLID be ADDED: << 3. The DEFINITION of a SOLID is the ARRAY: [910, 200, 100, 100, 255, 0, 0] GET ADD X Y WIDTH HEIGHT RED GREEN BLUE | | | | | | | | | | | | | | | | | | outputs.solids << [910, 200, 100, 100, 255, 0, 0] |_________________________________________| | | ARRAY Now let's create a blue SOLID. Type: outputs.solids << [1010, 200, 100, 100, 0, 0, 255] " state.explain_solid_confirmed = true end def tick_explain_solid_blue return unless state.explain_solid_confirmed return unless $tutorial_outputs.solids.any? {|s| s == [1010, 200, 100, 100, 0, 0, 255]} state.explain_solid_blue_confirmed = true queue_message "And there is our blue SOLID! The ARRAY is the MOST important thing in DragonRuby GTK. Let's create a SPRITE using an ARRAY: outputs.sprites << [1110, 200, 100, 100, 'sprites/dragon_fly_0.png'] " end def tick_explain_tick_count return unless $tutorial_outputs.sprites.any? {|s| s == [1110, 200, 100, 100, 'sprites/dragon_fly_0.png']} return if $tutorial_outputs.labels.any? {|l| l == [1210, 200, state.tick_count, 255, 255, 255]} state.explain_tick_count_confirmed = true queue_message "Look at the cute little dragon! We can create a LABEL with ARRAYS too. Let's create a LABEL showing THE PASSAGE OF TIME, which is called TICK_COUNT. outputs.labels << [1210, 200, state.tick_count, 0, 255, 0] " end def tick_explain_mod return unless $tutorial_outputs.labels.any? {|l| l == [1210, 200, state.tick_count, 0, 255, 0]} state.explain_mod_confirmed = true queue_message " The code: outputs.labels << [1210, 200, state.tick_count, 0, 255, 0] Does the following: 1. GET the place where labels go: outputs.labels 2. Request that a new label be ADDED: << 3. The DEFINITION of a LABEL is the ARRAY: [1210, 200, state.tick_count, 0, 255, 0] GET ADD X Y TEXT RED GREEN BLUE | | | | | | | | | | | | | | | | outputs.labels << [1210, 200, state.tick_count, 0, 255, 0] |______________________________________________| | | ARRAY Now let's do some MATH, save the result to STATE, and create a LABEL: state.sprite_frame = state.tick_count.idiv(4).mod(6) outputs.labels << [1210, 170, state.sprite_frame, 0, 255, 0] Type the lines above (pressing ENTER after each line). " end def tick_explain_string_interpolation return unless state.explain_mod_confirmed return unless state.sprite_frame == state.tick_count.idiv(4).mod(6) return unless $tutorial_outputs.labels.any? {|l| l == [1210, 170, state.sprite_frame, 0, 255, 0]} queue_message "Here is what the mathematical computation you just typed does: 1. Create an item of STATE named SPRITE_FRAME: state.sprite_frame = 2. Set this SPRITE_FRAME to the PASSAGE OF TIME (tick_count), DIVIDED EVENLY (idiv) into 4, and then compute the REMAINDER (mod) of 6. STATE SPRITE_FRAME PASSAGE OF HOW LONG HOW MANY | | TIME TO SHOW IMAGES | | | AN IMAGE TO FLIP THROUGH | | | | | state.sprite_frame = state.tick_count.idiv(4).mod(6) | | | +- REMAINDER OF DIVIDE DIVIDE EVENLY (NO DECIMALS) With the information above, we can animate a SPRITE using STRING INTERPOLATION: \#{} which creates a unique SPRITE_PATH: state.sprite_path = \"sprites/dragon_fly_\#{state.sprite_frame}.png\" outputs.labels << [910, 330, \"path: \#{state.sprite_path}\", 0, 255, 0] outputs.sprites << [910, 330, 370, 370, state.sprite_path] Type the lines above (pressing ENTER after each line). " end def tick_reprint_on_error return unless console.last_command_errored puts $gtk.state.messages.last puts "\nWhoops! Try again." console.last_command_errored = false end def tick_evals state.evals ||= [] if console.last_command && (console.last_command.start_with?("outputs.") || console.last_command.start_with?("state.")) state.evals << console.last_command console.last_command = nil end state.evals.each do |l| Kernel.eval l end rescue Exception => e state.evals = state.evals[0..-2] end $tutorial_outputs ||= TutorialOutputs.new def tick args $gtk.log_level = :off defaults console.show $tutorial_outputs.clear $tutorial_outputs.solids << [900, 37, 480, 700, 0, 0, 0, 255] $tutorial_outputs.borders << [900, 37, 380, 683, 255, 255, 255] tick_evals $tutorial_outputs.tick tick_intro tick_hello_dragonruby tick_reset_button tick_explain_solid tick_explain_solid_blue tick_reprint_on_error tick_explain_tick_count tick_explain_mod tick_explain_string_interpolation end def console $gtk.console end def queue_message message $gtk.args.state.messages ||= [] return if $gtk.args.state.messages.include? message $gtk.args.state.messages << message last_three = [$gtk.console.log[-3], $gtk.console.log[-2], $gtk.console.log[-1]].reject_nil $gtk.console.log.clear puts seperator $gtk.console.log += last_three puts seperator puts message puts seperator end def console_has? message, not_message = nil console.log .map(&:upcase) .reject { |s| not_message && s.include?(not_message.upcase) } .any? { |s| s.include?("#{message.upcase}") } end def restart_tutorial $tutorial_outputs.clear $gtk.console.log.clear $gtk.reset puts "Starting the tutorial over!" end def state $gtk.args.state end def inputs $gtk.args.inputs end def outputs $tutorial_outputs end
Learn Ruby Optional - Intermediate Ruby Primer - printing.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/01_printing.txt # ==================================================================================== # Commenting Code # ==================================================================================== # # Prefixing text with a pound sign (#) is how you comment code in Ruby. Example: # # I am commented code. And so are the lines above. # # I you want more than a quick primer on Ruby, check out https://poignant.guide/. It's # an entertaining read. Otherwise, go to the next txt file. # # Follow along by visiting: # https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-intermediate.mp4 # ==================================================================================== # Printing to the Console: # ==================================================================================== # # Every time you save repl.rb file, DragonRuby runs the code within it. Copy this text # to repl.rb and save to see Hello World printed to the console. repl do puts '* RUBY PRIMER: Printing to the console using the ~puts~ function.' puts '====' puts '======' puts '================================' puts 'Hello World' puts '================================' puts '======' puts '====' end
Learn Ruby Optional - Intermediate Ruby Primer - strings.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/02_strings.txt # ==================================================================================== # Strings # ==================================================================================== # # Here is how you work with strings in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts '* RUBY PRIMER: strings' message = "Hello World" puts "The value of message is: " + message puts "Any value can be interpolated within a string using \#{}." puts "Interpolated message: #{message}." puts 'This #{message} is not interpolated because the string uses single quotes.' end
Learn Ruby Optional - Intermediate Ruby Primer - numbers.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/03_numbers.txt # ==================================================================================== # Numerics # ==================================================================================== # # Here is how you work with numbers in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts '* RUBY PRIMER: Fixnum and Floats' a = 10 puts "The value of a is: #{a}" puts "a + 1 is: #{a + 1}" puts "a / 3 is: #{a / 3}" puts '' b = 10.12 puts "The value of b is: #{b}" puts "b + 1 is: #{b + 1}" puts "b as an integer is: #{b.to_i}" puts '' end
Learn Ruby Optional - Intermediate Ruby Primer - booleans.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/04_booleans.txt # ==================================================================================== # Booleans # ==================================================================================== # # Here is how you work with numbers in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts '* RUBY PRIMER: TrueClass, FalseClass, NilClass (truthy / falsey values)' puts "Anything that *isn't* false or nil is true." c = 30 puts "The value of c is #{c}." if c puts "This if statement ran because c is truthy." end d = false puts "The value if d is #{d}. The type for d is #{d.class}." if !d puts "This if statement ran because d is falsey, using the not operator (!)." end e = nil puts "Nil is also considered falsey. The value of e is: #{e} (a blank string when printed). Which is of type #{e.class}." if !e puts "This if statement ran because e is nil and the if statement applied the NOT operator. !e yields a type of #{(!e).class}." end end
Learn Ruby Optional - Intermediate Ruby Primer - conditionals.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/05_conditionals.txt # ==================================================================================== # Conditionals # ==================================================================================== # # Here is how you create conditionals in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts "* RUBY PRIMER: Conditionals" end # ==================================================================================== # if # ==================================================================================== repl do puts "** INFO: if statement" i_am_one = 1 if i_am_one puts "This was printed because i_am_one is truthy." end end # ==================================================================================== # if/else # ==================================================================================== repl do puts "** INFO: if/else statement" i_am_false = false if i_am_false puts "This will NOT get printed because i_am_false is false." else puts "This was printed because i_am_false is false." end end # ==================================================================================== # if/elsif/else # ==================================================================================== repl do puts "** INFO: if/elsif/else statement" i_am_false = false i_am_true = true if i_am_false puts "This will NOT get printed because i_am_false is false." elsif i_am_true puts "This was printed because i_am_true is true." else puts "This will NOT get printed i_am_true was true." end end # ==================================================================================== # case # ==================================================================================== repl do puts "** INFO case statement" i_am_one = 1 # change this value to see different results case i_am_one when 10 puts "the value of i_am_one is 10" when 9 puts "the value of i_am_one is 9" when 5 puts "the value of i_am_one is 5" when 1 puts "the value of i_am_one is 1" else puts "Value wasn't cased." end end # ==================================================================================== # comparison operators # ==================================================================================== repl do puts "** INFO: Different types of comparisons" if 4 == 4 puts "4 equals 4 (==)" end if 4 != 3 puts "4 does not equal 3 (!=)" end if 3 < 4 puts "3 is less than 4 (<)" end if 4 > 3 puts "4 is greater than 3 (>)" end end # ==================================================================================== # and/or conditionals # ==================================================================================== repl do puts "** INFO: AND, OR operator (&&, ||)" if (4 > 3) || (3 < 4) || false puts "print this if 4 is greater than 3 OR 3 is less than 4 OR false is true (||)" end if (4 > 3) && (3 < 4) puts "print this if 4 is greater than 3 AND 3 is less than 4 (&&)" end end
Learn Ruby Optional - Intermediate Ruby Primer - looping.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/06_looping.txt # ==================================================================================== # Looping # ==================================================================================== # # Looping looks a whole lot different than other languages. # But it's pretty awesome when you get used to it. repl do puts "* RUBY PRIMER: Loops" end # ==================================================================================== # times # ==================================================================================== repl do puts "** INFO: ~Numeric#times~ (for loop)" 3.times do |i| puts i end end # ==================================================================================== # foreach # ==================================================================================== repl do puts "** INFO: ~Array#each~ (for each loop)" array = ["a", "b", "c", "d"] array.each do |char| puts char end puts "** INFO: ~Array#each_with_index~ (for each loop)" array = ["a", "b", "c", "d"] array.each do |char, i| puts "index #{i}: #{char}" end end # ==================================================================================== # ranges # ==================================================================================== repl do puts "** INFO: range block exclusive (three dots)" (0...3).each do |i| puts i end puts "** INFO: range block inclusive (two dots)" (0..3).each do |i| puts i end end
Learn Ruby Optional - Intermediate Ruby Primer - functions.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/07_functions.txt # ==================================================================================== # Functions # ==================================================================================== # The last statement of a function is implictly returned. Parenthesis for functions # are optional as long as the statement can be envaluated disambiguously. repl do puts "* RUBY PRIMER: Functions" end # ==================================================================================== # Functions single parameter # ==================================================================================== repl do puts "* INFO: Function with one parameter" # function definition def add_one_to n n + 1 end # Parenthesis are optional in Ruby as long as the # parsing is disambiguous. Here are a couple of variations. # Generally speaking, don't put parenthesis is you don't have to. # Conventional Usage of Parenthesis. puts add_one_to(3) # DragonRuby's recommended use of parenthesis (inner function has parenthesis). puts (add_one_to 3) # Full parens. puts(add_one_to(3)) # Outer function has parenthesis puts(add_one_to 3) end # ==================================================================================== # Functions with default parameter values # ==================================================================================== repl do puts "* INFO: Function with default value" def function_with_default_value v = 10 v * 10 end puts "Passing the argument three yields: #{function_with_default_value 3}" puts "Passing no argument yields: #{function_with_default_value}" end # ==================================================================================== # Nil default parameter value and ||= operator. # ==================================================================================== repl do puts "* INFO: Using the OR EQUAL operator (||=)" def function_with_nil_default_with_local a = nil result = a result ||= "DEFAULT_VALUE_OF_A_IS_NIL_OR_FALSE" "value is #{result}." end puts "Passing 'hi' as the argument yields: #{function_with_nil_default_with_local 'hi'}" puts "Passing nil: #{function_with_nil_default_with_local}" end
Learn Ruby Optional - Intermediate Ruby Primer - arrays.txt link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/08_arrays.txt # ==================================================================================== # Arrays # ==================================================================================== # Arrays are incredibly powerful in Ruby. Learn to use them well. repl do puts "* RUBY PRIMER: ARRAYS" end # ==================================================================================== # Enumerable ranges and .to_a # ==================================================================================== repl do puts "** INFO: Create an array with the numbers 1 to 10." one_to_ten = (1..10).to_a puts one_to_ten end # ==================================================================================== # Finding elements # ==================================================================================== repl do puts "** INFO: Finding elements in an array using ~Array#find_all~." puts "Create a new array that only contains even numbers from the previous array." one_to_ten = (1..10).to_a evens = one_to_ten.find_all do |number| number % 2 == 0 end puts evens end # ==================================================================================== # Rejecting elements # ==================================================================================== repl do puts "** INFO: Removing elements in an array using ~Array#reject~." puts "Create a new array that rejects odd numbers." one_to_ten = (1..10).to_a also_even = one_to_ten.reject do |number| number % 2 != 0 end puts also_even end # ==================================================================================== # Array transform using the map function. # ==================================================================================== repl do puts "** INFO: Creating new derived values from an array using ~Array#map~." puts "Create an array that doubles every number." one_to_ten = (1..10).to_a doubled = one_to_ten.map do |number| number * 2 end puts doubled end # ==================================================================================== # Combining array functions. # ==================================================================================== repl do puts "** INFO: Combining ~Array#find_all~ along with ~Array#map~." puts "Create an array that selects only odd numbers and then multiply those by 10." one_to_ten = (1..10).to_a odd_doubled = one_to_ten.find_all do |number| number % 2 != 0 end.map do |odd_number| odd_number * 10 end puts odd_doubled end # ==================================================================================== # Product function. # ==================================================================================== repl do puts "** INFO: Create all combinations of array values using ~Array#product~." puts "All two-item pairs of numbers 1 to 10." one_to_ten = (1..10).to_a all_combinations = one_to_ten.product(one_to_ten) puts all_combinations end # ==================================================================================== # Uniq and sort function. # ==================================================================================== repl do puts "** INFO: Providing uniq values using ~Array#uniq~ and ~Array#sort~." puts "All uniq combinations of numbers regardless of order." puts "For example: [1, 2] is the same as [2, 1]." one_to_ten = (1..10).to_a uniq_combinations = one_to_ten.product(one_to_ten) .map do |unsorted_number| unsorted_number.sort end.uniq puts uniq_combinations end # ==================================================================================== # Example of an advanced array transform. # ==================================================================================== repl do puts "** INFO: Advanced chaining. Combining ~Array's ~map~, ~find_all~, ~sort~, and ~sort_by~." puts "All unique Pythagorean Triples between 1 and 100 sorted by area of the triangle." one_to_hundred = (1..100).to_a triples = one_to_hundred.product(one_to_hundred).map do |width, height| [width, height, Math.sqrt(width ** 2 + height ** 2)] end.find_all do |_, _, hypotenuse| hypotenuse.to_i == hypotenuse end.map do |triangle| triangle.map(&:to_i) end.uniq do |triangle| triangle.sort end.map do |width, height, hypotenuse| [width, height, hypotenuse, (width * height) / 2] end.sort_by do |_, _, _, area| area end triples.each do |width, height, hypotenuse, _| puts "(#{width}, #{height}, #{hypotenuse})" end end # ==================================================================================== # Example of an sorting. # ==================================================================================== repl do puts "** INFO: Implementing a custom sort function that operates on the ~Hash~ datatype." things_to_sort = [ { type: :background, order: 1 }, { type: :foreground, order: 1 }, { type: :foreground, order: 2 } ] puts "*** Original array." puts things_to_sort puts "*** Simple sort using key." # For a simple sort, you can use sort_by results = things_to_sort.sort_by do |hash| hash[:order] end puts results puts "*** Custom sort." puts "**** Sorting process." # for a more complicated sort, you can provide a block that returns # -1, 0, 1 for a left and right operand results = things_to_sort.sort do |l, r| sort_result = 0 puts "here is l: #{l}" puts "here is r: #{r || "nil"}" # if either value is nil/false return 0 if !l || !r sort_result = 0 # if the type of "left" is background and the # type of "right" is foreground, then return # -1 (which means "left" is less than "right" elsif l[:type] == :background && r[:type] == :foreground sort_result = -1 # if the type of "left" is foreground and the # type of "right" is background, then return # 1 (which means "left" is greater than "right" elsif l[:type] == :foreground && r[:type] == :background sort_result = 1 # if "left" and "right"'s type are the same, then # use the order as the tie breaker elsif l[:order] < r[:order] sort_result = -1 elsif l[:order] > r[:order] sort_result = 1 # returning 0 means both values are equal else sort_result = 0 end sort_result end.to_a puts "**** Sort result." puts results end # ==================================================================================== # Api documention for Array that is worth commiting to memory because arrays are so # awesome in Ruby: https://docs.ruby-lang.org/en/2.0.0/Array.html # ====================================================================================
Learn Ruby Optional - Intermediate Ruby Primer - main.rb link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/main.rb def tick args args.outputs.labels << [640, 380, "Open repl.rb in the text editor of your choice and follow the document.", 0, 1] end
Learn Ruby Optional - Intermediate Ruby Primer - repl.rb link
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/repl.rb # Copy and paste the code inside of the txt files here.
Rendering Basics - Labels - main.rb link
# ./samples/01_rendering_basics/01_labels/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.labels: An array. Values in this array generate labels the screen. - args.grid.(left|right|top|bottom): Pixel value for the boundaries of the virtual 720 p screen (Dragon Ruby Game Toolkits's virtual resolution is always 1280x720). - Numeric#shift_(left|right|up|down): Shifts the Numeric in the correct direction by adding or subracting. =end # Labels are used to represent text elements in DragonRuby # An example of creating a label is: # args.outputs.labels << [320, 640, "Example", 3, 1, 255, 0, 0, 200, manaspace.ttf] # The code above does the following: # 1. GET the place where labels go: args.outputs.labels # 2. Request a new LABEL be ADDED: << # 3. The DEFINITION of a SOLID is the ARRAY: # [320, 640, "Example", 3, 1, 255, 0, 0, 200, manaspace.ttf] # [ X , Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] # The tick method is called by DragonRuby every frame # args contains all the information regarding the game. def tick args tick_instructions args, "Sample app shows different version of label sizes and alignments. And how to use hashes instead of arrays." # Here are some examples of simple labels, with the minimum number of parameters # Note that the default values for the other parameters are 0, except for Alpha which is 255 and Font Style which is the default font args.outputs.labels << [400, 620, "Here is a label with just an x, y, and text"] args.outputs.labels << [args.grid.left.shift_right(5), args.grid.top.shift_down(5), "This is a label located at the top left."] args.outputs.labels << [args.grid.left.shift_right(5), args.grid.bottom.shift_up(30), "This is a label located at the bottom left."] args.outputs.labels << [args.grid.right.shift_left(420), args.grid.top.shift_down(5), "This is a label located at the top right."] args.outputs.labels << [args.grid.right.shift_left(440), args.grid.bottom.shift_up(30), "This is a label located at the bottom right."] # Demonstration of the Size Parameter args.outputs.labels << [175 + 150, 610 - 50, "Smaller label.", -2] args.outputs.labels << [175 + 150, 580 - 50, "Small label.", -1] args.outputs.labels << [175 + 150, 550 - 50, "Medium label.", 0] args.outputs.labels << [175 + 150, 520 - 50, "Large label.", 1] args.outputs.labels << [175 + 150, 490 - 50, "Larger label.", 2] # Demonstration of the Align Parameter args.outputs.labels << [260 + 150, 345 - 50, "Left aligned.", 0, 2] args.outputs.labels << [260 + 150, 325 - 50, "Center aligned.", 0, 1] args.outputs.labels << [260 + 150, 305 - 50, "Right aligned.", 0, 0] # Demonstration of the RGBA parameters args.outputs.labels << [600 + 150, 590 - 50, "Red Label.", 0, 0, 255, 0, 0] args.outputs.labels << [600 + 150, 570 - 50, "Green Label.", 0, 0, 0, 255, 0] args.outputs.labels << [600 + 150, 550 - 50, "Blue Label.", 0, 0, 0, 0, 255] args.outputs.labels << [600 + 150, 530 - 50, "Faded Label.", 0, 0, 0, 0, 0, 128] # Demonstration of the Font parameter # In order to use a font of your choice, add its ttf file to the project folder, where the app folder is args.outputs.labels << [690 + 150, 330 - 20, "Custom font (Array)", 0, 1, 125, 0, 200, 255, "manaspc.ttf" ] args.outputs.primitives << { x: 690 + 150, y: 330 - 50, text: "Custom font (Hash)", size_enum: 0, alignment_enum: 1, r: 125, g: 0, b: 200, a: 255, font: "manaspc.ttf" }.label! # Primitives can hold anything, and can be given a label in the following forms args.outputs.primitives << [690 + 150, 330 - 80, "Custom font (.primitives Array)", 0, 1, 125, 0, 200, 255, "manaspc.ttf" ].label args.outputs.primitives << { x: 690 + 150, y: 330 - 110, text: "Custom font (.primitives Hash)", size_enum: 0, alignment_enum: 1, r: 125, g: 0, b: 200, a: 255, font: "manaspc.ttf" }.label! end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Labels Text Wrapping - main.rb link
# ./samples/01_rendering_basics/01_labels_text_wrapping/app/main.rb def tick args # create a really long string args.state.really_long_string = "Lorem ipsum dolor sit amet, consectetur adipiscing elit. In vulputate viverra metus et vehicula. Aenean quis accumsan dolor. Nulla tempus, ex et lacinia elementum, nisi felis ullamcorper sapien, sed sagittis sem justo eu lectus. Etiam ut vehicula lorem, nec placerat ligula. Duis varius ultrices magna non sagittis. Aliquam et sem vel risus viverra hendrerit. Maecenas dapibus congue lorem, a blandit mauris feugiat sit amet." args.state.really_long_string += "\n" args.state.really_long_string += "Sed quis metus lacinia mi dapibus fermentum nec id nunc. Donec tincidunt ante a sem bibendum, eget ultricies ex mollis. Quisque venenatis erat quis pretium bibendum. Pellentesque vel laoreet nibh. Cras gravida nisi nec elit pulvinar, in feugiat leo blandit. Quisque sodales quam sed congue consequat. Vivamus placerat risus vitae ex feugiat viverra. In lectus arcu, pellentesque vel ipsum ac, dictum finibus enim. Quisque consequat leo in urna dignissim, eu tristique ipsum accumsan. In eros sem, iaculis ac rhoncus eu, laoreet vitae ipsum. In sodales, ante eu tempus vehicula, mi nulla luctus turpis, eu egestas leo sapien et mi." # length of characters on line max_character_length = 80 # line height line_height = 25 long_string = args.state.really_long_string # API: args.string.wrapped_lines string, max_character_length long_strings_split = args.string.wrapped_lines long_string, max_character_length # render a label for each line and offset by the line_height args.outputs.labels << long_strings_split.map_with_index do |s, i| { x: 60, y: 60.from_top - (i * line_height), text: s } end end
Rendering Basics - Lines - main.rb link
# ./samples/01_rendering_basics/02_lines/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.lines: An array. Values in this array generate lines on the screen. - args.state.tick_count: This property contains an integer value that represents the current frame. GTK renders at 60 FPS. A value of 0 for args.state.tick_count represents the initial load of the game. =end # The parameters required for lines are: # 1. The initial point (x, y) # 2. The end point (x2, y2) # 3. The rgba values for the color and transparency (r, g, b, a) # An example of creating a line would be: # args.outputs.lines << [100, 100, 300, 300, 255, 0, 255, 255] # This would create a line from (100, 100) to (300, 300) # The RGB code (255, 0, 255) would determine its color, a purple # It would have an Alpha value of 255, making it completely opaque def tick args tick_instructions args, "Sample app shows how to create lines." args.outputs.labels << [480, 620, "Lines (x, y, x2, y2, r, g, b, a)"] # Some simple lines args.outputs.lines << [380, 450, 675, 450] args.outputs.lines << [380, 410, 875, 410] # These examples utilize args.state.tick_count to change the length of the lines over time # args.state.tick_count is the ticks that have occurred in the game # This is accomplished by making either the starting or ending point based on the args.state.tick_count args.outputs.lines << [380, 370, 875, 370, args.state.tick_count % 255, 0, 0, 255] args.outputs.lines << [380, 330 - args.state.tick_count % 25, 875, 330, 0, 0, 0, 255] args.outputs.lines << [380 + args.state.tick_count % 400, 290, 875, 290, 0, 0, 0, 255] end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Solids Borders - main.rb link
# ./samples/01_rendering_basics/03_solids_borders/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.solids: An array. Values in this array generate solid/filled rectangles on the screen. =end # Rects are outputted in DragonRuby as rectangles # If filled in, they are solids # If hollow, they are borders # Solids are added to args.outputs.solids # Borders are added to args.outputs.borders # The parameters required for rects are: # 1. The upper right corner (x, y) # 2. The width (w) # 3. The height (h) # 4. The rgba values for the color and transparency (r, g, b, a) # Here is an example of a rect definition: # [100, 100, 400, 500, 0, 255, 0, 180] # The example would create a rect from (100, 100) # Extending 400 pixels across the x axis # and 500 pixels across the y axis # The rect would be green (0, 255, 0) # and mostly opaque with some transparency (180) # Whether the rect would be filled or not depends on if # it is added to args.outputs.solids or args.outputs.borders def tick args tick_instructions args, "Sample app shows how to create solid squares." args.outputs.labels << [460, 600, "Solids (x, y, w, h, r, g, b, a)"] args.outputs.solids << [470, 520, 50, 50] args.outputs.solids << [530, 520, 50, 50, 0, 0, 0] args.outputs.solids << [590, 520, 50, 50, 255, 0, 0] args.outputs.solids << [650, 520, 50, 50, 255, 0, 0, 128] args.outputs.solids << [710, 520, 50, 50, 0, 0, 0, 128 + args.state.tick_count % 128] args.outputs.labels << [460, 400, "Borders (x, y, w, h, r, g, b, a)"] args.outputs.borders << [470, 320, 50, 50] args.outputs.borders << [530, 320, 50, 50, 0, 0, 0] args.outputs.borders << [590, 320, 50, 50, 255, 0, 0] args.outputs.borders << [650, 320, 50, 50, 255, 0, 0, 128] args.outputs.borders << [710, 320, 50, 50, 0, 0, 0, 128 + args.state.tick_count % 128] end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Sprites - main.rb link
# ./samples/01_rendering_basics/04_sprites/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.sprites: An array. Values in this array generate sprites on the screen. The location of the sprite is assumed to be under the mygame/ directory (the exception being dragonruby.png). =end # For all other display outputs, Sprites are your solution # Sprites import images and display them with a certain rectangular area # The image can be of any usual format and should be located within the folder, # similar to additional fonts. # Sprites have the following parameters # Rectangular area (x, y, width, height) # The image (path) # Rotation (angle) # Alpha (a) def tick args tick_instructions args, "Sample app shows how to render a sprite. Set its alpha, and rotate it." args.outputs.labels << [460, 600, "Sprites (x, y, w, h, path, angle, a)"] args.outputs.sprites << [460, 470, 128, 101, 'dragonruby.png'] args.outputs.sprites << [610, 470, 128, 101, 'dragonruby.png', args.state.tick_count % 360] args.outputs.sprites << [760, 470, 128, 101, 'dragonruby.png', 0, args.state.tick_count % 255] end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Sounds - main.rb link
# ./samples/01_rendering_basics/05_sounds/app/main.rb =begin APIs Listing that haven't been encountered in previous sample apps: - sample: Chooses random element from array. In this sample app, the target note is set by taking a sample from the collection of available notes. Reminders: - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. =end # This sample app allows users to test their musical skills by matching the piano sound that plays in each # level to the correct note. # Runs all the methods necessary for the game to function properly. def tick args args.outputs.labels << [640, 360, "Click anywhere to play a random sound.", 0, 1] args.state.notes ||= [:C3, :D3, :E3, :F3, :G3, :A3, :B3, :C4] if args.inputs.mouse.click # Play a sound by adding a string to args.outputs.sounds args.outputs.sounds << "sounds/#{args.state.notes.sample}.wav" # sound of target note is output end end
Input Basics - Keyboard - main.rb link
# ./samples/02_input_basics/01_keyboard/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.inputs.keyboard.key_up.KEY: The value of the properties will be set to the frame that the key_up event occurred (the frame correlates to args.state.tick_count). Otherwise the value will be nil. For a full listing of keys, take a look at mygame/documentation/06-keyboard.md. - args.state.PROPERTY: The state property on args is a dynamic structure. You can define ANY property here with ANY type of arbitrary nesting. Properties defined on args.state will be retained across frames. If you attempt access a property that doesn't exist on args.state, it will simply return nil (no exception will be thrown). =end # Along with outputs, inputs are also an essential part of video game development # DragonRuby can take input from keyboards, mouse, and controllers. # This sample app will cover keyboard input. # args.inputs.keyboard.key_up.a will check to see if the a key has been pressed # This will work with the other keys as well def tick args tick_instructions args, "Sample app shows how keyboard events are registered and accessed.", 360 # Notice how small_font accounts for all the remaining parameters args.outputs.labels << { x: 460, y: row_to_px(args, 0), text: "Current game time: #{args.state.tick_count}", size_enum: -1 } args.outputs.labels << { x: 460, y: row_to_px(args, 2), text: "Keyboard input: args.inputs.keyboard.key_up.h", size_enum: -1 } args.outputs.labels << { x: 460, y: row_to_px(args, 3), text: "Press \"h\" on the keyboard.", size_enum: -1 } # Input on a specifc key can be found through args.inputs.keyboard.key_up followed by the key if args.inputs.keyboard.key_up.h args.state.h_pressed_at = args.state.tick_count end # This code simplifies to if args.state.h_pressed_at has not been initialized, set it to false args.state.h_pressed_at ||= false if args.state.h_pressed_at args.outputs.labels << { x: 460, y: row_to_px(args, 4), text: "\"h\" was pressed at time: #{args.state.h_pressed_at}", size_enum: -1 } else args.outputs.labels << { x: 460, y: row_to_px(args, 4), text: "\"h\" has never been pressed.", size_enum: -1 } end tick_help_text args end def row_to_px args, row_number, y_offset = 20 # This takes a row_number and converts it to pixels DragonRuby understands. # Row 0 starts 5 units below the top of the grid # Each row afterward is 20 units lower args.grid.top - 5 - (y_offset * row_number) end # Don't worry about understanding the code within this method just yet. # This method shows you the help text within the game. def tick_help_text args return unless args.state.h_pressed_at args.state.key_value_history ||= {} args.state.key_down_value_history ||= {} args.state.key_held_value_history ||= {} args.state.key_up_value_history ||= {} if (args.inputs.keyboard.key_down.truthy_keys.length > 0 || args.inputs.keyboard.key_held.truthy_keys.length > 0 || args.inputs.keyboard.key_up.truthy_keys.length > 0) args.state.help_available = true args.state.no_activity_debounce = nil else args.state.no_activity_debounce ||= 5.seconds args.state.no_activity_debounce -= 1 if args.state.no_activity_debounce <= 0 args.state.help_available = false args.state.key_value_history = {} args.state.key_down_value_history = {} args.state.key_held_value_history = {} args.state.key_up_value_history = {} end end args.outputs.labels << { x: 10, y: row_to_px(args, 6), text: "This is the api for the keys you've pressed:", size_enum: -1, r: 180 } if !args.state.help_available args.outputs.labels << [10, row_to_px(args, 7), "Press a key and I'll show code to access the key and what value will be returned if you used the code.", small_font] return end args.outputs.labels << { x: 10 , y: row_to_px(args, 7), text: "args.inputs.keyboard", size_enum: -2 } args.outputs.labels << { x: 330, y: row_to_px(args, 7), text: "args.inputs.keyboard.key_down", size_enum: -2 } args.outputs.labels << { x: 650, y: row_to_px(args, 7), text: "args.inputs.keyboard.key_held", size_enum: -2 } args.outputs.labels << { x: 990, y: row_to_px(args, 7), text: "args.inputs.keyboard.key_up", size_enum: -2 } fill_history args, :key_value_history, :down_or_held, nil fill_history args, :key_down_value_history, :down, :key_down fill_history args, :key_held_value_history, :held, :key_held fill_history args, :key_up_value_history, :up, :key_up render_help_labels args, :key_value_history, :down_or_held, nil, 10 render_help_labels args, :key_down_value_history, :down, :key_down, 330 render_help_labels args, :key_held_value_history, :held, :key_held, 650 render_help_labels args, :key_up_value_history, :up, :key_up, 990 end def fill_history args, history_key, state_key, keyboard_method fill_single_history args, history_key, state_key, keyboard_method, :raw_key fill_single_history args, history_key, state_key, keyboard_method, :char args.inputs.keyboard.keys[state_key].each do |key_name| fill_single_history args, history_key, state_key, keyboard_method, key_name end end def fill_single_history args, history_key, state_key, keyboard_method, key_name current_value = args.inputs.keyboard.send(key_name) if keyboard_method current_value = args.inputs.keyboard.send(keyboard_method).send(key_name) end args.state.as_hash[history_key][key_name] ||= [] args.state.as_hash[history_key][key_name] << current_value args.state.as_hash[history_key][key_name] = args.state.as_hash[history_key][key_name].reverse.uniq.take(3).reverse end def render_help_labels args, history_key, state_key, keyboard_method, x idx = 8 args.outputs.labels << args.state .as_hash[history_key] .keys .reverse .map .with_index do |k, i| v = args.state.as_hash[history_key][k] current_value = args.inputs.keyboard.send(k) if keyboard_method current_value = args.inputs.keyboard.send(keyboard_method).send(k) end idx += 2 [ { x: x, y: row_to_px(args, idx + 0, 16), text: " .#{k} is #{current_value || "nil"}", size_enum: -2 }, { x: x, y: row_to_px(args, idx + 1, 16), text: " was #{v}", size_enum: -2 } ] end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << { x: 0, y: y - 50, w: 1280, h: 60 }.solid! args.outputs.debug << { x: 640, y: y, text: text, size_enum: 1, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! args.outputs.debug << { x: 640, y: y - 25, text: "(click to dismiss instructions)", size_enum: -2, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! end
Input Basics - Moving A Sprite - main.rb link
# ./samples/02_input_basics/01_moving_a_sprite/app/main.rb def tick args # create a player and set default values # for the player's x, y, w (width), and h (height) args.state.player.x ||= 100 args.state.player.y ||= 100 args.state.player.w ||= 50 args.state.player.h ||= 50 # render the player to the screen args.outputs.sprites << { x: args.state.player.x, y: args.state.player.y, w: args.state.player.w, h: args.state.player.h, path: 'sprites/square/green.png' } # move the player around using the keyboard if args.inputs.up args.state.player.y += 10 elsif args.inputs.down args.state.player.y -= 10 end if args.inputs.left args.state.player.x -= 10 elsif args.inputs.right args.state.player.x += 10 end end $gtk.reset
Input Basics - Mouse - main.rb link
# ./samples/02_input_basics/02_mouse/app/main.rb =begin APIs that haven't been encountered in a previous sample apps: - args.inputs.mouse.click: This property will be set if the mouse was clicked. - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. - args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in. - args.inputs.mouse.click.point.created_at_elapsed: How many frames have passed since the click event. Reminder: - args.state.PROPERTY: The state property on args is a dynamic structure. You can define ANY property here with ANY type of arbitrary nesting. Properties defined on args.state will be retained across frames. If you attempt access a property that doesn't exist on args.state, it will simply return nil (no exception will be thrown). =end # This code demonstrates DragonRuby mouse input # To see if the a mouse click occurred # Use args.inputs.mouse.click # Which returns a boolean # To see where a mouse click occurred # Use args.inputs.mouse.click.point.x AND # args.inputs.mouse.click.point.y # To see which frame the click occurred # Use args.inputs.mouse.click.created_at # To see how many frames its been since the click occurred # Use args.inputs.mouse.click.created_at_elapsed # Saving the click in args.state can be quite useful def tick args tick_instructions args, "Sample app shows how mouse events are registered and how to measure elapsed time." x = 460 args.outputs.labels << small_label(args, x, 11, "Mouse input: args.inputs.mouse") if args.inputs.mouse.click args.state.last_mouse_click = args.inputs.mouse.click end if args.state.last_mouse_click click = args.state.last_mouse_click args.outputs.labels << small_label(args, x, 12, "Mouse click happened at: #{click.created_at}") args.outputs.labels << small_label(args, x, 13, "Mouse clicked #{click.created_at_elapsed} ticks ago") args.outputs.labels << small_label(args, x, 14, "Mouse click location: #{click.point.x}, #{click.point.y}") else args.outputs.labels << small_label(args, x, 12, "Mouse click has not occurred yet.") args.outputs.labels << small_label(args, x, 13, "Please click mouse.") end end def small_label args, x, row, message # This method effectively combines the row_to_px and small_font methods # It changes the given row value to a DragonRuby pixel value # and adds the customization parameters { x: x, y: row_to_px(args, row), text: message, alignment_enum: -2 } end def row_to_px args, row_number args.grid.top.shift_down(5).shift_down(20 * row_number) end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << { x: 0, y: y - 50, w: 1280, h: 60 }.solid! args.outputs.debug << { x: 640, y: y, text: text, size_enum: 1, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! args.outputs.debug << { x: 640, y: y - 25, text: "(click to dismiss instructions)", size_enum: -2, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! end
Input Basics - Mouse Point To Rect - main.rb link
# ./samples/02_input_basics/03_mouse_point_to_rect/app/main.rb =begin APIs that haven't been encountered in a previous sample apps: - args.outputus.borders: An array. Values in this array will be rendered as unfilled rectangles on the screen. - ARRAY#inside_rect?: An array with at least two values is considered a point. An array with at least four values is considered a rect. The inside_rect? function returns true or false depending on if the point is inside the rect. ``` # Point: x: 100, y: 100 # Rect: x: 0, y: 0, w: 500, h: 500 # Result: true [100, 100].inside_rect? [0, 0, 500, 500] ``` ``` # Point: x: 100, y: 100 # Rect: x: 300, y: 300, w: 100, h: 100 # Result: false [100, 100].inside_rect? [300, 300, 100, 100] ``` - args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in. - args.inputs.mouse.click.point.created_at_elapsed: How many frames have passed since the click event. =end # To determine whether a point is in a rect # Use point.inside_rect? rect # This is useful to determine if a click occurred in a rect def tick args tick_instructions args, "Sample app shows how to determing if a click happened inside a rectangle." x = 460 args.outputs.labels << small_label(args, x, 15, "Click inside the blue box maybe ---->") box = { x: 785, y: 370, w: 50, h: 50, r: 0, g: 0, b: 170 } args.outputs.borders << box # Saves the most recent click into args.state # Unlike the other components of args, # args.state does not reset every tick. if args.inputs.mouse.click args.state.last_mouse_click = args.inputs.mouse.click end if args.state.last_mouse_click if args.state.last_mouse_click.point.inside_rect? box args.outputs.labels << small_label(args, x, 16, "Mouse click happened *inside* the box.") else args.outputs.labels << small_label(args, x, 16, "Mouse click happened *outside* the box.") end else args.outputs.labels << small_label(args, x, 16, "Mouse click has not occurred yet.") end end def small_label args, x, row, message { x: x, y: row_to_px(args, row), text: message, size_enum: -2 } end def row_to_px args, row_number args.grid.top.shift_down(5).shift_down(20 * row_number) end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << { x: 0, y: y - 50, w: 1280, h: 60 }.solid! args.outputs.debug << { x: 640, y: y, text: text, size_enum: 1, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! args.outputs.debug << { x: 640, y: y - 25, text: "(click to dismiss instructions)", size_enum: -2, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! end
Input Basics - Mouse Drag And Drop - main.rb link
# ./samples/02_input_basics/04_mouse_drag_and_drop/app/main.rb def tick args # create 10 random squares on the screen if !args.state.squares # the squares will be contained in lookup/Hash so that we can access via their id args.state.squares = {} 10.times_with_index do |id| # for each square, store it in the hash with # the id (we're just using the index 0-9 as the index) args.state.squares[id] = { id: id, x: 100 + (rand * 1080), y: 100 + (520 * rand), w: 100, h: 100, path: "sprites/square/blue.png" } end end # two key variables are set here # - square_reference: this represents the square that is currently being dragged # - square_under_mouse: this represents the square that the mouse is currently being hovered over if args.state.currently_dragging_square_id # if the currently_dragging_square_id is set, then set the "square_under_mouse" to # the same square as square_reference square_reference = args.state.squares[args.state.currently_dragging_square_id] square_under_mouse = square_reference else # if currently_dragging_square_id isn't set, then see if there is a square that # the mouse is currently hovering over (the square reference will be nil since # we haven't selected a drag target yet) square_under_mouse = args.geometry.find_intersect_rect args.inputs.mouse, args.state.squares.values square_reference = nil end # if a click occurs, and there is a square under the mouse if args.inputs.mouse.click && square_under_mouse # capture the id of the square that the mouse is hovering over args.state.currently_dragging_square_id = square_under_mouse.id # also capture where in the square the mouse was clicked so that # the movement of the square will smoothly transition with the mouse's # location args.state.mouse_point_inside_square = { x: args.inputs.mouse.x - square_under_mouse.x, y: args.inputs.mouse.y - square_under_mouse.y, } elsif args.inputs.mouse.held && args.state.currently_dragging_square_id # if the mouse is currently being held and the currently_dragging_square_id was set, # then update the x and y location of the referenced square (taking into consideration the # relative position of the mouse when the square was clicked) square_reference.x = args.inputs.mouse.x - args.state.mouse_point_inside_square.x square_reference.y = args.inputs.mouse.y - args.state.mouse_point_inside_square.y elsif args.inputs.mouse.up # if the mouse is released, then clear out the currently_dragging_square_id args.state.currently_dragging_square_id = nil end # render all the squares on the screen args.outputs.sprites << args.state.squares.values # if there was a square under the mouse, add an "overlay" if square_under_mouse args.outputs.sprites << square_under_mouse.merge(path: "sprites/square/red.png") end end
Input Basics - Mouse Rect To Rect - main.rb link
# ./samples/02_input_basics/04_mouse_rect_to_rect/app/main.rb =begin APIs that haven't been encountered in a previous sample apps: - args.outputs.borders: An array. Values in this array will be rendered as unfilled rectangles on the screen. - ARRAY#intersect_rect?: An array with at least four values is considered a rect. The intersect_rect? function returns true or false depending on if the two rectangles intersect. ``` # Rect One: x: 100, y: 100, w: 100, h: 100 # Rect Two: x: 0, y: 0, w: 500, h: 500 # Result: true [100, 100, 100, 100].intersect_rect? [0, 0, 500, 500] ``` ``` # Rect One: x: 100, y: 100, w: 10, h: 10 # Rect Two: x: 500, y: 500, w: 10, h: 10 # Result: false [100, 100, 10, 10].intersect_rect? [500, 500, 10, 10] ``` =end # Similarly, whether rects intersect can be found through # rect1.intersect_rect? rect2 def tick args tick_instructions args, "Sample app shows how to determine if two rectangles intersect." x = 460 args.outputs.labels << small_label(args, x, 3, "Click anywhere on the screen") # red_box = [460, 250, 355, 90, 170, 0, 0] # args.outputs.borders << red_box # args.state.box_collision_one and args.state.box_collision_two # Are given values of a solid when they should be rendered # They are stored in game so that they do not get reset every tick if args.inputs.mouse.click if !args.state.box_collision_one args.state.box_collision_one = { x: args.inputs.mouse.click.point.x - 25, y: args.inputs.mouse.click.point.y - 25, w: 125, h: 125, r: 180, g: 0, b: 0, a: 180 } elsif !args.state.box_collision_two args.state.box_collision_two = { x: args.inputs.mouse.click.point.x - 25, y: args.inputs.mouse.click.point.y - 25, w: 125, h: 125, r: 0, g: 0, b: 180, a: 180 } else args.state.box_collision_one = nil args.state.box_collision_two = nil end end if args.state.box_collision_one args.outputs.solids << args.state.box_collision_one end if args.state.box_collision_two args.outputs.solids << args.state.box_collision_two end if args.state.box_collision_one && args.state.box_collision_two if args.state.box_collision_one.intersect_rect? args.state.box_collision_two args.outputs.labels << small_label(args, x, 4, 'The boxes intersect.') else args.outputs.labels << small_label(args, x, 4, 'The boxes do not intersect.') end else args.outputs.labels << small_label(args, x, 4, '--') end end def small_label args, x, row, message { x: x, y: row_to_px(args, row), text: message, size_enum: -2 } end def row_to_px args, row_number args.grid.top - 5 - (20 * row_number) end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Input Basics - Controller - main.rb link
# ./samples/02_input_basics/05_controller/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - args.current_controller.key_held.KEY: Will check to see if a specific key is being held down on the controller. If there is more than one controller being used, they can be differentiated by using names like controller_one and controller_two. For a full listing of buttons, take a look at mygame/documentation/08-controllers.md. Reminder: - args.state.PROPERTY: The state property on args is a dynamic structure. You can define ANY property here with ANY type of arbitrary nesting. Properties defined on args.state will be retained across frames. If you attempt to access a property that doesn't exist on args.state, it will simply return nil (no exception will be thrown). In this sample app, args.state.BUTTONS is an array that stores the buttons of the controller. The parameters of a button are: 1. the position (x, y) 2. the input key held on the controller 3. the text or name of the button =end # This sample app provides a visual demonstration of a standard controller, including # the placement and function of all buttons. class ControllerDemo attr_accessor :inputs, :state, :outputs # Calls the methods necessary for the app to run successfully. def tick process_inputs render end # Starts with an empty collection of buttons. # Adds buttons that are on the controller to the collection. def process_inputs state.target ||= :controller_one state.buttons = [] if inputs.keyboard.key_down.tab if state.target == :controller_one state.target = :controller_two elsif state.target == :controller_two state.target = :controller_three elsif state.target == :controller_three state.target = :controller_four elsif state.target == :controller_four state.target = :controller_one end end state.buttons << { x: 100, y: 500, active: current_controller.key_held.l1, text: "L1"} state.buttons << { x: 100, y: 600, active: current_controller.key_held.l2, text: "L2"} state.buttons << { x: 1100, y: 500, active: current_controller.key_held.r1, text: "R1"} state.buttons << { x: 1100, y: 600, active: current_controller.key_held.r2, text: "R2"} state.buttons << { x: 540, y: 450, active: current_controller.key_held.select, text: "Select"} state.buttons << { x: 660, y: 450, active: current_controller.key_held.start, text: "Start"} state.buttons << { x: 200, y: 300, active: current_controller.key_held.left, text: "Left"} state.buttons << { x: 300, y: 400, active: current_controller.key_held.up, text: "Up"} state.buttons << { x: 400, y: 300, active: current_controller.key_held.right, text: "Right"} state.buttons << { x: 300, y: 200, active: current_controller.key_held.down, text: "Down"} state.buttons << { x: 800, y: 300, active: current_controller.key_held.x, text: "X"} state.buttons << { x: 900, y: 400, active: current_controller.key_held.y, text: "Y"} state.buttons << { x: 1000, y: 300, active: current_controller.key_held.a, text: "A"} state.buttons << { x: 900, y: 200, active: current_controller.key_held.b, text: "B"} state.buttons << { x: 450 + current_controller.left_analog_x_perc * 100, y: 100 + current_controller.left_analog_y_perc * 100, active: current_controller.key_held.l3, text: "L3" } state.buttons << { x: 750 + current_controller.right_analog_x_perc * 100, y: 100 + current_controller.right_analog_y_perc * 100, active: current_controller.key_held.r3, text: "R3" } end # Gives each button a square shape. # If the button is being pressed or held (which means it is considered active), # the square is filled in. Otherwise, the button simply has a border. def render state.buttons.each do |b| rect = { x: b.x, y: b.y, w: 75, h: 75 } if b.active # if button is pressed outputs.solids << rect # rect is output as solid (filled in) else outputs.borders << rect # otherwise, output as border end # Outputs the text of each button using labels. outputs.labels << { x: b.x, y: b.y + 95, text: b.text } # add 95 to place label above button end outputs.labels << { x: 10, y: 60, text: "Left Analog x: #{current_controller.left_analog_x_raw} (#{current_controller.left_analog_x_perc * 100}%)" } outputs.labels << { x: 10, y: 30, text: "Left Analog y: #{current_controller.left_analog_y_raw} (#{current_controller.left_analog_y_perc * 100}%)" } outputs.labels << { x: 1270, y: 60, text: "Right Analog x: #{current_controller.right_analog_x_raw} (#{current_controller.right_analog_x_perc * 100}%)", alignment_enum: 2 } outputs.labels << { x: 1270, y: 30, text: "Right Analog y: #{current_controller.right_analog_y_raw} (#{current_controller.right_analog_y_perc * 100}%)" , alignment_enum: 2 } outputs.labels << { x: 640, y: 60, text: "Target: #{state.target} (press tab to go to next controller)", alignment_enum: 1 } outputs.labels << { x: 640, y: 30, text: "Connected: #{current_controller.connected}", alignment_enum: 1 } end def current_controller if state.target == :controller_one return inputs.controller_one elsif state.target == :controller_two return inputs.controller_two elsif state.target == :controller_three return inputs.controller_three elsif state.target == :controller_four return inputs.controller_four end end end $controller_demo = ControllerDemo.new def tick args tick_instructions args, "Sample app shows how controller input is handled. You'll need to connect a USB controller." $controller_demo.inputs = args.inputs $controller_demo.state = args.state $controller_demo.outputs = args.outputs $controller_demo.tick end # Resets the app. def r $gtk.reset end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Input Basics - Touch - main.rb link
# ./samples/02_input_basics/06_touch/app/main.rb def tick args args.outputs.background_color = [ 0, 0, 0 ] args.outputs.primitives << [640, 700, "Touch your screen.", 5, 1, 255, 255, 255].label # If you don't want to get fancy, you can just look for finger_one # (and _two, if you like), which are assigned in the order new touches hit # the screen. If not nil, they are touching right now, and are just # references to specific items in the args.input.touch hash. # If finger_one lifts off, it will become nil, but finger_two, if it was # touching, remains until it also lifts off. When all fingers lift off, the # the next new touch will be finger_one again, but until then, new touches # don't fill in earlier slots. if !args.inputs.finger_one.nil? args.outputs.primitives << { x: 640, y: 650, text: "Finger #1 is touching at (#{args.inputs.finger_one.x}, #{args.inputs.finger_one.y}).", size_enum: 5, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! end if !args.inputs.finger_two.nil? args.outputs.primitives << { x: 640, y: 600, text: "Finger #2 is touching at (#{args.inputs.finger_two.x}, #{args.inputs.finger_two.y}).", size_enum: 5, alignment_enum: 1, r: 255, g: 255, b: 255 }.label! end # Here's the more flexible interface: this will report as many simultaneous # touches as the system can handle, but it's a little more effort to track # them. Each item in the args.input.touch hash has a unique key (an # incrementing integer) that exists until the finger lifts off. You can # tell which order the touches happened globally by the key value, or # by the touch[id].touch_order field, which resets to zero each time all # touches have lifted. args.state.colors ||= [ 0xFF0000, 0x00FF00, 0x1010FF, 0xFFFF00, 0xFF00FF, 0x00FFFF, 0xFFFFFF ] size = 100 args.inputs.touch.each { |k,v| color = args.state.colors[v.touch_order % 7] r = (color & 0xFF0000) >> 16 g = (color & 0x00FF00) >> 8 b = (color & 0x0000FF) args.outputs.primitives << { x: v.x - (size / 2), y: v.y + (size / 2), w: size, h: size, r: r, g: g, b: b, a: 255 }.solid! args.outputs.primitives << { x: v.x, y: v.y + size, text: k.to_s, alignment_enum: 1 }.label! } end
Input Basics - Managing Scenes - main.rb link
# ./samples/02_input_basics/07_managing_scenes/app/main.rb def tick args # initialize the scene to scene 1 args.state.current_scene ||= :title_scene # capture the current scene to verify it didn't change through # the duration of tick current_scene = args.state.current_scene # tick whichever scene is current case current_scene when :title_scene tick_title_scene args when :game_scene tick_game_scene args when :game_over_scene tick_game_over_scene args end # make sure that the current_scene flag wasn't set mid tick if args.state.current_scene != current_scene raise "Scene was changed incorrectly. Set args.state.next_scene to change scenes." end # if next scene was set/requested, then transition the current scene to the next scene if args.state.next_scene args.state.current_scene = args.state.next_scene args.state.next_scene = nil end end def tick_title_scene args args.outputs.labels << { x: 640, y: 360, text: "Title Scene (click to go to game)", alignment_enum: 1 } if args.inputs.mouse.click args.state.next_scene = :game_scene end end def tick_game_scene args args.outputs.labels << { x: 640, y: 360, text: "Game Scene (click to go to game over)", alignment_enum: 1 } if args.inputs.mouse.click args.state.next_scene = :game_over_scene end end def tick_game_over_scene args args.outputs.labels << { x: 640, y: 360, text: "Game Over Scene (click to go to title)", alignment_enum: 1 } if args.inputs.mouse.click args.state.next_scene = :title_scene end end
Rendering Sprites - Animation Using Separate Pngs - main.rb link
# ./samples/03_rendering_sprites/01_animation_using_separate_pngs/app/main.rb =begin Reminders: - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. In this sample app, we're using string interpolation to iterate through images in the sprites folder using their image path names. - args.outputs.sprites: An array. Values in this array generate sprites on the screen. The parameters are [X, Y, WIDTH, HEIGHT, IMAGE PATH] For more information about sprites, go to mygame/documentation/05-sprites.md. - args.outputs.labels: An array. Values in the array generate labels on the screen. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.inputs.keyboard.key_down.KEY: Determines if a key is in the down state, or pressed. Stores the frame that key was pressed on. For more information about the keyboard, go to mygame/documentation/06-keyboard.md. =end # This sample app demonstrates how sprite animations work. # There are two sprites that animate forever and one sprite # that *only* animates when you press the "f" key on the keyboard. # This is the entry point to your game. The `tick` method # executes at 60 frames per second. There are two methods # in this tick "entry point": `looping_animation`, and the # second method is `one_time_animation`. def tick args # uncomment the line below to see animation play out in slow motion # args.gtk.slowmo! 6 looping_animation args one_time_animation args end # This function shows how to animate a sprite that loops forever. def looping_animation args # Here we define a few local variables that will be sent # into the magic function that gives us the correct sprite image # over time. There are four things we need in order to figure # out which sprite to show. # 1. When to start the animation. start_looping_at = 0 # 2. The number of pngs that represent the full animation. number_of_sprites = 6 # 3. How long to show each png. number_of_frames_to_show_each_sprite = 4 # 4. Whether the animation should loop once, or forever. does_sprite_loop = true # With the variables defined above, we can get a number # which represents the sprite to show by calling the `frame_index` function. # In this case the number will be between 0, and 5 (you can see the sprites # in the ./sprites directory). sprite_index = start_looping_at.frame_index number_of_sprites, number_of_frames_to_show_each_sprite, does_sprite_loop # Now that we have `sprite_index, we can present the correct file. args.outputs.sprites << { x: 100, y: 100, w: 100, h: 100, path: "sprites/dragon_fly_#{sprite_index}.png" } # Try changing the numbers below to see how the animation changes: args.outputs.sprites << { x: 100, y: 200, w: 100, h: 100, path: "sprites/dragon_fly_#{0.frame_index 6, 4, true}.png" } end # This function shows how to animate a sprite that executes # only once when the "f" key is pressed. def one_time_animation args # This is just a label the shows instructions within the game. args.outputs.labels << { x: 220, y: 350, text: "(press f to animate)" } # If "f" is pressed on the keyboard... if args.inputs.keyboard.key_down.f # Print the frame that "f" was pressed on. puts "Hello from main.rb! The \"f\" key was in the down state on frame: #{args.state.tick_count}" # And MOST IMPORTANTLY set the point it time to start the animation, # equal to "now" which is represented as args.state.tick_count. # Also IMPORTANT, you'll notice that the value of when to start looping # is stored in `args.state`. This construct's values are retained across # executions of the `tick` method. args.state.start_looping_at = args.state.tick_count end # These are the same local variables that were defined # for the `looping_animation` function. number_of_sprites = 6 number_of_frames_to_show_each_sprite = 4 # Except this sprite does not loop again. If the animation time has passed, # then the frame_index function returns nil. does_sprite_loop = false if args.state.start_looping_at sprite_index = args.state .start_looping_at .frame_index number_of_sprites, number_of_frames_to_show_each_sprite, does_sprite_loop end # This line sets the frame index to zero, if # the animation duration has passed (frame_index returned nil). # Remeber: we are not looping forever here. sprite_index ||= 0 # Present the sprite. args.outputs.sprites << { x: 100, y: 300, w: 100, h: 100, path: "sprites/dragon_fly_#{sprite_index}.png" } tick_instructions args, "Sample app shows how to use Numeric#frame_index and string interpolation to animate a sprite over time." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Sprites - Animation Using Sprite Sheet - main.rb link
# ./samples/03_rendering_sprites/02_animation_using_sprite_sheet/app/main.rb def tick args args.state.player.x ||= 100 args.state.player.y ||= 100 args.state.player.w ||= 64 args.state.player.h ||= 64 args.state.player.direction ||= 1 args.state.player.is_moving = false # get the keyboard input and set player properties if args.inputs.keyboard.right args.state.player.x += 3 args.state.player.direction = 1 args.state.player.started_running_at ||= args.state.tick_count elsif args.inputs.keyboard.left args.state.player.x -= 3 args.state.player.direction = -1 args.state.player.started_running_at ||= args.state.tick_count end if args.inputs.keyboard.up args.state.player.y += 1 args.state.player.started_running_at ||= args.state.tick_count elsif args.inputs.keyboard.down args.state.player.y -= 1 args.state.player.started_running_at ||= args.state.tick_count end # if no arrow keys are being pressed, set the player as not moving if !args.inputs.keyboard.directional_vector args.state.player.started_running_at = nil end # wrap player around the stage if args.state.player.x > 1280 args.state.player.x = -64 args.state.player.started_running_at ||= args.state.tick_count elsif args.state.player.x < -64 args.state.player.x = 1280 args.state.player.started_running_at ||= args.state.tick_count end if args.state.player.y > 720 args.state.player.y = -64 args.state.player.started_running_at ||= args.state.tick_count elsif args.state.player.y < -64 args.state.player.y = 720 args.state.player.started_running_at ||= args.state.tick_count end # render player as standing or running if args.state.player.started_running_at args.outputs.sprites << running_sprite(args) else args.outputs.sprites << standing_sprite(args) end args.outputs.labels << [30, 700, "Use arrow keys to move around."] end def standing_sprite args { x: args.state.player.x, y: args.state.player.y, w: args.state.player.w, h: args.state.player.h, path: "sprites/horizontal-stand.png", flip_horizontally: args.state.player.direction > 0 } end def running_sprite args if !args.state.player.started_running_at tile_index = 0 else how_many_frames_in_sprite_sheet = 6 how_many_ticks_to_hold_each_frame = 3 should_the_index_repeat = true tile_index = args.state .player .started_running_at .frame_index(how_many_frames_in_sprite_sheet, how_many_ticks_to_hold_each_frame, should_the_index_repeat) end { x: args.state.player.x, y: args.state.player.y, w: args.state.player.w, h: args.state.player.h, path: 'sprites/horizontal-run.png', tile_x: 0 + (tile_index * args.state.player.w), tile_y: 0, tile_w: args.state.player.w, tile_h: args.state.player.h, flip_horizontally: args.state.player.direction > 0, } end
Rendering Sprites - Animation States - main.rb link
# ./samples/03_rendering_sprites/03_animation_states/app/main.rb class Game attr_gtk def defaults state.show_debug_layer = true if state.tick_count == 0 player.tile_size = 64 player.speed = 3 player.slash_frames = 15 player.x ||= 50 player.y ||= 400 player.dir_x ||= 1 player.dir_y ||= -1 player.is_moving ||= false state.watch_list ||= {} state.enemies ||= [] end def add_enemy state.enemies << { x: 1200 * rand, y: 600 * rand, w: 64, h: 64, anchor_x: 0.5, anchor_y: 0.5, path: 'sprites/enemy.png' } end def sprite_horizontal_run tile_index = 0.frame_index(6, 3, true) tile_index = 0 if !player.is_moving { x: player.x, y: player.y, w: player.tile_size, h: player.tile_size, anchor_x: 0.5, anchor_y: 0.5, path: 'sprites/horizontal-run.png', tile_x: 0 + (tile_index * player.tile_size), tile_y: 0, tile_w: player.tile_size, tile_h: player.tile_size, flip_horizontally: player.dir_x > 0, # a: 40 } end def sprite_horizontal_stand { x: player.x, y: player.y, w: player.tile_size, h: player.tile_size, anchor_x: 0.5, anchor_y: 0.5, path: 'sprites/horizontal-stand.png', flip_horizontally: player.dir_x > 0, # a: 40 } end def sprite_horizontal_slash tile_index = player.slash_at.frame_index(5, player.slash_frames.idiv(5), false) || 0 { x: player.x + player.dir_x.sign * 9.25, y: player.y + 9.25, w: 165, h: 165, anchor_x: 0.5, anchor_y: 0.5, path: 'sprites/horizontal-slash.png', tile_x: 0 + (tile_index * 128), tile_y: 0, tile_w: 128, tile_h: 128, flip_horizontally: player.dir_x > 0 } end def render_player if player.slash_at outputs.sprites << sprite_horizontal_slash elsif player.is_moving outputs.sprites << sprite_horizontal_run else outputs.sprites << sprite_horizontal_stand end end def render_enemies outputs.borders << state.enemies end def render_debug_layer return if !state.show_debug_layer outputs.labels << state.watch_list.map.with_index do |(k, v), i| [30, 710 - i * 28, "#{k}: #{v || "(nil)"}"] end outputs.borders << player.slash_collision_rect end def slash_initiate? # buffalo usb controller has a button and b button swapped lol inputs.controller_one.key_down.a || inputs.keyboard.key_down.j end def input # player movement if slash_complete? && (vector = inputs.directional_vector) player.x += vector.x * player.speed player.y += vector.y * player.speed end player.slash_at = slash_initiate? if slash_initiate? end def calc_movement # movement if vector = inputs.directional_vector state.debug_label = vector player.dir_x = vector.x if vector.x != 0 player.dir_y = vector.y if vector.y != 0 player.is_moving = true else state.debug_label = vector player.is_moving = false end end def calc_slash player.slash_collision_rect = { x: player.x + player.dir_x.sign * 52, y: player.y, w: 40, h: 20, anchor_x: 0.5, anchor_y: 0.5, path: "sprites/debug-slash.png" } # recalc sword's slash state player.slash_at = nil if slash_complete? # determine collision if the sword is at it's point of damaging return unless slash_can_damage? state.enemies.reject! { |e| e.intersect_rect? player.slash_collision_rect } end def slash_complete? !player.slash_at || player.slash_at.elapsed?(player.slash_frames) end def slash_can_damage? # damage occurs half way into the slash animation return false if slash_complete? return false if (player.slash_at + player.slash_frames.idiv(2)) != state.tick_count return true end def calc # generate an enemy if there aren't any on the screen add_enemy if state.enemies.length == 0 calc_movement calc_slash end # source is at http://github.com/amirrajan/dragonruby-link-to-the-past def tick defaults render_enemies render_player outputs.labels << [30, 30, "Gamepad: D-Pad to move. B button to attack."] outputs.labels << [30, 52, "Keyboard: WASD/Arrow keys to move. J to attack."] render_debug_layer input calc end def player state.player end end $game = Game.new def tick args $game.args = args $game.tick end $gtk.reset
Rendering Sprites - Animation States Advanced - main.rb link
# ./samples/03_rendering_sprites/03_animation_states_advanced/app/main.rb class Game attr_gtk def request_action name, at: nil at ||= state.tick_count state.player.requested_action = name state.player.requested_action_at = at end def defaults state.player.x ||= 64 state.player.y ||= 0 state.player.dx ||= 0 state.player.dy ||= 0 state.player.action ||= :standing state.player.action_at ||= 0 state.player.next_action_queue ||= {} state.player.facing ||= 1 state.player.jump_at ||= 0 state.player.jump_count ||= 0 state.player.max_speed ||= 1.0 state.sabre.x ||= state.player.x state.sabre.y ||= state.player.y state.actions_lookup ||= new_actions_lookup end def render outputs.background_color = [32, 32, 32] outputs[:scene].transient! outputs[:scene].w = 128 outputs[:scene].h = 128 outputs[:scene].borders << { x: 0, y: 0, w: 128, h: 128, r: 255, g: 255, b: 255 } render_player render_sabre args.outputs.sprites << { x: 320, y: 0, w: 640, h: 640, path: :scene } args.outputs.labels << { x: 10, y: 100, text: "Controls:", r: 255, g: 255, b: 255, size_enum: -1 } args.outputs.labels << { x: 10, y: 80, text: "Move: left/right", r: 255, g: 255, b: 255, size_enum: -1 } args.outputs.labels << { x: 10, y: 60, text: "Jump: space | up | right click", r: 255, g: 255, b: 255, size_enum: -1 } args.outputs.labels << { x: 10, y: 40, text: "Attack: f | j | left click", r: 255, g: 255, b: 255, size_enum: -1 } end def render_sabre return if !state.sabre.is_active sabre_index = 0.frame_index count: 4, hold_for: 2, repeat: true offset = 0 offset = -8 if state.player.facing == -1 outputs[:scene].sprites << { x: state.sabre.x + offset, y: state.sabre.y, w: 16, h: 16, path: "sprites/sabre-throw/#{sabre_index}.png" } end def new_actions_lookup r = { slash_0: { frame_count: 6, interrupt_count: 4, path: "sprites/kenobi/slash-0/:index.png" }, slash_1: { frame_count: 6, interrupt_count: 4, path: "sprites/kenobi/slash-1/:index.png" }, throw_0: { frame_count: 8, throw_frame: 2, catch_frame: 6, path: "sprites/kenobi/slash-2/:index.png" }, throw_1: { frame_count: 9, throw_frame: 2, catch_frame: 7, path: "sprites/kenobi/slash-3/:index.png" }, throw_2: { frame_count: 9, throw_frame: 2, catch_frame: 7, path: "sprites/kenobi/slash-4/:index.png" }, slash_5: { frame_count: 11, path: "sprites/kenobi/slash-5/:index.png" }, slash_6: { frame_count: 8, interrupt_count: 6, path: "sprites/kenobi/slash-6/:index.png" } } r.each.with_index do |(k, v), i| v.name ||= k v.index ||= i v.hold_for ||= 5 v.duration ||= v.frame_count * v.hold_for v.last_index ||= v.frame_count - 1 v.interrupt_count ||= v.frame_count v.interrupt_duration ||= v.interrupt_count * v.hold_for v.repeat ||= false v.next_action ||= r[r.keys[i + 1]] end r end def render_player flip_horizontally = if state.player.facing == -1 true else false end player_sprite = { x: state.player.x + 1 - 8, y: state.player.y, w: 16, h: 16, flip_horizontally: flip_horizontally } if state.player.action == :standing if state.player.y != 0 if state.player.jump_count <= 1 outputs[:scene].sprites << { **player_sprite, path: "sprites/kenobi/jumping.png" } else index = state.player.jump_at.frame_index count: 8, hold_for: 5, repeat: false index ||= 7 outputs[:scene].sprites << { **player_sprite, path: "sprites/kenobi/second-jump/#{index}.png" } end elsif state.player.dx != 0 index = state.player.action_at.frame_index count: 4, hold_for: 5, repeat: true outputs[:scene].sprites << { **player_sprite, path: "sprites/kenobi/run/#{index}.png" } else outputs[:scene].sprites << { **player_sprite, path: 'sprites/kenobi/standing.png'} end else v = state.actions_lookup[state.player.action] slash_frame_index = state.player.action_at.frame_index count: v.frame_count, hold_for: v.hold_for, repeat: v.repeat slash_frame_index ||= v.last_index slash_path = v.path.sub ":index", slash_frame_index.to_s outputs[:scene].sprites << { **player_sprite, path: slash_path } end end def calc_input if state.player.next_action_queue.length > 2 raise "Code in calc assums that key length of state.player.next_action_queue will never be greater than 2." end if inputs.controller_one.key_down.a || inputs.mouse.button_left || inputs.keyboard.key_down.j || inputs.keyboard.key_down.f request_action :attack end should_update_facing = false if state.player.action == :standing should_update_facing = true else key_0 = state.player.next_action_queue.keys[0] key_1 = state.player.next_action_queue.keys[1] if state.tick_count == key_0 should_update_facing = true elsif state.tick_count == key_1 should_update_facing = true elsif key_0 && key_1 && state.tick_count.between?(key_0, key_1) should_update_facing = true end end if should_update_facing && inputs.left_right.sign != state.player.facing.sign state.player.dx = 0 if inputs.left state.player.facing = -1 elsif inputs.right state.player.facing = 1 end state.player.dx += 0.1 * inputs.left_right end if state.player.action == :standing state.player.dx += 0.1 * inputs.left_right if state.player.dx.abs > state.player.max_speed state.player.dx = state.player.max_speed * state.player.dx.sign end end was_jump_requested = inputs.keyboard.key_down.up || inputs.keyboard.key_down.w || inputs.mouse.button_right || inputs.controller_one.key_down.up || inputs.controller_one.key_down.b || inputs.keyboard.key_down.space can_jump = state.player.jump_at.elapsed_time > 20 if state.player.jump_count <= 1 can_jump = state.player.jump_at.elapsed_time > 10 end if was_jump_requested && can_jump if state.player.action == :slash_6 state.player.action = :standing end state.player.dy = 1 state.player.jump_count += 1 state.player.jump_at = state.tick_count end end def calc calc_input calc_requested_action calc_next_action calc_sabre calc_player_movement if state.player.y <= 0 && state.player.dy < 0 state.player.y = 0 state.player.dy = 0 state.player.jump_at = 0 state.player.jump_count = 0 end end def calc_player_movement state.player.x += state.player.dx state.player.y += state.player.dy state.player.dy -= 0.05 if state.player.y <= 0 state.player.y = 0 state.player.dy = 0 state.player.jump_at = 0 state.player.jump_count = 0 end if state.player.dx.abs < 0.09 state.player.dx = 0 end state.player.x = 8 if state.player.x < 8 state.player.x = 120 if state.player.x > 120 end def calc_requested_action return if !state.player.requested_action return if state.player.requested_action_at > state.tick_count player_action = state.player.action player_action_at = state.player.action_at # first attack if state.player.requested_action == :attack if player_action == :standing state.player.next_action_queue.clear state.player.next_action_queue[state.tick_count] = :slash_0 state.player.next_action_queue[state.tick_count + state.actions_lookup.slash_0.duration] = :standing else current_action = state.actions_lookup[state.player.action] state.player.next_action_queue.clear queue_at = player_action_at + current_action.interrupt_duration queue_at = state.tick_count if queue_at < state.tick_count next_action = current_action.next_action next_action ||= { name: :standing, duration: 4 } if next_action state.player.next_action_queue[queue_at] = next_action.name state.player.next_action_queue[player_action_at + current_action.interrupt_duration + next_action.duration] = :standing end end end state.player.requested_action = nil state.player.requested_action_at = nil end def calc_sabre can_throw_sabre = true sabre_throws = [:throw_0, :throw_1, :throw_2] if !sabre_throws.include? state.player.action state.sabre.facing = nil state.sabre.is_active = false return end current_action = state.actions_lookup[state.player.action] throw_at = state.player.action_at + (current_action.throw_frame) * 5 catch_at = state.player.action_at + (current_action.catch_frame) * 5 if !state.tick_count.between? throw_at, catch_at state.sabre.facing = nil state.sabre.is_active = false return end state.sabre.facing ||= state.player.facing state.sabre.is_active = true spline = [ [ 0, 0.25, 0.75, 1.0], [1.0, 0.75, 0.25, 0] ] throw_duration = catch_at - throw_at current_progress = args.easing.ease_spline throw_at, state.tick_count, throw_duration, spline farthest_sabre_x = 32 state.sabre.y = state.player.y state.sabre.x = state.player.x + farthest_sabre_x * current_progress * state.sabre.facing end def calc_next_action return if !state.player.next_action_queue[state.tick_count] state.player.previous_action = state.player.action state.player.previous_action_at = state.player.action_at state.player.previous_action_ended_at = state.tick_count state.player.action = state.player.next_action_queue[state.tick_count] state.player.action_at = state.tick_count is_air_born = state.player.y != 0 if state.player.action == :slash_0 state.player.dy = 0 if state.player.dy > 0 if is_air_born state.player.dy = 0.5 else state.player.dx += 0.25 * state.player.facing end elsif state.player.action == :slash_1 state.player.dy = 0 if state.player.dy > 0 if is_air_born state.player.dy = 0.5 else state.player.dx += 0.25 * state.player.facing end elsif state.player.action == :throw_0 if is_air_born state.player.dy = 1.0 end state.player.dx += 0.5 * state.player.facing elsif state.player.action == :throw_1 if is_air_born state.player.dy = 1.0 end state.player.dx += 0.5 * state.player.facing elsif state.player.action == :throw_2 if is_air_born state.player.dy = 1.0 end state.player.dx += 0.5 * state.player.facing elsif state.player.action == :slash_5 state.player.dy = 0 if state.player.dy < 0 if is_air_born state.player.dy += 1.0 else state.player.dy += 1.0 end state.player.dx += 1.0 * state.player.facing elsif state.player.action == :slash_6 state.player.dy = 0 if state.player.dy > 0 if is_air_born state.player.dy = -0.5 end state.player.dx += 0.5 * state.player.facing end end def tick defaults calc render end end $game = Game.new def tick args $game.args = args $game.tick end $gtk.reset
Rendering Sprites - Animation States Advanced - Metadata - ios_metadata.txt link
# ./samples/03_rendering_sprites/03_animation_states_advanced/metadata/ios_metadata.txt teamid=L7H57V9CRD appid=com.scratchworkdevelopment.1bitanimate appname=1-Bit Animate version=1.0 devcert=iPhone Developer: Amirali Rajan (P2B6225J87) prodcert=
Rendering Sprites - Color And Rotation - main.rb link
# ./samples/03_rendering_sprites/04_color_and_rotation/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - merge: Returns a hash containing the contents of two original hashes. Merge does not allow duplicate keys, so the value of a repeated key will be overwritten. For example, if we had two hashes h1 = { "a" => 1, "b" => 2} h2 = { "b" => 3, "c" => 3} and we called the command h1.merge(h2) the result would the following hash { "a" => 1, "b" => 3, "c" => 3}. Reminders: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. In this sample app, we're using a hash to create a sprite. - args.outputs.sprites: An array. The values generate a sprite. The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE] Before continuing with this sample app, it is HIGHLY recommended that you look at mygame/documentation/05-sprites.md. - args.inputs.keyboard.key_held.KEY: Determines if a key is being pressed. For more information about the keyboard, go to mygame/documentation/06-keyboard.md. - args.inputs.controller_one: Takes input from the controller based on what key is pressed. For more information about the controller, go to mygame/documentation/08-controllers.md. - num1.lesser(num2): Finds the lower value of the given options. =end # This sample app shows a car moving across the screen. It loops back around if it exceeds the dimensions of the screen, # and also can be moved in different directions through keyboard input from the user. # Calls the methods necessary for the game to run successfully. def tick args default args render args.grid, args.outputs, args.state calc args.state process_inputs args end # Sets default values for the car sprite # Initialization ||= only happens in the first frame def default args args.state.sprite.width = 19 args.state.sprite.height = 10 args.state.sprite.scale = 4 args.state.max_speed = 5 args.state.x ||= 100 args.state.y ||= 100 args.state.speed ||= 1 args.state.angle ||= 0 end # Outputs sprite onto screen def render grid, outputs, state outputs.solids << [grid.rect, 70, 70, 70] # outputs gray background outputs.sprites << [destination_rect(state), # sets first four parameters of car sprite 'sprites/86.png', # image path of car state.angle, opacity, # transparency saturation, source_rect(state), # sprite sub division/tile (tile x, y, w, h) false, false, # don't flip sprites rotation_anchor] # also look at the create_sprite helper method # # For example: # # dest = destination_rect(state) # source = source_rect(state), # outputs.sprites << create_sprite( # 'sprites/86.png', # x: dest.x, # y: dest.y, # w: dest.w, # h: dest.h, # angle: state.angle, # source_x: source.x, # source_y: source.y, # source_w: source.w, # source_h: source.h, # flip_h: false, # flip_v: false, # rotation_anchor_x: 0.7, # rotation_anchor_y: 0.5 # ) end # Creates sprite by setting values inside of a hash def create_sprite path, options = {} options = { # dest x, y, w, h x: 0, y: 0, w: 100, h: 100, # angle, rotation angle: 0, rotation_anchor_x: 0.5, rotation_anchor_y: 0.5, # color saturation (red, green, blue), transparency r: 255, g: 255, b: 255, a: 255, # source x, y, width, height source_x: 0, source_y: 0, source_w: -1, source_h: -1, # flip horiztonally, flip vertically flip_h: false, flip_v: false, }.merge options [ options[:x], options[:y], options[:w], options[:h], # dest rect keys path, options[:angle], options[:a], options[:r], options[:g], options[:b], # angle, color, alpha options[:source_x], options[:source_y], options[:source_w], options[:source_h], # source rect keys options[:flip_h], options[:flip_v], # flip options[:rotation_anchor_x], options[:rotation_anchor_y], # rotation anchor ] # hash keys contain corresponding values end # Calls the calc_pos and calc_wrap methods. def calc state calc_pos state calc_wrap state end # Changes sprite's position on screen # Vectors have magnitude and direction, so the incremented x and y values give the car direction def calc_pos state state.x += state.angle.vector_x * state.speed # increments x by product of angle's x vector and speed state.y += state.angle.vector_y * state.speed # increments y by product of angle's y vector and speed state.speed *= 1.1 # scales speed up state.speed = state.speed.lesser(state.max_speed) # speed is either current speed or max speed, whichever has a lesser value (ensures that the car doesn't go too fast or exceed the max speed) end # The screen's dimensions are 1280x720. If the car goes out of scope, # it loops back around on the screen. def calc_wrap state # car returns to left side of screen if it disappears on right side of screen # sprite.width refers to tile's size, which is multipled by scale (4) to make it bigger state.x = -state.sprite.width * state.sprite.scale if state.x - 20 > 1280 # car wraps around to right side of screen if it disappears on the left side state.x = 1280 if state.x + state.sprite.width * state.sprite.scale + 20 < 0 # car wraps around to bottom of screen if it disappears at the top of the screen # if you subtract 520 pixels instead of 20 pixels, the car takes longer to reappear (try it!) state.y = 0 if state.y - 20 > 720 # if 20 pixels less than car's y position is greater than vertical scope # car wraps around to top of screen if it disappears at the bottom of the screen state.y = 720 if state.y + state.sprite.height * state.sprite.scale + 20 < 0 end # Changes angle of sprite based on user input from keyboard or controller def process_inputs args # NOTE: increasing the angle doesn't mean that the car will continue to go # in a specific direction. The angle is increasing, which means that if the # left key was kept in the "down" state, the change in the angle would cause # the car to go in a counter-clockwise direction and form a circle (360 degrees) if args.inputs.keyboard.key_held.left # if left key is pressed args.state.angle += 2 # car's angle is incremented by 2 # The same applies to decreasing the angle. If the right key was kept in the # "down" state, the decreasing angle would cause the car to go in a clockwise # direction and form a circle (360 degrees) elsif args.inputs.keyboard.key_held.right # if right key is pressed args.state.angle -= 2 # car's angle is decremented by 2 # Input from a controller can also change the angle of the car elsif args.inputs.controller_one.left_analog_x_perc != 0 args.state.angle += 2 * args.inputs.controller_one.left_analog_x_perc * -1 end end # A sprite's center of rotation can be altered # Increasing either of these numbers would dramatically increase the # car's drift when it turns! def rotation_anchor [0.7, 0.5] end # Sets opacity value of sprite to 255 so that it is not transparent at all # Change it to 0 and you won't be able to see the car sprite on the screen def opacity 255 end # Sets the color of the sprite to white. def saturation [255, 255, 255] end # Sets definition of destination_rect (used to define the car sprite) def destination_rect state [state.x, state.y, state.sprite.width * state.sprite.scale, # multiplies by 4 to set size state.sprite.height * state.sprite.scale] end # Portion of a sprite (a tile) # Sub division of sprite is denoted as a rectangle directly related to original size of .png # Tile is located at bottom left corner within a 19x10 pixel rectangle (based on sprite.width, sprite.height) def source_rect state [0, 0, state.sprite.width, state.sprite.height] end
Physics And Collisions - Simple - main.rb link
# ./samples/04_physics_and_collisions/01_simple/app/main.rb =begin Reminders: - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] =end # This sample app shows collisions between two boxes. # Runs methods needed for game to run properly. def tick args tick_instructions args, "Sample app shows how to move a square over time and determine collision." defaults args render args calc args end # Sets default values. def defaults args # These values represent the moving box. args.state.moving_box_speed = 10 args.state.moving_box_size = 100 args.state.moving_box_dx ||= 1 args.state.moving_box_dy ||= 1 args.state.moving_box ||= [0, 0, args.state.moving_box_size, args.state.moving_box_size] # moving_box_size is set as the width and height # These values represent the center box. args.state.center_box ||= [540, 260, 200, 200, 180] args.state.center_box_collision ||= false # initially no collision end def render args # If the game state denotes that a collision has occured, # render a solid square, otherwise render a border instead. if args.state.center_box_collision args.outputs.solids << args.state.center_box else args.outputs.borders << args.state.center_box end # Then render the moving box. args.outputs.solids << args.state.moving_box end # Generally in a pipeline for a game engine, you have rendering, # game simulation (calculation), and input processing. # This fuction represents the game simulation. def calc args position_moving_box args determine_collision_center_box args end # Changes the position of the moving box on the screen by multiplying the change in x (dx) and change in y (dy) by the speed, # and adding it to the current position. # dx and dy are positive if the box is moving right and up, respectively # dx and dy are negative if the box is moving left and down, respectively def position_moving_box args args.state.moving_box.x += args.state.moving_box_dx * args.state.moving_box_speed args.state.moving_box.y += args.state.moving_box_dy * args.state.moving_box_speed # 1280x720 are the virtual pixels you work with (essentially 720p). screen_width = 1280 screen_height = 720 # Position of the box is denoted by the bottom left hand corner, in # that case, we have to subtract the width of the box so that it stays # in the scene (you can try deleting the subtraction to see how it # impacts the box's movement). if args.state.moving_box.x > screen_width - args.state.moving_box_size args.state.moving_box_dx = -1 # moves left elsif args.state.moving_box.x < 0 args.state.moving_box_dx = 1 # moves right end # Here, we're making sure the moving box remains within the vertical scope of the screen if args.state.moving_box.y > screen_height - args.state.moving_box_size # if the box moves too high args.state.moving_box_dy = -1 # moves down elsif args.state.moving_box.y < 0 # if the box moves too low args.state.moving_box_dy = 1 # moves up end end def determine_collision_center_box args # Collision is handled by the engine. You simply have to call the # `intersect_rect?` function. if args.state.moving_box.intersect_rect? args.state.center_box # if the two boxes intersect args.state.center_box_collision = true # then a collision happened else args.state.center_box_collision = false # otherwise, no collision happened end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Simple Aabb Collision - main.rb link
# ./samples/04_physics_and_collisions/01_simple_aabb_collision/app/main.rb def tick args # define terrain of 32x32 sized squares args.state.terrain ||= [ { x: 640, y: 360, w: 32, h: 32, path: 'sprites/square/blue.png' }, { x: 640, y: 360 - 32, w: 32, h: 32, path: 'sprites/square/blue.png' }, { x: 640, y: 360 - 32 * 2, w: 32, h: 32, path: 'sprites/square/blue.png' }, { x: 640 + 32, y: 360 - 32 * 2, w: 32, h: 32, path: 'sprites/square/blue.png' }, { x: 640 + 32 * 2, y: 360 - 32 * 2, w: 32, h: 32, path: 'sprites/square/blue.png' }, ] # define player args.state.player ||= { x: 600, y: 360, w: 32, h: 32, dx: 0, dy: 0, path: 'sprites/square/red.png' } # render terrain and player args.outputs.sprites << args.state.terrain args.outputs.sprites << args.state.player # set dx and dy based on inputs args.state.player.dx = args.inputs.left_right * 2 args.state.player.dy = args.inputs.up_down * 2 # check for collisions on the x and y axis independently # increment the player's position by dx args.state.player.x += args.state.player.dx # check for collision on the x axis first collision = args.state.terrain.find { |t| t.intersect_rect? args.state.player } # if there is a collision, move the player to the edge of the collision # based on the direction of the player's movement and set the player's # dx to 0 if collision if args.state.player.dx > 0 args.state.player.x = collision.x - args.state.player.w elsif args.state.player.dx < 0 args.state.player.x = collision.x + collision.w end args.state.player.dx = 0 end # increment the player's position by dy args.state.player.y += args.state.player.dy # check for collision on the y axis next collision = args.state.terrain.find { |t| t.intersect_rect? args.state.player } # if there is a collision, move the player to the edge of the collision # based on the direction of the player's movement and set the player's # dy to 0 if collision if args.state.player.dy > 0 args.state.player.y = collision.y - args.state.player.h elsif args.state.player.dy < 0 args.state.player.y = collision.y + collision.h end args.state.player.dy = 0 end end
Physics And Collisions - Simple Aabb Collision With Map Editor - main.rb link
# ./samples/04_physics_and_collisions/01_simple_aabb_collision_with_map_editor/app/main.rb # the sample app is an expansion of ./01_simple_aabb_collision # but includes an in game map editor that saves map data to disk def tick args # if it's the first tick, read the terrain data from disk # and create the player if args.state.tick_count == 0 args.state.terrain = read_terrain_data args args.state.player = { x: 320, y: 320, w: 32, h: 32, dx: 0, dy: 0, path: 'sprites/square/red.png' } end # tick the game (where input and aabb collision is processed) tick_game args # tick the map editor tick_map_editor args end def tick_game args # render terrain and player args.outputs.sprites << args.state.terrain args.outputs.sprites << args.state.player # set dx and dy based on inputs args.state.player.dx = args.inputs.left_right * 2 args.state.player.dy = args.inputs.up_down * 2 # check for collisions on the x and y axis independently # increment the player's position by dx args.state.player.x += args.state.player.dx # check for collision on the x axis first collision = args.state.terrain.find { |t| t.intersect_rect? args.state.player } # if there is a collision, move the player to the edge of the collision # based on the direction of the player's movement and set the player's # dx to 0 if collision if args.state.player.dx > 0 args.state.player.x = collision.x - args.state.player.w elsif args.state.player.dx < 0 args.state.player.x = collision.x + collision.w end args.state.player.dx = 0 end # increment the player's position by dy args.state.player.y += args.state.player.dy # check for collision on the y axis next collision = args.state.terrain.find { |t| t.intersect_rect? args.state.player } # if there is a collision, move the player to the edge of the collision # based on the direction of the player's movement and set the player's # dy to 0 if collision if args.state.player.dy > 0 args.state.player.y = collision.y - args.state.player.h elsif args.state.player.dy < 0 args.state.player.y = collision.y + collision.h end args.state.player.dy = 0 end end def tick_map_editor args # determine the location of the mouse, but # aligned to the grid grid_aligned_mouse_rect = { x: args.inputs.mouse.x.idiv(32) * 32, y: args.inputs.mouse.y.idiv(32) * 32, w: 32, h: 32 } # determine if there's a tile at the grid aligned mouse location existing_terrain = args.state.terrain.find { |t| t.intersect_rect? grid_aligned_mouse_rect } # if there is, then render a red square to denote that # the tile will be deleted if existing_terrain args.outputs.sprites << { x: args.inputs.mouse.x.idiv(32) * 32, y: args.inputs.mouse.y.idiv(32) * 32, w: 32, h: 32, path: "sprites/square/red.png", a: 128 } else # otherwise, render a blue square to denote that # a tile will be added args.outputs.sprites << { x: args.inputs.mouse.x.idiv(32) * 32, y: args.inputs.mouse.y.idiv(32) * 32, w: 32, h: 32, path: "sprites/square/blue.png", a: 128 } end # if the mouse is clicked, then add or remove a tile if args.inputs.mouse.click if existing_terrain args.state.terrain.delete existing_terrain else args.state.terrain << { **grid_aligned_mouse_rect, path: "sprites/square/blue.png" } end # once the terrain state has been updated # save the terrain data to disk write_terrain_data args end end def read_terrain_data args # create the terrain data file if it doesn't exist contents = args.gtk.read_file "data/terrain.txt" if !contents args.gtk.write_file "data/terrain.txt", "" end # read the terrain data from disk which is a csv args.gtk.read_file('data/terrain.txt').split("\n").map do |line| x, y, w, h = line.split(',').map(&:to_i) { x: x, y: y, w: w, h: h, path: 'sprites/square/blue.png' } end end def write_terrain_data args terrain_csv = args.state.terrain.map { |t| "#{t.x},#{t.y},#{t.w},#{t.h}" }.join "\n" args.gtk.write_file 'data/terrain.txt', terrain_csv end
Physics And Collisions - Simple Aabb Collision With Map Editor - Data - terrain.txt link
# ./samples/04_physics_and_collisions/01_simple_aabb_collision_with_map_editor/data/terrain.txt
Physics And Collisions - Moving Objects - main.rb link
# ./samples/04_physics_and_collisions/02_moving_objects/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. For example, if we have a "numbers" hash that stores numbers in English as the key and numbers in Spanish as the value, we'd have a hash that looks like this... numbers = { "one" => "uno", "two" => "dos", "three" => "tres" } and on it goes. Now if we wanted to find the corresponding value of the "one" key, we could say puts numbers["one"] which would print "uno" to the console. - num1.greater(num2): Returns the greater value. For example, if we have the command puts 4.greater(3) the number 4 would be printed to the console since it has a greater value than 3. Similar to lesser, which returns the lesser value. - num1.lesser(num2): Finds the lower value of the given options. For example, in the statement a = 4.lesser(3) 3 has a lower value than 4, which means that the value of a would be set to 3, but if the statement had been a = 4.lesser(5) 4 has a lower value than 5, which means that the value of a would be set to 4. - reject: Removes elements from a collection if they meet certain requirements. For example, you can derive an array of odd numbers from an original array of numbers 1 through 10 by rejecting all elements that are even (or divisible by 2). - find_all: Finds all values that satisfy specific requirements. For example, you can find all elements of a collection that are divisible by 2 or find all objects that have intersected with another object. - abs: Returns the absolute value. For example, the command (-30).abs would return 30 as a result. - map: Ruby method used to transform data; used in arrays, hashes, and collections. Can be used to perform an action on every element of a collection, such as multiplying each element by 2 or declaring every element as a new entity. Reminders: - args.inputs.keyboard.KEY: Determines if a key has been pressed. For more information about the keyboard, take a look at mygame/documentation/06-keyboard.md. - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. =end # Calls methods needed for game to run properly def tick args tick_instructions args, "Use LEFT and RIGHT arrow keys to move and SPACE to jump." defaults args render args calc args input args end # sets default values and creates empty collections # initialization only happens in the first frame def defaults args fiddle args args.state.enemy.hammers ||= [] args.state.enemy.hammer_queue ||= [] args.state.tick_count = args.state.tick_count args.state.bridge_top = 128 args.state.player.x ||= 0 # initializes player's properties args.state.player.y ||= args.state.bridge_top args.state.player.w ||= 64 args.state.player.h ||= 64 args.state.player.dy ||= 0 args.state.player.dx ||= 0 args.state.enemy.x ||= 800 # initializes enemy's properties args.state.enemy.y ||= 0 args.state.enemy.w ||= 128 args.state.enemy.h ||= 128 args.state.enemy.dy ||= 0 args.state.enemy.dx ||= 0 args.state.game_over_at ||= 0 end # sets enemy, player, hammer values def fiddle args args.state.gravity = -0.3 args.state.enemy_jump_power = 10 # sets enemy values args.state.enemy_jump_interval = 60 args.state.hammer_throw_interval = 40 # sets hammer values args.state.hammer_launch_power_default = 5 args.state.hammer_launch_power_near = 2 args.state.hammer_launch_power_far = 7 args.state.hammer_upward_launch_power = 15 args.state.max_hammers_per_volley = 10 args.state.gap_between_hammers = 10 args.state.player_jump_power = 10 # sets player values args.state.player_jump_power_duration = 10 args.state.player_max_run_speed = 10 args.state.player_speed_slowdown_rate = 0.9 args.state.player_acceleration = 1 args.state.hammer_size = 32 end # outputs objects onto the screen def render args args.outputs.solids << 20.map_with_index do |i| # uses 20 squares to form bridge # sets x by multiplying 64 to index to find pixel value (places all squares side by side) # subtracts 64 from bridge_top because position is denoted by bottom left corner [i * 64, args.state.bridge_top - 64, 64, 64] end args.outputs.solids << [args.state.x, args.state.y, args.state.w, args.state.h, 255, 0, 0] args.outputs.solids << [args.state.player.x, args.state.player.y, args.state.player.w, args.state.player.h, 255, 0, 0] # outputs player onto screen (red box) args.outputs.solids << [args.state.enemy.x, args.state.enemy.y, args.state.enemy.w, args.state.enemy.h, 0, 255, 0] # outputs enemy onto screen (green box) args.outputs.solids << args.state.enemy.hammers # outputs enemy's hammers onto screen end # Performs calculations to move objects on the screen def calc args # Since velocity is the change in position, the change in x increases by dx. Same with y and dy. args.state.player.x += args.state.player.dx args.state.player.y += args.state.player.dy # Since acceleration is the change in velocity, the change in y (dy) increases every frame args.state.player.dy += args.state.gravity # player's y position is either current y position or y position of top of # bridge, whichever has a greater value # ensures that the player never goes below the bridge args.state.player.y = args.state.player.y.greater(args.state.bridge_top) # player's x position is either the current x position or 0, whichever has a greater value # ensures that the player doesn't go too far left (out of the screen's scope) args.state.player.x = args.state.player.x.greater(0) # player is not falling if it is located on the top of the bridge args.state.player.falling = false if args.state.player.y == args.state.bridge_top args.state.player.rect = [args.state.player.x, args.state.player.y, args.state.player.h, args.state.player.w] # sets definition for player args.state.enemy.x += args.state.enemy.dx # velocity; change in x increases by dx args.state.enemy.y += args.state.enemy.dy # same with y and dy # ensures that the enemy never goes below the bridge args.state.enemy.y = args.state.enemy.y.greater(args.state.bridge_top) # ensures that the enemy never goes too far left (outside the screen's scope) args.state.enemy.x = args.state.enemy.x.greater(0) # objects that go up must come down because of gravity args.state.enemy.dy += args.state.gravity args.state.enemy.y = args.state.enemy.y.greater(args.state.bridge_top) #sets definition of enemy args.state.enemy.rect = [args.state.enemy.x, args.state.enemy.y, args.state.enemy.h, args.state.enemy.w] if args.state.enemy.y == args.state.bridge_top # if enemy is located on the top of the bridge args.state.enemy.dy = 0 # there is no change in y end # if 60 frames have passed and the enemy is not moving vertically if args.state.tick_count.mod_zero?(args.state.enemy_jump_interval) && args.state.enemy.dy == 0 args.state.enemy.dy = args.state.enemy_jump_power # the enemy jumps up end # if 40 frames have passed or 5 frames have passed since the game ended if args.state.tick_count.mod_zero?(args.state.hammer_throw_interval) || args.state.game_over_at.elapsed_time == 5 # rand will return a number greater than or equal to 0 and less than given variable's value (since max is excluded) # that is why we're adding 1, to include the max possibility volley_dx = (rand(args.state.hammer_launch_power_default) + 1) * -1 # horizontal movement (follow order of operations) # if the horizontal distance between the player and enemy is less than 128 pixels if (args.state.player.x - args.state.enemy.x).abs < 128 # the change in x won't be that great since the enemy and player are closer to each other volley_dx = (rand(args.state.hammer_launch_power_near) + 1) * -1 end # if the horizontal distance between the player and enemy is greater than 300 pixels if (args.state.player.x - args.state.enemy.x).abs > 300 # change in x will be more drastic since player and enemy are so far apart volley_dx = (rand(args.state.hammer_launch_power_far) + 1) * -1 # more drastic change end (rand(args.state.max_hammers_per_volley) + 1).map_with_index do |i| args.state.enemy.hammer_queue << { # stores hammer values in a hash x: args.state.enemy.x, w: args.state.hammer_size, h: args.state.hammer_size, dx: volley_dx, # change in horizontal position # multiplication operator takes precedence over addition operator throw_at: args.state.tick_count + i * args.state.gap_between_hammers } end end # add elements from hammer_queue collection to the hammers collection by # finding all hammers that were thrown before the current frame (have already been thrown) args.state.enemy.hammers += args.state.enemy.hammer_queue.find_all do |h| h[:throw_at] < args.state.tick_count end args.state.enemy.hammers.each do |h| # sets values for all hammers in collection h[:y] ||= args.state.enemy.y + 130 h[:dy] ||= args.state.hammer_upward_launch_power h[:dy] += args.state.gravity # acceleration is change in gravity h[:x] += h[:dx] # incremented by change in position h[:y] += h[:dy] h[:rect] = [h[:x], h[:y], h[:w], h[:h]] # sets definition of hammer's rect end # reject hammers that have been thrown before current frame (have already been thrown) args.state.enemy.hammer_queue = args.state.enemy.hammer_queue.reject do |h| h[:throw_at] < args.state.tick_count end # any hammers with a y position less than 0 are rejected from the hammers collection # since they have gone too far down (outside the scope's screen) args.state.enemy.hammers = args.state.enemy.hammers.reject { |h| h[:y] < 0 } # if there are any hammers that intersect with (or hit) the player, # the reset_player method is called (so the game can start over) if args.state.enemy.hammers.any? { |h| h[:rect].intersect_rect?(args.state.player.rect) } reset_player args end # if the enemy's rect intersects with (or hits) the player, # the reset_player method is called (so the game can start over) if args.state.enemy.rect.intersect_rect? args.state.player.rect reset_player args end end # Resets the player by changing its properties back to the values they had at initialization def reset_player args args.state.player.x = 0 args.state.player.y = args.state.bridge_top args.state.player.dy = 0 args.state.player.dx = 0 args.state.enemy.hammers.clear # empties hammer collection args.state.enemy.hammer_queue.clear # empties hammer_queue args.state.game_over_at = args.state.tick_count # game_over_at set to current frame (or passage of time) end # Processes input from the user to move the player def input args if args.inputs.keyboard.space # if the user presses the space bar args.state.player.jumped_at ||= args.state.tick_count # jumped_at is set to current frame # if the time that has passed since the jump is less than the player's jump duration and # the player is not falling if args.state.player.jumped_at.elapsed_time < args.state.player_jump_power_duration && !args.state.player.falling args.state.player.dy = args.state.player_jump_power # change in y is set to power of player's jump end end # if the space bar is in the "up" state (or not being pressed down) if args.inputs.keyboard.key_up.space args.state.player.jumped_at = nil # jumped_at is empty args.state.player.falling = true # the player is falling end if args.inputs.keyboard.left # if left key is pressed args.state.player.dx -= args.state.player_acceleration # dx decreases by acceleration (player goes left) # dx is either set to current dx or the negative max run speed (which would be -10), # whichever has a greater value args.state.player.dx = args.state.player.dx.greater(-args.state.player_max_run_speed) elsif args.inputs.keyboard.right # if right key is pressed args.state.player.dx += args.state.player_acceleration # dx increases by acceleration (player goes right) # dx is either set to current dx or max run speed (which would be 10), # whichever has a lesser value args.state.player.dx = args.state.player.dx.lesser(args.state.player_max_run_speed) else args.state.player.dx *= args.state.player_speed_slowdown_rate # dx is scaled down end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.space || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Entities - main.rb link
# ./samples/04_physics_and_collisions/03_entities/app/main.rb =begin Reminders: - map: Ruby method used to transform data; used in arrays, hashes, and collections. Can be used to perform an action on every element of a collection, such as multiplying each element by 2 or declaring every element as a new entity. - reject: Removes elements from a collection if they meet certain requirements. For example, you can derive an array of odd numbers from an original array of numbers 1 through 10 by rejecting all elements that are even (or divisible by 2). - args.state.new_entity: Used when we want to create a new object, like a sprite or button. In this sample app, new_entity is used to define the properties of enemies and bullets. (Remember, you can use state to define ANY property and it will be retained across frames.) - args.outputs.labels: An array. The values generate a label on the screen. The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. =end # This sample app shows enemies that contain an id value and the time they were created. # These enemies can be removed by shooting at them with bullets. # Calls all methods necessary for the game to function properly. def tick args tick_instructions args, "Sample app shows how to use args.state.new_entity along with collisions. CLICK to shoot a bullet." defaults args render args calc args process_inputs args end # Sets default values # Enemies and bullets start off as empty collections def defaults args args.state.enemies ||= [] args.state.bullets ||= [] end # Provides each enemy in enemies collection with rectangular border, # as well as a label showing id and when they were created def render args # When you're calling a method that takes no arguments, you can use this & syntax on map. # Numbers are being added to x and y in order to keep the text within the enemy's borders. args.outputs.borders << args.state.enemies.map(&:rect) args.outputs.labels << args.state.enemies.flat_map do |enemy| [ [enemy.x + 4, enemy.y + 29, "id: #{enemy.entity_id}", -3, 0], [enemy.x + 4, enemy.y + 17, "created_at: #{enemy.created_at}", -3, 0] # frame enemy was created ] end # Outputs bullets in bullets collection as rectangular solids args.outputs.solids << args.state.bullets.map(&:rect) end # Calls all methods necessary for performing calculations def calc args add_new_enemies_if_needed args move_bullets args calculate_collisions args remove_bullets_of_screen args end # Adds enemies to the enemies collection and sets their values def add_new_enemies_if_needed args return if args.state.enemies.length >= 10 # if 10 or more enemies, enemies are not added return unless args.state.bullets.length == 0 # if user has not yet shot bullet, no enemies are added args.state.enemies += (10 - args.state.enemies.length).map do # adds enemies so there are 10 total args.state.new_entity(:enemy) do |e| # each enemy is declared as a new entity e.x = 640 + 500 * rand # each enemy is given random position on screen e.y = 600 * rand + 50 e.rect = [e.x, e.y, 130, 30] # sets definition for enemy's rect end end end # Moves bullets across screen # Sets definition of the bullets def move_bullets args args.state.bullets.each do |bullet| # perform action on each bullet in collection bullet.x += bullet.speed # increment x by speed (bullets fly horizontally across screen) # By randomizing the value that increments bullet.y, the bullet does not fly straight up and out # of the scope of the screen. Try removing what follows bullet.speed, or changing 0.25 to 1.25 to # see what happens to the bullet's movement. bullet.y += bullet.speed.*(0.25).randomize(:ratio, :sign) bullet.rect = [bullet.x, bullet.y, bullet.size, bullet.size] # sets definition of bullet's rect end end # Determines if a bullet hits an enemy def calculate_collisions args args.state.bullets.each do |bullet| # perform action on every bullet and enemy in collections args.state.enemies.each do |enemy| # if bullet has not exploded yet and the bullet hits an enemy if !bullet.exploded && bullet.rect.intersect_rect?(enemy.rect) bullet.exploded = true # bullet explodes enemy.dead = true # enemy is killed end end end # All exploded bullets are rejected or removed from the bullets collection # and any dead enemy is rejected from the enemies collection. args.state.bullets = args.state.bullets.reject(&:exploded) args.state.enemies = args.state.enemies.reject(&:dead) end # Bullets are rejected from bullets collection once their position exceeds the width of screen def remove_bullets_of_screen args args.state.bullets = args.state.bullets.reject { |bullet| bullet.x > 1280 } # screen width is 1280 end # Calls fire_bullet method def process_inputs args fire_bullet args end # Once mouse is clicked by the user to fire a bullet, a new bullet is added to bullets collection def fire_bullet args return unless args.inputs.mouse.click # return unless mouse is clicked args.state.bullets << args.state.new_entity(:bullet) do |bullet| # new bullet is declared a new entity bullet.y = args.inputs.mouse.click.point.y # set to the y value of where the mouse was clicked bullet.x = 0 # starts on the left side of the screen bullet.size = 10 bullet.speed = 10 * rand + 2 # speed of a bullet is randomized bullet.rect = [bullet.x, bullet.y, bullet.size, bullet.size] # definition is set end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.space || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Box Collision - main.rb link
# ./samples/04_physics_and_collisions/04_box_collision/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - first: Returns the first element of the array. For example, if we have an array numbers = [1, 2, 3, 4, 5] and we call first by saying numbers.first the number 1 will be returned because it is the first element of the numbers array. - num1.idiv(num2): Divides two numbers and returns an integer. For example, 16.idiv(3) = 5, because 16 / 3 is 5.33333 returned as an integer. 16.idiv(4) = 4, because 16 / 4 is 4 and already has no decimal. Reminders: - find_all: Finds all values that satisfy specific requirements. - ARRAY#intersect_rect?: An array with at least four values is considered a rect. The intersect_rect? function returns true or false depending on if the two rectangles intersect. - reject: Removes elements from a collection if they meet certain requirements. =end # This sample app allows users to create tiles and place them anywhere on the screen as obstacles. # The player can then move and maneuver around them. class PoorManPlatformerPhysics attr_accessor :grid, :inputs, :state, :outputs # Calls all methods necessary for the app to run successfully. def tick defaults render calc process_inputs end # Sets default values for variables. # The ||= sign means that the variable will only be set to the value following the = sign if the value has # not already been set before. Intialization happens only in the first frame. def defaults state.tile_size = 64 state.gravity = -0.2 state.previous_tile_size ||= state.tile_size state.x ||= 0 state.y ||= 800 state.dy ||= 0 state.dx ||= 0 state.world ||= [] state.world_lookup ||= {} state.world_collision_rects ||= [] end # Outputs solids and borders of different colors for the world and collision_rects collections. def render # Sets a black background on the screen (Comment this line out and the background will become white.) # Also note that black is the default color for when no color is assigned. outputs.solids << grid.rect # The position, size, and color (white) are set for borders given to the world collection. # Try changing the color by assigning different numbers (between 0 and 255) to the last three parameters. outputs.borders << state.world.map do |x, y| [x * state.tile_size, y * state.tile_size, state.tile_size, state.tile_size, 255, 255, 255] end # The top, bottom, and sides of the borders for collision_rects are different colors. outputs.borders << state.world_collision_rects.map do |e| [ [e[:top], 0, 170, 0], # top is a shade of green [e[:bottom], 0, 100, 170], # bottom is a shade of greenish-blue [e[:left_right], 170, 0, 0], # left and right are a shade of red ] end # Sets the position, size, and color (a shade of green) of the borders of only the player's # box and outputs it. If you change the 180 to 0, the player's box will be black and you # won't be able to see it (because it will match the black background). outputs.borders << [state.x, state.y, state.tile_size, state.tile_size, 0, 180, 0] end # Calls methods needed to perform calculations. def calc calc_world_lookup calc_player end # Performs calculations on world_lookup and sets values. def calc_world_lookup # If the tile size isn't equal to the previous tile size, # the previous tile size is set to the tile size, # and world_lookup hash is set to empty. if state.tile_size != state.previous_tile_size state.previous_tile_size = state.tile_size state.world_lookup = {} # empty hash end # return if the world_lookup hash has keys (or, in other words, is not empty) # return unless the world collection has values inside of it (or is not empty) return if state.world_lookup.keys.length > 0 return unless state.world.length > 0 # Starts with an empty hash for world_lookup. # Searches through the world and finds the coordinates that exist. state.world_lookup = {} state.world.each { |x, y| state.world_lookup[[x, y]] = true } # Assigns world_collision_rects for every sprite drawn. state.world_collision_rects = state.world_lookup .keys .map do |coord_x, coord_y| s = state.tile_size # multiply by tile size so the grid coordinates; sets pixel value # don't forget that position is denoted by bottom left corner # set x = coord_x or y = coord_y and see what happens! x = s * coord_x y = s * coord_y { # The values added to x, y, and s position the world_collision_rects so they all appear # stacked (on top of world rects) but don't directly overlap. # Remove these added values and mess around with the rect placement! args: [coord_x, coord_y], left_right: [x, y + 4, s, s - 6], # hash keys and values top: [x + 4, y + 6, s - 8, s - 6], bottom: [x + 1, y - 1, s - 2, s - 8], } end end # Performs calculations to change the x and y values of the player's box. def calc_player # Since acceleration is the change in velocity, the change in y (dy) increases every frame. # What goes up must come down because of gravity. state.dy += state.gravity # Calls the calc_box_collision and calc_edge_collision methods. calc_box_collision calc_edge_collision # Since velocity is the change in position, the change in y increases by dy. Same with x and dx. state.y += state.dy state.x += state.dx # Scales dx down. state.dx *= 0.8 end # Calls methods needed to determine collisions between player and world_collision rects. def calc_box_collision return unless state.world_lookup.keys.length > 0 # return unless hash has atleast 1 key collision_floor! collision_left! collision_right! collision_ceiling! end # Finds collisions between the bottom of the player's rect and the top of a world_collision_rect. def collision_floor! return unless state.dy <= 0 # return unless player is going down or is as far down as possible player_rect = [state.x, state.y - 0.1, state.tile_size, state.tile_size] # definition of player # Goes through world_collision_rects to find all intersections between the bottom of player's rect and # the top of a world_collision_rect (hence the "-0.1" above) floor_collisions = state.world_collision_rects .find_all { |r| r[:top].intersect_rect?(player_rect, collision_tollerance) } .first return unless floor_collisions # return unless collision occurred state.y = floor_collisions[:top].top # player's y is set to the y of the top of the collided rect state.dy = 0 # if a collision occurred, the player's rect isn't moving because its path is blocked end # Finds collisions between the player's left side and the right side of a world_collision_rect. def collision_left! return unless state.dx < 0 # return unless player is moving left player_rect = [state.x - 0.1, state.y, state.tile_size, state.tile_size] # Goes through world_collision_rects to find all intersections beween the player's left side and the # right side of a world_collision_rect. left_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, collision_tollerance) } .first return unless left_side_collisions # return unless collision occurred # player's x is set to the value of the x of the collided rect's right side state.x = left_side_collisions[:left_right].right state.dx = 0 # player isn't moving left because its path is blocked end # Finds collisions between the right side of the player and the left side of a world_collision_rect. def collision_right! return unless state.dx > 0 # return unless player is moving right player_rect = [state.x + 0.1, state.y, state.tile_size, state.tile_size] # Goes through world_collision_rects to find all intersections between the player's right side # and the left side of a world_collision_rect (hence the "+0.1" above) right_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, collision_tollerance) } .first return unless right_side_collisions # return unless collision occurred # player's x is set to the value of the collided rect's left, minus the size of a rect # tile size is subtracted because player's position is denoted by bottom left corner state.x = right_side_collisions[:left_right].left - state.tile_size state.dx = 0 # player isn't moving right because its path is blocked end # Finds collisions between the top of the player's rect and the bottom of a world_collision_rect. def collision_ceiling! return unless state.dy > 0 # return unless player is moving up player_rect = [state.x, state.y + 0.1, state.tile_size, state.tile_size] # Goes through world_collision_rects to find intersections between the bottom of a # world_collision_rect and the top of the player's rect (hence the "+0.1" above) ceil_collisions = state.world_collision_rects .find_all { |r| r[:bottom].intersect_rect?(player_rect, collision_tollerance) } .first return unless ceil_collisions # return unless collision occurred # player's y is set to the bottom y of the rect it collided with, minus the size of a rect state.y = ceil_collisions[:bottom].y - state.tile_size state.dy = 0 # if a collision occurred, the player isn't moving up because its path is blocked end # Makes sure the player remains within the screen's dimensions. def calc_edge_collision #Ensures that the player doesn't fall below the map. if state.y < 0 state.y = 0 state.dy = 0 #Ensures that the player doesn't go too high. # Position of player is denoted by bottom left hand corner, which is why we have to subtract the # size of the player's box (so it remains visible on the screen) elsif state.y > 720 - state.tile_size # if the player's y position exceeds the height of screen state.y = 720 - state.tile_size # the player will remain as high as possible while staying on screen state.dy = 0 end # Ensures that the player remains in the horizontal range that it is supposed to. if state.x >= 1280 - state.tile_size && state.dx > 0 # if player moves too far right state.x = 1280 - state.tile_size # player will remain as right as possible while staying on screen state.dx = 0 elsif state.x <= 0 && state.dx < 0 # if player moves too far left state.x = 0 # player will remain as left as possible while remaining on screen state.dx = 0 end end # Processes input from the user on the keyboard. def process_inputs if inputs.mouse.down state.world_lookup = {} x, y = to_coord inputs.mouse.down.point # gets x, y coordinates for the grid if state.world.any? { |loc| loc == [x, y] } # checks if coordinates duplicate state.world = state.world.reject { |loc| loc == [x, y] } # erases tile space else state.world << [x, y] # If no duplicates, adds to world collection end end # Sets dx to 0 if the player lets go of arrow keys. if inputs.keyboard.key_up.right state.dx = 0 elsif inputs.keyboard.key_up.left state.dx = 0 end # Sets dx to 3 in whatever direction the player chooses. if inputs.keyboard.key_held.right # if right key is pressed state.dx = 3 elsif inputs.keyboard.key_held.left # if left key is pressed state.dx = -3 end #Sets dy to 5 to make the player ~fly~ when they press the space bar if inputs.keyboard.key_held.space state.dy = 5 end end def to_coord point # Integer divides (idiv) point.x to turn into grid # Then, you can just multiply each integer by state.tile_size later so the grid coordinates. [point.x.idiv(state.tile_size), point.y.idiv(state.tile_size)] end # Represents the tolerance for a collision between the player's rect and another rect. def collision_tollerance 0.0 end end $platformer_physics = PoorManPlatformerPhysics.new def tick args $platformer_physics.grid = args.grid $platformer_physics.inputs = args.inputs $platformer_physics.state = args.state $platformer_physics.outputs = args.outputs $platformer_physics.tick tick_instructions args, "Sample app shows platformer collisions. CLICK to place box. ARROW keys to move around. SPACE to jump." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Box Collision 2 - main.rb link
# ./samples/04_physics_and_collisions/05_box_collision_2/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - times: Performs an action a specific number of times. For example, if we said 5.times puts "Hello DragonRuby", then we'd see the words "Hello DragonRuby" printed on the console 5 times. - split: Divides a string into substrings based on a delimiter. For example, if we had a command "DragonRuby is awesome".split(" ") then the result would be ["DragonRuby", "is", "awesome"] because the words are separated by a space delimiter. - join: Opposite of split; converts each element of array to a string separated by delimiter. For example, if we had a command ["DragonRuby","is","awesome"].join(" ") then the result would be "DragonRuby is awesome". Reminders: - to_s: Returns a string representation of an object. For example, if we had 500.to_s the string "500" would be returned. Similar to to_i, which returns an integer representation of an object. - elapsed_time: How many frames have passed since the click event. - args.outputs.labels: An array. Values in the array generate labels on the screen. The parameters are: [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - inputs.mouse.down: Determines whether or not the mouse is being pressed down. The position of the mouse when it is pressed down can be found using inputs.mouse.down.point.(x|y). - first: Returns the first element of the array. - num1.idiv(num2): Divides two numbers and returns an integer. - find_all: Finds all values that satisfy specific requirements. - ARRAY#intersect_rect?: Returns true or false depending on if two rectangles intersect. - reject: Removes elements from a collection if they meet certain requirements. - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. =end MAP_FILE_PATH = 'app/map.txt' # the map.txt file in the app folder contains exported map class MetroidvaniaStarter attr_accessor :grid, :inputs, :state, :outputs, :gtk # Calls methods needed to run the game properly. def tick defaults render calc process_inputs end # Sets all the default variables. # '||' states that initialization occurs only in the first frame. def defaults state.tile_size = 64 state.gravity = -0.2 state.player_width = 60 state.player_height = 64 state.collision_tolerance = 0.0 state.previous_tile_size ||= state.tile_size state.x ||= 0 state.y ||= 800 state.dy ||= 0 state.dx ||= 0 attempt_load_world_from_file state.world_lookup ||= { } state.world_collision_rects ||= [] state.mode ||= :creating # alternates between :creating and :selecting for sprite selection state.select_menu ||= [0, 720, 1280, 720] #=======================================IMPORTANT=======================================# # When adding sprites, please label them "image1.png", "image2.png", image3".png", etc. # Once you have done that, adjust "state.sprite_quantity" to how many sprites you have. #=======================================================================================# state.sprite_quantity ||= 20 # IMPORTANT TO ALTER IF SPRITES ADDED IF YOU ADD MORE SPRITES state.sprite_coords ||= [] state.banner_coords ||= [640, 680 + 720] state.sprite_selected ||= 1 state.map_saved_at ||= 0 # Sets all the cordinate values for the sprite selection screen into a grid # Displayed when 's' is pressed by player to access sprites if state.sprite_coords == [] # if sprite_coords is an empty array count = 1 temp_x = 165 # sets a starting x and y position for display temp_y = 500 + 720 state.sprite_quantity.times do # for the number of sprites you have state.sprite_coords += [[temp_x, temp_y, count]] # add element to sprite_coords array temp_x += 100 # increment temp_x count += 1 # increment count if temp_x > 1280 - (165 + 50) # if exceeding specific horizontal width on screen temp_x = 165 # a new row of sprites starts temp_y -= 75 # new row of sprites starts 75 units lower than the previous row end end end end # Places sprites def render # Sets the x, y, width, height, and image path for each sprite in the world collection. outputs.sprites << state.world.map do |x, y, sprite| [x * state.tile_size, # multiply by size so grid coordinates; pixel value of location y * state.tile_size, state.tile_size, state.tile_size, 'sprites/image' + sprite.to_s + '.png'] # uses concatenation to create unique image path end # Outputs sprite for the player by setting x, y, width, height, and image path outputs.sprites << [state.x, state.y, state.player_width, state.player_height,'sprites/player.png'] # Outputs labels as primitives in top right of the screen outputs.primitives << [920, 700, 'Press \'s\' to access sprites.', 1, 0].label outputs.primitives << [920, 675, 'Click existing sprite to delete.', 1, 0].label outputs.primitives << [920, 640, '<- and -> to move.', 1, 0].label outputs.primitives << [920, 615, 'Press and hold space to jump.', 1, 0].label outputs.primitives << [920, 580, 'Press \'e\' to export current map.', 1, 0].label # if the map is saved and less than 120 frames have passed, the label is displayed if state.map_saved_at > 0 && state.map_saved_at.elapsed_time < 120 outputs.primitives << [920, 555, 'Map has been exported!', 1, 0, 50, 100, 50].label end # If player hits 's', following appears if state.mode == :selecting # White background for sprite selection outputs.primitives << [state.select_menu, 255, 255, 255].solid # Select tile label at the top of the screen outputs.primitives << [state.banner_coords.x, state.banner_coords.y, "Select Sprite (sprites located in \"sprites\" folder)", 10, 1, 0, 0, 0, 255].label # Places sprites in locations calculated in the defaults function outputs.primitives << state.sprite_coords.map do |x, y, order| [x, y, 50, 50, 'sprites/image' + order.to_s + ".png"].sprite end end # Creates sprite following mouse to help indicate which sprite you have selected # 10 is subtracted from the mouse's x position so that the sprite is not covered by the mouse icon outputs.primitives << [inputs.mouse.position.x - 10, inputs.mouse.position.y, 10, 10, 'sprites/image' + state.sprite_selected.to_s + ".png"].sprite end # Calls methods that perform calculations def calc calc_in_game calc_sprite_selection end # Calls methods that perform calculations (if in creating mode) def calc_in_game return unless state.mode == :creating calc_world_lookup calc_player end def calc_world_lookup # If the tile size isn't equal to the previous tile size, # the previous tile size is set to the tile size, # and world_lookup hash is set to empty. if state.tile_size != state.previous_tile_size state.previous_tile_size = state.tile_size state.world_lookup = {} end # return if world_lookup is not empty or if world is empty return if state.world_lookup.keys.length > 0 return unless state.world.length > 0 # Searches through the world and finds the coordinates that exist state.world_lookup = {} state.world.each { |x, y| state.world_lookup[[x, y]] = true } # Assigns collision rects for every sprite drawn state.world_collision_rects = state.world_lookup .keys .map do |coord_x, coord_y| s = state.tile_size # Multiplying by s (the size of a tile) ensures that the rect is # placed exactly where you want it to be placed (causes grid to coordinate) # How many pixels horizontally across and vertically up and down x = s * coord_x y = s * coord_y { args: [coord_x, coord_y], left_right: [x, y + 4, s, s - 6], # hash keys and values top: [x + 4, y + 6, s - 8, s - 6], bottom: [x + 1, y - 1, s - 2, s - 8], } end end # Calculates movement of player and calls methods that perform collision calculations def calc_player state.dy += state.gravity # what goes up must come down because of gravity calc_box_collision calc_edge_collision state.y += state.dy # Since velocity is the change in position, the change in y increases by dy state.x += state.dx # Ditto line above but dx and x state.dx *= 0.8 # Scales dx down end # Calls methods that determine whether the player collides with any world_collision_rects. def calc_box_collision return unless state.world_lookup.keys.length > 0 # return unless hash has atleast 1 key collision_floor collision_left collision_right collision_ceiling end # Finds collisions between the bottom of the player's rect and the top of a world_collision_rect. def collision_floor return unless state.dy <= 0 # return unless player is going down or is as far down as possible player_rect = [state.x, next_y, state.tile_size, state.tile_size] # definition of player # Runs through all the sprites on the field and finds all intersections between player's # bottom and the top of a rect. floor_collisions = state.world_collision_rects .find_all { |r| r[:top].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless floor_collisions # performs following changes if a collision has occurred state.y = floor_collisions[:top].top # y of player is set to the y of the colliding rect's top state.dy = 0 # no change in y because the player's path is blocked end # Finds collisions between the player's left side and the right side of a world_collision_rect. def collision_left return unless state.dx < 0 # return unless player is moving left player_rect = [next_x, state.y, state.tile_size, state.tile_size] # Runs through all the sprites on the field and finds all intersections between the player's left side # and the right side of a rect. left_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless left_side_collisions # return unless collision occurred state.x = left_side_collisions[:left_right].right # sets player's x to the x of the colliding rect's right side state.dx = 0 # no change in x because the player's path is blocked end # Finds collisions between the right side of the player and the left side of a world_collision_rect. def collision_right return unless state.dx > 0 # return unless player is moving right player_rect = [next_x, state.y, state.tile_size, state.tile_size] # Runs through all the sprites on the field and finds all intersections between the player's # right side and the left side of a rect. right_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless right_side_collisions # return unless collision occurred state.x = right_side_collisions[:left_right].left - state.tile_size # player's x is set to the x of colliding rect's left side (minus tile size since x is the player's bottom left corner) state.dx = 0 # no change in x because the player's path is blocked end # Finds collisions between the top of the player's rect and the bottom of a world_collision_rect. def collision_ceiling return unless state.dy > 0 # return unless player is moving up player_rect = [state.x, next_y, state.player_width, state.player_height] # Runs through all the sprites on the field and finds all intersections between the player's top # and the bottom of a rect. ceil_collisions = state.world_collision_rects .find_all { |r| r[:bottom].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless ceil_collisions # return unless collision occurred state.y = ceil_collisions[:bottom].y - state.tile_size # player's y is set to the y of the colliding rect's bottom (minus tile size) state.dy = 0 # no change in y because the player's path is blocked end # Makes sure the player remains within the screen's dimensions. def calc_edge_collision # Ensures that player doesn't fall below the map if next_y < 0 && state.dy < 0 # if player is moving down and is about to fall (next_y) below the map's scope state.y = 0 # 0 is the lowest the player can be while staying on the screen state.dy = 0 # Ensures player doesn't go insanely high elsif next_y > 720 - state.tile_size && state.dy > 0 # if player is moving up, about to exceed map's scope state.y = 720 - state.tile_size # if we don't subtract tile_size, we won't be able to see the player on the screen state.dy = 0 end # Ensures that player remains in the horizontal range its supposed to if state.x >= 1280 - state.tile_size && state.dx > 0 # if the player is moving too far right state.x = 1280 - state.tile_size # farthest right the player can be while remaining in the screen's scope state.dx = 0 elsif state.x <= 0 && state.dx < 0 # if the player is moving too far left state.x = 0 # farthest left the player can be while remaining in the screen's scope state.dx = 0 end end def calc_sprite_selection # Does the transition to bring down the select sprite screen if state.mode == :selecting && state.select_menu.y != 0 state.select_menu.y = 0 # sets y position of select menu (shown when 's' is pressed) state.banner_coords.y = 680 # sets y position of Select Sprite banner state.sprite_coords = state.sprite_coords.map do |x, y, w, h| [x, y - 720, w, h] # sets definition of sprites (change '-' to '+' and the sprites can't be seen) end end # Does the transition to leave the select sprite screen if state.mode == :creating && state.select_menu.y != 720 state.select_menu.y = 720 # sets y position of select menu (menu is retreated back up) state.banner_coords.y = 1000 # sets y position of Select Sprite banner state.sprite_coords = state.sprite_coords.map do |x, y, w, h| [x, y + 720, w, h] # sets definition of all elements in collection end end end def process_inputs # If the state.mode is back and if the menu has retreated back up # call methods that process user inputs if state.mode == :creating process_inputs_player_movement process_inputs_place_tile end # For each sprite_coordinate added, check what sprite was selected if state.mode == :selecting state.sprite_coords.map do |x, y, order| # goes through all sprites in collection # checks that a specific sprite was pressed based on x, y position if inputs.mouse.down && # the && (and) sign means ALL statements must be true for the evaluation to be true inputs.mouse.down.point.x >= x && # x is greater than or equal to sprite's x and inputs.mouse.down.point.x <= x + 50 && # x is less than or equal to 50 pixels to the right inputs.mouse.down.point.y >= y && # y is greater than or equal to sprite's y inputs.mouse.down.point.y <= y + 50 # y is less than or equal to 50 pixels up state.sprite_selected = order # sprite is chosen end end end inputs_export_stage process_inputs_show_available_sprites end # Moves the player based on the keys they press on their keyboard def process_inputs_player_movement # Sets dx to 0 if the player lets go of arrow keys (player won't move left or right) if inputs.keyboard.key_up.right state.dx = 0 elsif inputs.keyboard.key_up.left state.dx = 0 end # Sets dx to 3 in whatever direction the player chooses when they hold down (or press) the left or right keys if inputs.keyboard.key_held.right state.dx = 3 elsif inputs.keyboard.key_held.left state.dx = -3 end # Sets dy to 5 to make the player ~fly~ when they press the space bar on their keyboard if inputs.keyboard.key_held.space state.dy = 5 end end # Adds tile in the place the user holds down the mouse def process_inputs_place_tile if inputs.mouse.down # if mouse is pressed state.world_lookup = {} x, y = to_coord inputs.mouse.down.point # gets x, y coordinates for the grid # Checks if any coordinates duplicate (already exist in world) if state.world.any? { |existing_x, existing_y, n| existing_x == x && existing_y == y } #erases existing tile space by rejecting them from world state.world = state.world.reject do |existing_x, existing_y, n| existing_x == x && existing_y == y end else state.world << [x, y, state.sprite_selected] # If no duplicates, add the sprite end end end # Stores/exports world collection's info (coordinates, sprite number) into a file def inputs_export_stage if inputs.keyboard.key_down.e # if "e" is pressed export_string = state.world.map do |x, y, sprite_number| # stores world info in a string "#{x},#{y},#{sprite_number}" # using string interpolation end gtk.write_file(MAP_FILE_PATH, export_string.join("\n")) # writes string into a file state.map_saved_at = state.tick_count # frame number (passage of time) when the map was saved end end def process_inputs_show_available_sprites # Based on keyboard input, the entity (:creating and :selecting) switch if inputs.keyboard.key_held.s && state.mode == :creating # if "s" is pressed and currently creating state.mode = :selecting # will change to selecting inputs.keyboard.clear # VERY IMPORTANT! If not present, it'll flicker between on and off elsif inputs.keyboard.key_held.s && state.mode == :selecting # if "s" is pressed and currently selecting state.mode = :creating # will change to creating inputs.keyboard.clear # VERY IMPORTANT! If not present, it'll flicker between on and off end end # Loads the world collection by reading from the map.txt file in the app folder def attempt_load_world_from_file return if state.world # return if the world collection is already populated state.world ||= [] # initialized as an empty collection exported_world = gtk.read_file(MAP_FILE_PATH) # reads the file using the path mentioned at top of code return unless exported_world # return unless the file read was successful state.world = exported_world.each_line.map do |l| # perform action on each line of exported_world l.split(',').map(&:to_i) # calls split using ',' as a delimiter, and invokes .map on the collection, # calling to_i (converts to integers) on each element end end # Adds the change in y to y to determine the next y position of the player. def next_y state.y + state.dy end # Determines next x position of player def next_x if state.dx < 0 # if the player moves left return state.x - (state.tile_size - state.player_width) # subtracts since the change in x is negative (player is moving left) else return state.x + (state.tile_size - state.player_width) # adds since the change in x is positive (player is moving right) end end def to_coord point # Integer divides (idiv) point.x to turn into grid # Then, you can just multiply each integer by state.tile_size # later and huzzah. Grid coordinates [point.x.idiv(state.tile_size), point.y.idiv(state.tile_size)] end end $metroidvania_starter = MetroidvaniaStarter.new def tick args $metroidvania_starter.grid = args.grid $metroidvania_starter.inputs = args.inputs $metroidvania_starter.state = args.state $metroidvania_starter.outputs = args.outputs $metroidvania_starter.gtk = args.gtk $metroidvania_starter.tick end
Physics And Collisions - Box Collision 3 - main.rb link
# ./samples/04_physics_and_collisions/06_box_collision_3/app/main.rb class Game attr_gtk def tick defaults render input_edit_map input_player calc_player end def defaults state.gravity = -0.4 state.drag = 0.15 state.tile_size = 32 state.player.size = 16 state.player.jump_power = 12 state.tiles ||= [] state.player.y ||= 800 state.player.x ||= 100 state.player.dy ||= 0 state.player.dx ||= 0 state.player.jumped_down_at ||= 0 state.player.jumped_at ||= 0 calc_player_rect if !state.player.rect end def render outputs.labels << [10, 10.from_top, "tile: click to add a tile, hold X key and click to delete a tile."] outputs.labels << [10, 35.from_top, "move: use left and right to move, space to jump, down and space to jump down."] outputs.labels << [10, 55.from_top, " You can jump through or jump down through tiles with a height of 1."] outputs.background_color = [80, 80, 80] outputs.sprites << tiles.map(&:sprite) outputs.sprites << (player.rect.merge path: 'sprites/square/green.png') mouse_overlay = { x: (inputs.mouse.x.ifloor state.tile_size), y: (inputs.mouse.y.ifloor state.tile_size), w: state.tile_size, h: state.tile_size, a: 100 } mouse_overlay = mouse_overlay.merge r: 255 if state.delete_mode if state.mouse_held outputs.primitives << mouse_overlay.border! else outputs.primitives << mouse_overlay.solid! end end def input_edit_map state.mouse_held = true if inputs.mouse.down state.mouse_held = false if inputs.mouse.up if inputs.keyboard.x state.delete_mode = true elsif inputs.keyboard.key_up.x state.delete_mode = false end return unless state.mouse_held ordinal = { x: (inputs.mouse.x.idiv state.tile_size), y: (inputs.mouse.y.idiv state.tile_size) } found = find_tile ordinal if !found && !state.delete_mode tiles << (state.new_entity :tile, ordinal) recompute_tiles elsif found && state.delete_mode tiles.delete found recompute_tiles end end def input_player player.dx += inputs.left_right if inputs.keyboard.key_down.space && inputs.keyboard.down player.dy = player.jump_power * -1 player.jumped_at = 0 player.jumped_down_at = state.tick_count elsif inputs.keyboard.key_down.space player.dy = player.jump_power player.jumped_at = state.tick_count player.jumped_down_at = 0 end end def calc_player calc_player_rect calc_below calc_left calc_right calc_above calc_player_dy calc_player_dx reset_player if player_off_stage? end def calc_player_rect player.rect = current_player_rect player.next_rect = player.rect.merge x: player.x + player.dx, y: player.y + player.dy player.prev_rect = player.rect.merge x: player.x - player.dx, y: player.y - player.dy end def calc_below return unless player.dy <= 0 tiles_below = find_tiles { |t| t.rect.top <= player.prev_rect.y } collision = find_colliding_tile tiles_below, (player.rect.merge y: player.next_rect.y) return unless collision if collision.neighbors.b == :none && player.jumped_down_at.elapsed_time < 10 player.dy = -1 else player.y = collision.rect.y + state.tile_size player.dy = 0 end end def calc_left return unless player.dx < 0 tiles_left = find_tiles { |t| t.rect.right <= player.prev_rect.left } collision = find_colliding_tile tiles_left, (player.rect.merge x: player.next_rect.x) return unless collision player.x = collision.rect.right player.dx = 0 end def calc_right return unless player.dx > 0 tiles_right = find_tiles { |t| t.rect.left >= player.prev_rect.right } collision = find_colliding_tile tiles_right, (player.rect.merge x: player.next_rect.x) return unless collision player.x = collision.rect.left - player.rect.w player.dx = 0 end def calc_above return unless player.dy > 0 tiles_above = find_tiles { |t| t.rect.y >= player.prev_rect.y } collision = find_colliding_tile tiles_above, (player.rect.merge y: player.next_rect.y) return unless collision return if collision.neighbors.t == :none player.dy = 0 player.y = collision.rect.bottom - player.rect.h end def calc_player_dx player.dx = player.dx.clamp(-5, 5) player.dx *= 0.9 player.x += player.dx end def calc_player_dy player.y += player.dy player.dy += state.gravity player.dy += player.dy * state.drag ** 2 * -1 end def reset_player player.x = 100 player.y = 720 player.dy = 0 end def recompute_tiles tiles.each do |t| t.w = state.tile_size t.h = state.tile_size t.neighbors = tile_neighbors t, tiles t.rect = [t.x * state.tile_size, t.y * state.tile_size, state.tile_size, state.tile_size].rect.to_hash sprite_sub_path = t.neighbors.mask.map { |m| flip_bit m }.join("") t.sprite = { x: t.x * state.tile_size, y: t.y * state.tile_size, w: state.tile_size, h: state.tile_size, path: "sprites/tile/wall-#{sprite_sub_path}.png" } end end def flip_bit bit return 0 if bit == 1 return 1 end def player state.player end def player_off_stage? player.rect.top < grid.bottom || player.rect.right < grid.left || player.rect.left > grid.right end def current_player_rect { x: player.x, y: player.y, w: player.size, h: player.size } end def tiles state.tiles end def find_tile ordinal tiles.find { |t| t.x == ordinal.x && t.y == ordinal.y } end def find_tiles &block tiles.find_all(&block) end def find_colliding_tile tiles, target tiles.find { |t| t.rect.intersect_rect? target } end def tile_neighbors tile, other_points t = find_tile x: tile.x + 0, y: tile.y + 1 r = find_tile x: tile.x + 1, y: tile.y + 0 b = find_tile x: tile.x + 0, y: tile.y - 1 l = find_tile x: tile.x - 1, y: tile.y + 0 tile_t, tile_r, tile_b, tile_l = 0 tile_t = 1 if t tile_r = 1 if r tile_b = 1 if b tile_l = 1 if l state.new_entity :neighbors, mask: [tile_t, tile_r, tile_b, tile_l], t: t ? :some : :none, b: b ? :some : :none, l: l ? :some : :none, r: r ? :some : :none end end def tick args $game ||= Game.new $game.args = args $game.tick end
Physics And Collisions - Jump Physics - main.rb link
# ./samples/04_physics_and_collisions/07_jump_physics/app/main.rb =begin Reminders: - args.state.new_entity: Used when we want to create a new object, like a sprite or button. For example, if we want to create a new button, we would declare it as a new entity and then define its properties. (Remember, you can use state to define ANY property and it will be retained across frames.) - args.outputs.solids: An array. The values generate a solid. The parameters for a solid are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - num1.greater(num2): Returns the greater value. - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. - ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect. =end # This sample app is a game that requires the user to jump from one platform to the next. # As the player successfully clears platforms, they become smaller and move faster. class VerticalPlatformer attr_gtk # declares vertical platformer as new entity def s state.vertical_platformer ||= state.new_entity(:vertical_platformer) state.vertical_platformer end # creates a new platform using a hash def new_platform hash s.new_entity_strict(:platform, hash) # platform key end # calls methods needed for game to run properly def tick defaults render calc input end def init_game s.platforms ||= [ # initializes platforms collection with two platforms using hashes new_platform(x: 0, y: 0, w: 700, h: 32, dx: 1, speed: 0, rect: nil), new_platform(x: 0, y: 300, w: 700, h: 32, dx: 1, speed: 0, rect: nil), # 300 pixels higher ] s.tick_count = args.state.tick_count s.gravity = -0.3 # what goes up must come down because of gravity s.player.platforms_cleared ||= 0 # counts how many platforms the player has successfully cleared s.player.x ||= 0 # sets player values s.player.y ||= 100 s.player.w ||= 64 s.player.h ||= 64 s.player.dy ||= 0 # change in position s.player.dx ||= 0 s.player_jump_power = 15 s.player_jump_power_duration = 10 s.player_max_run_speed = 5 s.player_speed_slowdown_rate = 0.9 s.player_acceleration = 1 s.camera ||= { y: -100 } # shows view on screen (as the player moves upward, the camera does too) end # Sets default values def defaults init_game end # Outputs objects onto the screen def render outputs.solids << s.platforms.map do |p| # outputs platforms onto screen [p.x + 300, p.y - s.camera[:y], p.w, p.h] # add 300 to place platform in horizontal center # don't forget, position of platform is denoted by bottom left hand corner end # outputs player using hash outputs.solids << { x: s.player.x + 300, # player positioned on top of platform y: s.player.y - s.camera[:y], w: s.player.w, h: s.player.h, r: 100, # color saturation g: 100, b: 200 } end # Performs calculations def calc s.platforms.each do |p| # for each platform in the collection p.rect = [p.x, p.y, p.w, p.h] # set the definition end # sets player point by adding half the player's width to the player's x s.player.point = [s.player.x + s.player.w.half, s.player.y] # change + to - and see what happens! # search the platforms collection to find if the player's point is inside the rect of a platform collision = s.platforms.find { |p| s.player.point.inside_rect? p.rect } # if collision occurred and player is moving down (or not moving vertically at all) if collision && s.player.dy <= 0 s.player.y = collision.rect.y + collision.rect.h - 2 # player positioned on top of platform s.player.dy = 0 if s.player.dy < 0 # player stops moving vertically if !s.player.platform s.player.dx = 0 # no horizontal movement end # changes horizontal position of player by multiplying collision change in x (dx) by speed and adding it to current x s.player.x += collision.dx * collision.speed s.player.platform = collision # player is on the platform that it collided with (or landed on) if s.player.falling # if player is falling s.player.dx = 0 # no horizontal movement end s.player.falling = false s.player.jumped_at = nil else s.player.platform = nil # player is not on a platform s.player.y += s.player.dy # velocity is the change in position s.player.dy += s.gravity # acceleration is the change in velocity; what goes up must come down end s.platforms.each do |p| # for each platform in the collection p.x += p.dx * p.speed # x is incremented by product of dx and speed (causes platform to move horizontally) # changes platform's x so it moves left and right across the screen (between -300 and 300 pixels) if p.x < -300 # if platform goes too far left p.dx *= -1 # dx is scaled down p.x = -300 # as far left as possible within scope elsif p.x > (1000 - p.w) # if platform's x is greater than 300 p.dx *= -1 p.x = (1000 - p.w) # set to 300 (as far right as possible within scope) end end delta = (s.player.y - s.camera[:y] - 100) # used to position camera view if delta > -200 s.camera[:y] += delta * 0.01 # allows player to see view as they move upwards s.player.x += s.player.dx # velocity is change in position; change in x increases by dx # searches platform collection to find platforms located more than 300 pixels above the player has_platforms = s.platforms.find { |p| p.y > (s.player.y + 300) } if !has_platforms # if there are no platforms 300 pixels above the player width = 700 - (700 * (0.1 * s.player.platforms_cleared)) # the next platform is smaller than previous s.player.platforms_cleared += 1 # player successfully cleared another platform last_platform = s.platforms[-1] # platform just cleared becomes last platform # another platform is created 300 pixels above the last platform, and this # new platform has a smaller width and moves faster than all previous platforms s.platforms << new_platform(x: (700 - width) * rand, # random x position y: last_platform.y + 300, w: width, h: 32, dx: 1.randomize(:sign), # random change in x speed: 2 * s.player.platforms_cleared, rect: nil) end else # game over s.as_hash.clear # otherwise clear the hash (no new platform is necessary) init_game end end # Takes input from the user to move the player def input if inputs.keyboard.space # if the space bar is pressed s.player.jumped_at ||= s.tick_count # set to current frame # if the time that has passed since the jump is less than the duration of a jump (10 frames) # and the player is not falling if s.player.jumped_at.elapsed_time < s.player_jump_power_duration && !s.player.falling s.player.dy = s.player_jump_power # player jumps up end end if inputs.keyboard.key_up.space # if space bar is in "up" state s.player.falling = true # player is falling end if inputs.keyboard.left # if left key is pressed s.player.dx -= s.player_acceleration # player's position changes, decremented by acceleration s.player.dx = s.player.dx.greater(-s.player_max_run_speed) # dx is either current dx or -5, whichever is greater elsif inputs.keyboard.right # if right key is pressed s.player.dx += s.player_acceleration # player's position changes, incremented by acceleration s.player.dx = s.player.dx.lesser(s.player_max_run_speed) # dx is either current dx or 5, whichever is lesser else s.player.dx *= s.player_speed_slowdown_rate # scales dx down end end end $game = VerticalPlatformer.new def tick args $game.args = args $game.tick end
Physics And Collisions - Bouncing On Collision - ball.rb link
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/ball.rb GRAVITY = -0.08 class Ball attr_accessor :velocity, :center, :radius, :collision_enabled def initialize args #Start the ball in the top center #@x = args.grid.w / 2 #@y = args.grid.h - 20 @velocity = {x: 0, y: 0} #@width = 20 #@height = @width @radius = 20.0 / 2.0 @center = {x: (args.grid.w / 2), y: (args.grid.h)} #@left_wall = (args.state.board_width + args.grid.w / 8) #@right_wall = @left_wall + args.state.board_width @left_wall = 0 @right_wall = $args.grid.right @max_velocity = 7 @collision_enabled = true end #Move the ball according to its velocity def update args @center.x += @velocity.x @center.y += @velocity.y @velocity.y += GRAVITY alpha = 0.2 if @center.y-@radius <= 0 @velocity.y = (@velocity.y.abs*0.7).abs @velocity.x = (@velocity.x.abs*0.9).abs * ((@velocity.x < 0) ? -1 : 1) if @velocity.y.abs() < alpha @velocity.y=0 end if @velocity.x.abs() < alpha @velocity.x=0 end end if @center.x > args.grid.right+@radius*2 @center.x = 0-@radius elsif @center.x< 0-@radius*2 @center.x = args.grid.right + @radius end end def wallBounds args #if @x < @left_wall || @x + @width > @right_wall #@velocity.x *= -1.1 #if @velocity.x > @max_velocity #@velocity.x = @max_velocity #elsif @velocity.x < @max_velocity * -1 #@velocity.x = @max_velocity * -1 #end #end #if @y < 0 || @y + @height > args.grid.h #@velocity.y *= -1.1 #if @velocity.y > @max_velocity #@velocity.y = @max_velocity #elsif @velocity.y < @max_velocity * -1 #@velocity.y = @max_velocity * -1 #end #end end #render the ball to the screen def draw args #args.outputs.solids << [@x, @y, @width, @height, 255, 255, 0]; args.outputs.sprites << [ @center.x-@radius, @center.y-@radius, @radius*2, @radius*2, "sprites/circle-white.png", 0, 255, 255, #r 0, #g 255 #b ] end end
Physics And Collisions - Bouncing On Collision - block.rb link
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/block.rb DEGREES_TO_RADIANS = Math::PI / 180 class Block def initialize(x, y, block_size, rotation) @x = x @y = y @block_size = block_size @rotation = rotation #The repel velocity? @velocity = {x: 2, y: 0} horizontal_offset = (3 * block_size) * Math.cos(rotation * DEGREES_TO_RADIANS) vertical_offset = block_size * Math.sin(rotation * DEGREES_TO_RADIANS) if rotation >= 0 theta = 90 - rotation #The line doesn't visually line up exactly with the edge of the sprite, so artificially move it a bit modifier = 5 x_offset = modifier * Math.cos(theta * DEGREES_TO_RADIANS) y_offset = modifier * Math.sin(theta * DEGREES_TO_RADIANS) @x1 = @x - x_offset @y1 = @y + y_offset @x2 = @x1 + horizontal_offset @y2 = @y1 + (vertical_offset * 3) @imaginary_line = [ @x1, @y1, @x2, @y2 ] else theta = 90 + rotation x_offset = @block_size * Math.cos(theta * DEGREES_TO_RADIANS) y_offset = @block_size * Math.sin(theta * DEGREES_TO_RADIANS) @x1 = @x + x_offset @y1 = @y + y_offset + 19 @x2 = @x1 + horizontal_offset @y2 = @y1 + (vertical_offset * 3) @imaginary_line = [ @x1, @y1, @x2, @y2 ] end end def draw args args.outputs.sprites << [ @x, @y, @block_size*3, @block_size, "sprites/square-green.png", @rotation ] args.outputs.lines << @imaginary_line args.outputs.solids << @debug_shape end def multiply_matricies end def calc args if collision? args collide args end end #Determine if the ball and block are touching def collision? args #The minimum area enclosed by the center of the ball and the 2 corners of the block #If the area ever drops below this value, we know there is a collision min_area = ((@block_size * 3) * args.state.ball.radius) / 2 #https://www.mathopenref.com/coordtrianglearea.html ax = @x1 ay = @y1 bx = @x2 by = @y2 cx = args.state.ball.center.x cy = args.state.ball.center.y current_area = (ax*(by-cy)+bx*(cy-ay)+cx*(ay-by))/2 collision = false if @rotation >= 0 if (current_area < min_area && current_area > 0 && args.state.ball.center.y > @y1 && args.state.ball.center.x < @x2) collision = true end else if (current_area < min_area && current_area > 0 && args.state.ball.center.y > @y2 && args.state.ball.center.x > @x1) collision = true end end return collision end def collide args #Slope of the block slope = (@y2 - @y1) / (@x2 - @x1) #Create a unit vector and tilt it (@rotation) number of degrees x = -Math.cos(@rotation * DEGREES_TO_RADIANS) y = Math.sin(@rotation * DEGREES_TO_RADIANS) #Find the vector that is perpendicular to the slope perpVect = { x: x, y: y } mag = (perpVect.x**2 + perpVect.y**2)**0.5 # find the magniude of the perpVect perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} # divide the perpVect by the magniude to make it a unit vector previousPosition = { # calculate an ESTIMATE of the previousPosition of the ball x:args.state.ball.center.x-args.state.ball.velocity.x, y:args.state.ball.center.y-args.state.ball.velocity.y } velocityMag = (args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5 # the current velocity magnitude of the ball theta_ball = Math.atan2(args.state.ball.velocity.y, args.state.ball.velocity.x) #the angle of the ball's velocity theta_repel = (180 * DEGREES_TO_RADIANS) - theta_ball + (@rotation * DEGREES_TO_RADIANS) fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity frx = velocityMag * Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = velocityMag * Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby args.state.display_value = velocityMag fsumx = fbx+frx #sum of x forces fsumy = fby+fry #sum of y forces fr = velocityMag #fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew) #resulting x velocity ynew = fr*Math.sin(thetaNew) #resulting y velocity dampener = 0.3 ynew *= dampener * 0.5 #If the bounce is very low, that means the ball is rolling and we don't want to dampenen the X velocity if ynew > -0.1 xnew *= dampener end #Add the sine component of gravity back in (X component) gravity_x = 4 * Math.sin(@rotation * DEGREES_TO_RADIANS) xnew += gravity_x args.state.ball.velocity.x = -xnew args.state.ball.velocity.y = -ynew #Set the position of the ball to the previous position so it doesn't warp throught the block args.state.ball.center.x = previousPosition.x args.state.ball.center.y = previousPosition.y end end
Physics And Collisions - Bouncing On Collision - cannon.rb link
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/cannon.rb class Cannon def initialize args @pointA = {x: args.grid.right/2,y: args.grid.top} @pointB = {x: args.inputs.mouse.x, y: args.inputs.mouse.y} end def update args activeBall = args.state.ball @pointB = {x: args.inputs.mouse.x, y: args.inputs.mouse.y} if args.inputs.mouse.click alpha = 0.01 activeBall.velocity.y = (@pointB.y - @pointA.y) * alpha activeBall.velocity.x = (@pointB.x - @pointA.x) * alpha activeBall.center = {x: (args.grid.w / 2), y: (args.grid.h)} end end def render args args.outputs.lines << [@pointA.x, @pointA.y, @pointB.x, @pointB.y] end end
Physics And Collisions - Bouncing On Collision - main.rb link
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/main.rb INFINITY= 10**10 require 'app/vector2d.rb' require 'app/peg.rb' require 'app/block.rb' require 'app/ball.rb' require 'app/cannon.rb' #Method to init default values def defaults args args.state.pegs ||= [] args.state.blocks ||= [] args.state.cannon ||= Cannon.new args args.state.ball ||= Ball.new args args.state.horizontal_offset ||= 0 init_pegs args init_blocks args args.state.display_value ||= "test" end begin :default_methods def init_pegs args num_horizontal_pegs = 14 num_rows = 5 return unless args.state.pegs.count < num_rows * num_horizontal_pegs block_size = 32 block_spacing = 50 total_width = num_horizontal_pegs * (block_size + block_spacing) starting_offset = (args.grid.w - total_width) / 2 + block_size for i in (0...num_rows) for j in (0...num_horizontal_pegs) row_offset = 0 if i % 2 == 0 row_offset = 20 else row_offset = -20 end args.state.pegs.append(Peg.new(j * (block_size+block_spacing) + starting_offset + row_offset, (args.grid.h - block_size * 2) - (i * block_size * 2)-90, block_size)) end end end def init_blocks args return unless args.state.blocks.count < 10 #Sprites are rotated in degrees, but the Ruby math functions work on radians radians_to_degrees = Math::PI / 180 block_size = 25 #Rotation angle (in degrees) of the blocks rotation = 30 vertical_offset = block_size * Math.sin(rotation * radians_to_degrees) horizontal_offset = (3 * block_size) * Math.cos(rotation * radians_to_degrees) center = args.grid.w / 2 for i in (0...5) #Create a ramp of blocks. Not going to be perfect because of the float to integer conversion and anisotropic to isotropic coversion args.state.blocks.append(Block.new((center + 100 + (i * horizontal_offset)).to_i, 100 + (vertical_offset * i) + (i * block_size), block_size, rotation)) args.state.blocks.append(Block.new((center - 100 - (i * horizontal_offset)).to_i, 100 + (vertical_offset * i) + (i * block_size), block_size, -rotation)) end end end #Render loop def render args args.outputs.borders << args.state.game_area render_pegs args render_blocks args args.state.cannon.render args args.state.ball.draw args end begin :render_methods #Draw the pegs in a grid pattern def render_pegs args args.state.pegs.each do |peg| peg.draw args end end def render_blocks args args.state.blocks.each do |block| block.draw args end end end #Calls all methods necessary for performing calculations def calc args args.state.pegs.each do |peg| peg.calc args end args.state.blocks.each do |block| block.calc args end args.state.ball.update args args.state.cannon.update args end begin :calc_methods end def tick args defaults args render args calc args end
Physics And Collisions - Bouncing On Collision - peg.rb link
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/peg.rb class Peg def initialize(x, y, block_size) @x = x # x cordinate of the LEFT side of the peg @y = y # y cordinate of the RIGHT side of the peg @block_size = block_size # diameter of the peg @radius = @block_size/2.0 # radius of the peg @center = { # cordinatees of the CENTER of the peg x: @x+@block_size/2.0, y: @y+@block_size/2.0 } @r = 255 # color of the peg @g = 0 @b = 0 @velocity = {x: 2, y: 0} end def draw args args.outputs.sprites << [ # draw the peg according to the @x, @y, @radius, and the RGB @x, @y, @radius*2.0, @radius*2.0, "sprites/circle-white.png", 0, 255, @r, #r @g, #g @b #b ] end def calc args if collisionWithBounce? args # if the is a collision with the bouncing ball collide args @r = 0 @b = 0 @g = 255 else end end # do two circles (the ball and this peg) intersect def collisionWithBounce? args squareDistance = ( # the squared distance between the ball's center and this peg's center (args.state.ball.center.x - @center.x) ** 2.0 + (args.state.ball.center.y - @center.y) ** 2.0 ) radiusSum = ( # the sum of the radius squared of the this peg and the ball (args.state.ball.radius + @radius) ** 2.0 ) # if the squareDistance is less or equal to radiusSum, then there is a radial intersection between the ball and this peg return (squareDistance <= radiusSum) end # ! The following links explain the getRepelMagnitude function ! # https://raw.githubusercontent.com/DragonRuby/dragonruby-game-toolkit-physics/master/docs/docImages/LinearCollider_4.png # https://raw.githubusercontent.com/DragonRuby/dragonruby-game-toolkit-physics/master/docs/docImages/LinearCollider_5.png # https://github.com/DragonRuby/dragonruby-game-toolkit-physics/blob/master/docs/LinearCollider.md def getRepelMagnitude (args, fbx, fby, vrx, vry, ballMag) a = fbx ; b = vrx ; c = fby d = vry ; e = ballMag if b**2 + d**2 == 0 #unexpected end x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2) x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)) err = 0.00001 o = ((fbx + x1*vrx)**2 + (fby + x1*vry)**2 ) ** 0.5 p = ((fbx + x2*vrx)**2 + (fby + x2*vry)**2 ) ** 0.5 r = 0 if (ballMag >= o-err and ballMag <= o+err) r = x1 elsif (ballMag >= p-err and ballMag <= p+err) r = x2 else #unexpected end if (args.state.ball.center.x > @center.x) return x2*-1 end return x2 #return r end #this sets the new velocity of the ball once it has collided with this peg def collide args normalOfRCCollision = [ #this is the normal of the collision in COMPONENT FORM {x: @center.x, y: @center.y}, #see https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mathscard.co.uk%2Fonline%2Fcircle-coordinate-geometry%2F&psig=AOvVaw2GcD-e2-nJR_IUKpw3hO98&ust=1605731315521000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMjBo7e1iu0CFQAAAAAdAAAAABAD {x: args.state.ball.center.x, y: args.state.ball.center.y}, ] normalSlope = ( #normalSlope is the slope of normalOfRCCollision (normalOfRCCollision[1].y - normalOfRCCollision[0].y) / (normalOfRCCollision[1].x - normalOfRCCollision[0].x) ) slope = normalSlope**-1.0 * -1 # slope is the slope of the tangent # args.state.display_value = slope pointA = { # pointA and pointB are using the var slope to tangent in COMPONENT FORM x: args.state.ball.center.x-1, y: -(slope-args.state.ball.center.y) } pointB = { x: args.state.ball.center.x+1, y: slope+args.state.ball.center.y } perpVect = {x: pointB.x - pointA.x, y:pointB.y - pointA.y} # perpVect is to be VECTOR of the perpendicular tangent mag = (perpVect.x**2 + perpVect.y**2)**0.5 # find the magniude of the perpVect perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} # divide the perpVect by the magniude to make it a unit vector perpVect = {x: -perpVect.y, y: perpVect.x} # swap the x and y and multiply by -1 to make the vector perpendicular args.state.display_value = perpVect if perpVect.y > 0 #ensure perpVect points upward perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end previousPosition = { # calculate an ESTIMATE of the previousPosition of the ball x:args.state.ball.center.x-args.state.ball.velocity.x, y:args.state.ball.center.y-args.state.ball.velocity.y } yInterc = pointA.y + -slope*pointA.x if slope == INFINITY # the perpVect presently either points in the correct dirrection or it is 180 degrees off we need to correct this if previousPosition.x < pointA.x perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} yInterc = -INFINITY end elsif previousPosition.y < slope*previousPosition.x + yInterc # check if ball is bellow or above the collider to determine if perpVect is - or + perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end velocityMag = # the current velocity magnitude of the ball (args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5 theta_ball= Math.atan2(args.state.ball.velocity.y,args.state.ball.velocity.x) #the angle of the ball's velocity theta_repel= Math.atan2(args.state.ball.center.y,args.state.ball.center.x) #the angle of the repelling force(perpVect) fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity repelMag = getRepelMagnitude( # the magniude of the collision vector args, fbx, fby, perpVect.x, perpVect.y, (args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5 ) frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby fsumx = fbx+frx # sum of x forces fsumy = fby+fry # sum of y forces fr = velocityMag # fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) # thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew) # resulting x velocity ynew = fr*Math.sin(thetaNew) # resulting y velocity if (args.state.ball.center.x >= @center.x) # this is necessary for the ball colliding on the right side of the peg xnew=xnew.abs end args.state.ball.velocity.x = xnew # set the x-velocity to the new velocity if args.state.ball.center.y > @center.y # if the ball is above the middle of the peg we need to temporarily ignore some of the gravity args.state.ball.velocity.y = ynew + GRAVITY * 0.01 else args.state.ball.velocity.y = ynew - GRAVITY * 0.01 # if the ball is bellow the middle of the peg we need to temporarily increase the power of the gravity end args.state.ball.center.x+= args.state.ball.velocity.x # update the position of the ball so it never looks like the ball is intersecting the circle args.state.ball.center.y+= args.state.ball.velocity.y end end
Physics And Collisions - Bouncing On Collision - vector2d.rb link
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/vector2d.rb class Vector2d attr_accessor :x, :y def initialize x=0, y=0 @x=x @y=y end #returns a vector multiplied by scalar x #x [float] scalar def mult x r = Vector2d.new(0,0) r.x=@x*x r.y=@y*x r end # vect [Vector2d] vector to copy def copy vect Vector2d.new(@x, @y) end #returns a new vector equivalent to this+vect #vect [Vector2d] vector to add to self def add vect Vector2d.new(@x+vect.x,@y+vect.y) end #returns a new vector equivalent to this-vect #vect [Vector2d] vector to subtract to self def sub vect Vector2d.new(@x-vect.c, @y-vect.y) end #return the magnitude of the vector def mag ((@x**2)+(@y**2))**0.5 end #returns a new normalize version of the vector def normalize Vector2d.new(@x/mag, @y/mag) end #TODO delet? def distABS vect (((vect.x-@x)**2+(vect.y-@y)**2)**0.5).abs() end end
Physics And Collisions - Arbitrary Collision - ball.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/ball.rb class Ball attr_accessor :velocity, :child, :parent, :number, :leastChain attr_reader :x, :y, :hypotenuse, :width, :height def initialize args, number, leastChain, parent, child #Start the ball in the top center @number = number @leastChain = leastChain @x = args.grid.w / 2 @y = args.grid.h - 20 @velocity = Vector2d.new(2, -2) @width = 10 @height = 10 @left_wall = (args.state.board_width + args.grid.w / 8) @right_wall = @left_wall + args.state.board_width @max_velocity = MAX_VELOCITY @child = child @parent = parent @past = [{x: @x, y: @y}] @next = nil end def reassignLeastChain (lc=nil) if (lc == nil) lc = @number end @leastChain = lc if (parent != nil) @parent.reassignLeastChain(lc) end end def makeLeader args if isLeader return end @parent.reassignLeastChain args.state.ballParents.push(self) @parent = nil end def isLeader return (parent == nil) end def receiveNext (p) #trace! if parent != nil @x = p[:x] @y = p[:y] @velocity = p[:velocity] #puts @x.to_s + "|" + @y.to_s + "|"+@velocity.to_s @past.append(p) if (@past.length >= BALL_DISTANCE) if (@child != nil) @child.receiveNext(@past[0]) @past.shift end end end end #Move the ball according to its velocity def update args if isLeader wallBounds args @x += @velocity.x @y += @velocity.y @past.append({x: @x, y: @y, velocity: @velocity}) #puts @past if (@past.length >= BALL_DISTANCE) if (@child != nil) @child.receiveNext(@past[0]) @past.shift end end else puts "unexpected" raise "unexpected" end end def wallBounds args b= false if @x < @left_wall @velocity.x = @velocity.x.abs() * 1 b=true elsif @x + @width > @right_wall @velocity.x = @velocity.x.abs() * -1 b=true end if @y < 0 @velocity.y = @velocity.y.abs() * 1 b=true elsif @y + @height > args.grid.h @velocity.y = @velocity.y.abs() * -1 b=true end mag = (@velocity.x**2.0 + @velocity.y**2.0)**0.5 if (b == true && mag < MAX_VELOCITY) @velocity.x*=1.1; @velocity.y*=1.1; end end #render the ball to the screen def draw args #update args #args.outputs.solids << [@x, @y, @width, @height, 255, 255, 0]; #args.outputs.sprits << { #x: @x, #y: @y, #w: @width, #h: @height, #path: "sprites/ball10.png" #} #args.outputs.sprites <<[@x, @y, @width, @height, "sprites/ball10.png"] args.outputs.sprites << {x: @x, y: @y, w: @width, h: @height, path:"sprites/ball10.png" } end def getDraw args #wallBounds args #update args #args.outputs.labels << [@x, @y, @number.to_s + "|" + @leastChain.to_s] return [@x, @y, @width, @height, "sprites/ball10.png"] end def getPoints args points = [ {x:@x+@width/2, y: @y}, {x:@x+@width, y:@y+@height/2}, {x:@x+@width/2,y:@y+@height}, {x:@x,y:@y+@height/2} ] #psize = 5.0 #for p in points #args.outputs.solids << [p.x-psize/2.0, p.y-psize/2.0, psize, psize, 0, 0, 0]; #end return points end def serialize {x: @x, y:@y} end def inspect serialize.to_s end def to_s serialize.to_s end end
Physics And Collisions - Arbitrary Collision - blocks.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/blocks.rb MAX_COUNT=100 def universalUpdateOne args, shape didHit = false hitters = [] #puts shape.to_s toCollide = nil for b in args.state.balls if [b.x, b.y, b.width, b.height].intersect_rect?(shape.bold) didSquare = false for s in shape.squareColliders if (s.collision?(args, b)) didSquare = true didHit = true #s.collide(args, b) toCollide = s #hitter = b hitters.append(b) end #end if end #end for if (didSquare == false) for c in shape.colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args),b) #c.collide args, b toCollide = c didHit = true hitters.append(b) end #end if end #end for end #end if end#end if end#end for if (didHit) shape.count=0 hitters = hitters.uniq for hitter in hitters hitter.makeLeader args #toCollide.collide(args, hitter) if shape.home == "squares" args.state.squares.delete(shape) elsif shape.home == "tshapes" args.state.tshapes.delete(shape) else shape.home == "lines" args.state.lines.delete(shape) end end #puts "HIT!" + hitter.number end end def universalUpdate args, shape #puts shape.home if (shape.count <= 1) universalUpdateOne args, shape return end didHit = false hitter = nil for b in args.state.ballParents if [b.x, b.y, b.width, b.height].intersect_rect?(shape.bold) didSquare = false for s in shape.squareColliders if (s.collision?(args, b)) didSquare = true didHit = true s.collide(args, b) hitter = b end end if (didSquare == false) for c in shape.colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args),b) c.collide args, b didHit = true hitter = b end end end end end if (didHit) shape.count=shape.count-1 shape.damageCount.append([(hitter.leastChain+1 - hitter.number)-1, args.state.tick_count]) end i=0 while i < shape.damageCount.length if shape.damageCount[i][0] <= 0 shape.damageCount.delete_at(i) i-=1 elsif shape.damageCount[i][1].elapsed_time > BALL_DISTANCE and shape.damageCount[i][0] > 1 shape.count-=1 shape.damageCount[i][0]-=1 shape.damageCount[i][1] = args.state.tick_count end i+=1 end end class Square attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount def initialize(args, x, y, block_size, orientation, block_offset) @x = x * block_size @y = y * block_size @block_size = block_size @block_offset = block_offset @orientation = orientation @damageCount = [] @home = 'squares' Kernel.srand() @r = rand(255) @g = rand(255) @b = rand(255) @count = rand(MAX_COUNT)+1 x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2 @x_adjusted = @x + x_offset @y_adjusted = @y @size_adjusted = @block_size * 2 - @block_offset hypotenuse=args.state.ball_hypotenuse @bold = [(@x_adjusted-hypotenuse/2)-1, (@y_adjusted-hypotenuse/2)-1, @size_adjusted + hypotenuse + 2, @size_adjusted + hypotenuse + 2] @points = [ {x:@x_adjusted, y:@y_adjusted}, {x:@x_adjusted+@size_adjusted, y:@y_adjusted}, {x:@x_adjusted+@size_adjusted, y:@y_adjusted+@size_adjusted}, {x:@x_adjusted, y:@y_adjusted+@size_adjusted} ] @squareColliders = [ SquareCollider.new(@points[0].x,@points[0].y,{x:-1,y:-1}), SquareCollider.new(@points[1].x-COLLISIONWIDTH,@points[1].y,{x:1,y:-1}), SquareCollider.new(@points[2].x-COLLISIONWIDTH,@points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(@points[3].x,@points[3].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(@points[0],@points[1], :neg), LinearCollider.new(@points[1],@points[2], :neg), LinearCollider.new(@points[2],@points[3], :pos), LinearCollider.new(@points[0],@points[3], :pos) ] end def draw(args) #Offset the coordinates to the edge of the game area x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2 #args.outputs.solids << [@x + x_offset, @y, @block_size * 2 - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b] args.outputs.solids <<{x: (@x + x_offset), y: (@y), w: (@block_size * 2 - @block_offset), h: (@block_size * 2 - @block_offset), r: @r , g: @g , b: @b } #args.outputs.solids << @bold.append([255,0,0]) args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s] end def update args universalUpdate args, self end end class TShape attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount def initialize(args, x, y, block_size, orientation, block_offset) @x = x * block_size @y = y * block_size @block_size = block_size @block_offset = block_offset @orientation = orientation @damageCount = [] @home = "tshapes" Kernel.srand() @r = rand(255) @g = rand(255) @b = rand(255) @count = rand(MAX_COUNT)+1 @shapePoints = getShapePoints(args) minX={x:INFINITY, y:0} minY={x:0, y:INFINITY} maxX={x:-INFINITY, y:0} maxY={x:0, y:-INFINITY} for p in @shapePoints if p.x < minX.x minX = p end if p.x > maxX.x maxX = p end if p.y < minY.y minY = p end if p.y > maxY.y maxY = p end end hypotenuse=args.state.ball_hypotenuse @bold = [(minX.x-hypotenuse/2)-1, (minY.y-hypotenuse/2)-1, -((minX.x-hypotenuse/2)-1)+(maxX.x + hypotenuse + 2), -((minY.y-hypotenuse/2)-1)+(maxY.y + hypotenuse + 2)] end def getShapePoints(args) points=[] x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2) if @orientation == :right #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2, @block_size, @r, @g, @b] points = [ {x:@x + x_offset, y:@y}, {x:(@x + x_offset)+(@block_size - @block_offset), y:@y}, {x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size}, {x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size}, {x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size+@block_size}, {x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size+@block_size}, {x:(@x + x_offset)+(@block_size - @block_offset), y:@y+ @block_size * 3 - @block_offset}, {x:@x + x_offset , y:@y+ @block_size * 3 - @block_offset} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x,points[2].y-COLLISIONWIDTH,{x:1,y:-1}), SquareCollider.new(points[3].x-COLLISIONWIDTH,points[3].y,{x:1,y:-1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[5].x,points[5].y,{x:1,y:1}), SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[7].x,points[7].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :neg), LinearCollider.new(points[3],points[4], :neg), LinearCollider.new(points[4],points[5], :pos), LinearCollider.new(points[5],points[6], :neg), LinearCollider.new(points[6],points[7], :pos), LinearCollider.new(points[0],points[7], :pos) ] elsif @orientation == :up #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size, @block_size * 2, @r, @g, @b] points = [ {x:@x + x_offset, y:@y}, {x:(@x + x_offset)+(@block_size * 3 - @block_offset), y:@y}, {x:(@x + x_offset)+(@block_size * 3 - @block_offset), y:@y+(@block_size - @block_offset)}, {x:@x + x_offset + @block_size + @block_size, y:@y+(@block_size - @block_offset)}, {x:@x + x_offset + @block_size + @block_size, y:@y+@block_size*2}, {x:@x + x_offset + @block_size, y:@y+@block_size*2}, {x:@x + x_offset + @block_size, y:@y+(@block_size - @block_offset)}, {x:@x + x_offset, y:@y+(@block_size - @block_offset)} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[3].x,points[3].y,{x:1,y:1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[5].x,points[5].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y,{x:-1,y:1}), SquareCollider.new(points[7].x,points[7].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :pos), LinearCollider.new(points[3],points[4], :neg), LinearCollider.new(points[4],points[5], :pos), LinearCollider.new(points[5],points[6], :neg), LinearCollider.new(points[6],points[7], :pos), LinearCollider.new(points[0],points[7], :pos) ] elsif @orientation == :left #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2 - @block_offset, @block_size - @block_offset, @r, @g, @b] xh = @x + x_offset #points = [ #{x:@x + x_offset, y:@y}, #{x:(@x + x_offset)+(@block_size - @block_offset), y:@y}, #{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size}, #{x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size}, #{x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size+@block_size}, #{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size+@block_size}, #{x:(@x + x_offset)+(@block_size - @block_offset), y:@y+ @block_size * 3 - @block_offset}, #{x:@x + x_offset , y:@y+ @block_size * 3 - @block_offset} #] points = [ {x:@x + x_offset + @block_size, y:@y}, {x:@x + x_offset + @block_size + (@block_size - @block_offset), y:@y}, {x:@x + x_offset + @block_size + (@block_size - @block_offset),y:@y+@block_size*3- @block_offset}, {x:@x + x_offset + @block_size, y:@y+@block_size*3- @block_offset}, {x:@x + x_offset+@block_size, y:@y+@block_size*2- @block_offset}, {x:@x + x_offset, y:@y+@block_size*2- @block_offset}, {x:@x + x_offset, y:@y+@block_size}, {x:@x + x_offset+@block_size, y:@y+@block_size} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y,{x:-1,y:1}), SquareCollider.new(points[5].x,points[5].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[6].x,points[6].y,{x:-1,y:-1}), SquareCollider.new(points[7].x-COLLISIONWIDTH,points[7].y-COLLISIONWIDTH,{x:-1,y:-1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :pos), LinearCollider.new(points[3],points[4], :neg), LinearCollider.new(points[4],points[5], :pos), LinearCollider.new(points[5],points[6], :neg), LinearCollider.new(points[6],points[7], :neg), LinearCollider.new(points[0],points[7], :pos) ] elsif @orientation == :down #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b] points = [ {x:@x + x_offset, y:@y+(@block_size*2)-@block_offset}, {x:@x + x_offset+ @block_size*3-@block_offset, y:@y+(@block_size*2)-@block_offset}, {x:@x + x_offset+ @block_size*3-@block_offset, y:@y+(@block_size)}, {x:@x + x_offset+ @block_size*2-@block_offset, y:@y+(@block_size)}, {x:@x + x_offset+ @block_size*2-@block_offset, y:@y},# {x:@x + x_offset+ @block_size, y:@y},# {x:@x + x_offset + @block_size, y:@y+(@block_size)}, {x:@x + x_offset, y:@y+(@block_size)} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y,{x:1,y:-1}), SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:1,y:-1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y,{x:1,y:-1}), SquareCollider.new(points[5].x,points[5].y,{x:-1,y:-1}), SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y-COLLISIONWIDTH,{x:-1,y:-1}), SquareCollider.new(points[7].x,points[7].y,{x:-1,y:-1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :pos), LinearCollider.new(points[1],points[2], :pos), LinearCollider.new(points[2],points[3], :neg), LinearCollider.new(points[3],points[4], :pos), LinearCollider.new(points[4],points[5], :neg), LinearCollider.new(points[5],points[6], :pos), LinearCollider.new(points[6],points[7], :neg), LinearCollider.new(points[0],points[7], :neg) ] end return points end def draw(args) #Offset the coordinates to the edge of the game area x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2) if @orientation == :right #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: @y, w: @block_size - @block_offset, h: (@block_size * 3 - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2, @block_size, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 2), h: (@block_size), r: @r , g: @g, b: @b } elsif @orientation == :up #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y), w: (@block_size * 3 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size, @block_size * 2, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size), h: (@block_size * 2), r: @r , g: @g, b: @b} elsif @orientation == :left #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size - @block_offset), h: (@block_size * 3 - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2 - @block_offset, @block_size - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 2 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b} elsif @orientation == :down #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 3 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size - @block_offset), h: ( @block_size * 2 - @block_offset), r: @r , g: @g, b: @b} end #psize = 5.0 #for p in @shapePoints #args.outputs.solids << [p.x-psize/2, p.y-psize/2, psize, psize, 0, 0, 0] #end args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s] end def updateOne_old args didHit = false hitter = nil toCollide = nil for b in args.state.balls if [b.x, b.y, b.width, b.height].intersect_rect?(@bold) didSquare = false for s in @squareColliders if (s.collision?(args, b)) didSquare = true didHit = true #s.collide(args, b) toCollide = s hitter = b break end end if (didSquare == false) for c in @colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args),b) #c.collide args, b toCollide = c didHit = true hitter = b break end end end end if didHit break end end if (didHit) @count=0 hitter.makeLeader args #toCollide.collide(args, hitter) args.state.tshapes.delete(self) #puts "HIT!" + hitter.number end end def update_old args if (@count == 1) updateOne args return end didHit = false hitter = nil for b in args.state.ballParents if [b.x, b.y, b.width, b.height].intersect_rect?(@bold) didSquare = false for s in @squareColliders if (s.collision?(args, b)) didSquare = true didHit=true s.collide(args, b) hitter = b end end if (didSquare == false) for c in @colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args), b) c.collide args, b didHit=true hitter = b end end end end end if (didHit) @count=@count-1 @damageCount.append([(hitter.leastChain+1 - hitter.number)-1, args.state.tick_count]) if (@count == 0) args.state.tshapes.delete(self) return end end i=0 while i < @damageCount.length if @damageCount[i][0] <= 0 @damageCount.delete_at(i) i-=1 elsif @damageCount[i][1].elapsed_time > BALL_DISTANCE @count-=1 @damageCount[i][0]-=1 end if (@count == 0) args.state.tshapes.delete(self) return end i+=1 end end #end update def update args universalUpdate args, self end end class Line attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount def initialize(args, x, y, block_size, orientation, block_offset) @x = x * block_size @y = y * block_size @block_size = block_size @block_offset = block_offset @orientation = orientation @damageCount = [] @home = "lines" Kernel.srand() @r = rand(255) @g = rand(255) @b = rand(255) @count = rand(MAX_COUNT)+1 @shapePoints = getShapePoints(args) minX={x:INFINITY, y:0} minY={x:0, y:INFINITY} maxX={x:-INFINITY, y:0} maxY={x:0, y:-INFINITY} for p in @shapePoints if p.x < minX.x minX = p end if p.x > maxX.x maxX = p end if p.y < minY.y minY = p end if p.y > maxY.y maxY = p end end hypotenuse=args.state.ball_hypotenuse @bold = [(minX.x-hypotenuse/2)-1, (minY.y-hypotenuse/2)-1, -((minX.x-hypotenuse/2)-1)+(maxX.x + hypotenuse + 2), -((minY.y-hypotenuse/2)-1)+(maxY.y + hypotenuse + 2)] end def getShapePoints(args) points=[] x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2) if @orientation == :right #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] xa =@x + x_offset ya =@y wa =@block_size * 3 - @block_offset ha =(@block_size - @block_offset) elsif @orientation == :up #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] xa =@x + x_offset ya =@y wa =@block_size - @block_offset ha =@block_size * 3 - @block_offset elsif @orientation == :left #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] xa =@x + x_offset ya =@y wa =@block_size * 3 - @block_offset ha =@block_size - @block_offset elsif @orientation == :down #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] xa =@x + x_offset ya =@y wa =@block_size - @block_offset ha =@block_size * 3 - @block_offset end points = [ {x: xa, y:ya}, {x: xa + wa,y:ya}, {x: xa + wa,y:ya+ha}, {x: xa, y:ya+ha}, ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :pos), LinearCollider.new(points[0],points[3], :pos), ] return points end def update args universalUpdate args, self end def draw(args) x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2 if @orientation == :right args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] elsif @orientation == :up args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] elsif @orientation == :left args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] elsif @orientation == :down args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] end args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s] end end
Physics And Collisions - Arbitrary Collision - linear_collider.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/linear_collider.rb COLLISIONWIDTH=8 class LinearCollider attr_reader :pointA, :pointB def initialize (pointA, pointB, mode,collisionWidth=COLLISIONWIDTH) @pointA = pointA @pointB = pointB @mode = mode @collisionWidth = collisionWidth if (@pointA.x > @pointB.x) @pointA, @pointB = @pointB, @pointA end @linearCollider_collision_once = false end def collisionSlope args if (@pointB.x-@pointA.x == 0) return INFINITY end return (@pointB.y - @pointA.y) / (@pointB.x - @pointA.x) end def collision? (args, points, ball=nil) slope = collisionSlope args result = false # calculate a vector with a magnitude of (1/2)collisionWidth and a direction perpendicular to the collision line vect=nil;mag=nil;vect=nil; if @mode == :both vect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y} mag = (vect.x**2 + vect.y**2)**0.5 vect = {y: -1*(vect.x/(mag))*@collisionWidth*0.5, x: (vect.y/(mag))*@collisionWidth*0.5} else vect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y} mag = (vect.x**2 + vect.y**2)**0.5 vect = {y: -1*(vect.x/(mag))*@collisionWidth, x: (vect.y/(mag))*@collisionWidth} end rpointA=nil;rpointB=nil;rpointC=nil;rpointD=nil; if @mode == :pos rpointA = {x:@pointA.x + vect.x, y:@pointA.y + vect.y} rpointB = {x:@pointB.x + vect.x, y:@pointB.y + vect.y} rpointC = {x:@pointB.x, y:@pointB.y} rpointD = {x:@pointA.x, y:@pointA.y} elsif @mode == :neg rpointA = {x:@pointA.x, y:@pointA.y} rpointB = {x:@pointB.x, y:@pointB.y} rpointC = {x:@pointB.x - vect.x, y:@pointB.y - vect.y} rpointD = {x:@pointA.x - vect.x, y:@pointA.y - vect.y} elsif @mode == :both rpointA = {x:@pointA.x + vect.x, y:@pointA.y + vect.y} rpointB = {x:@pointB.x + vect.x, y:@pointB.y + vect.y} rpointC = {x:@pointB.x - vect.x, y:@pointB.y - vect.y} rpointD = {x:@pointA.x - vect.x, y:@pointA.y - vect.y} end #four point rectangle if ball != nil xs = [rpointA.x,rpointB.x,rpointC.x,rpointD.x] ys = [rpointA.y,rpointB.y,rpointC.y,rpointD.y] correct = 1 rect1 = [ball.x, ball.y, ball.width, ball.height] #$r1 = rect1 rect2 = [xs.min-correct,ys.min-correct,(xs.max-xs.min)+correct*2,(ys.max-ys.min)+correct*2] #$r2 = rect2 if rect1.intersect_rect?(rect2) == false return false end end #area of a triangle triArea = -> (a,b,c) { ((a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y))/2.0).abs } #if at least on point is in the rectangle then collision? is true - otherwise false for point in points #Check whether a given point lies inside a rectangle or not: #if the sum of the area of traingls, PAB, PBC, PCD, PAD equal the area of the rec, then an intersection has occured areaRec = triArea.call(rpointA, rpointB, rpointC)+triArea.call(rpointA, rpointC, rpointD) areaSum = [ triArea.call(point, rpointA, rpointB),triArea.call(point, rpointB, rpointC), triArea.call(point, rpointC, rpointD),triArea.call(point, rpointA, rpointD) ].inject(0){|sum,x| sum + x } e = 0.0001 #allow for minor error if areaRec>= areaSum-e and areaRec<= areaSum+e result = true #return true break end end #args.outputs.lines << [@pointA.x, @pointA.y, @pointB.x, @pointB.y, 000, 000, 000] #args.outputs.lines << [rpointA.x, rpointA.y, rpointB.x, rpointB.y, 255, 000, 000] #args.outputs.lines << [rpointC.x, rpointC.y, rpointD.x, rpointD.y, 000, 000, 255] #puts (rpointA.x.to_s + " " + rpointA.y.to_s + " " + rpointB.x.to_s + " "+ rpointB.y.to_s) return result end #end collision? def getRepelMagnitude (fbx, fby, vrx, vry, ballMag) a = fbx ; b = vrx ; c = fby d = vry ; e = ballMag if b**2 + d**2 == 0 #unexpected end x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2) x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)) err = 0.00001 o = ((fbx + x1*vrx)**2 + (fby + x1*vry)**2 ) ** 0.5 p = ((fbx + x2*vrx)**2 + (fby + x2*vry)**2 ) ** 0.5 r = 0 if (ballMag >= o-err and ballMag <= o+err) r = x1 elsif (ballMag >= p-err and ballMag <= p+err) r = x2 else #unexpected end return r end def collide args, ball slope = collisionSlope args # perpVect: normal vector perpendicular to collision perpVect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y} mag = (perpVect.x**2 + perpVect.y**2)**0.5 perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} perpVect = {x: -perpVect.y, y: perpVect.x} if perpVect.y > 0 #ensure perpVect points upward perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end previousPosition = { x:ball.x-ball.velocity.x, y:ball.y-ball.velocity.y } yInterc = @pointA.y + -slope*@pointA.x if slope == INFINITY if previousPosition.x < @pointA.x perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} yInterc = -INFINITY end elsif previousPosition.y < slope*previousPosition.x + yInterc #check if ball is bellow or above the collider to determine if perpVect is - or + perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end velocityMag = (ball.velocity.x**2 + ball.velocity.y**2)**0.5 theta_ball=Math.atan2(ball.velocity.y,ball.velocity.x) #the angle of the ball's velocity theta_repel=Math.atan2(perpVect.y,perpVect.x) #the angle of the repelling force(perpVect) fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity #the magnitude of the repelling force repelMag = getRepelMagnitude(fbx, fby, perpVect.x, perpVect.y, (ball.velocity.x**2 + ball.velocity.y**2)**0.5) frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby fsumx = fbx+frx #sum of x forces fsumy = fby+fry #sum of y forces fr = velocityMag#fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew)#resulting x velocity ynew = fr*Math.sin(thetaNew)#resulting y velocity if (velocityMag < MAX_VELOCITY) ball.velocity = Vector2d.new(xnew*1.1, ynew*1.1) else ball.velocity = Vector2d.new(xnew, ynew) end end end
Physics And Collisions - Arbitrary Collision - main.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/main.rb INFINITY= 10**10 MAX_VELOCITY = 8.0 BALL_COUNT = 90 BALL_DISTANCE = 20 require 'app/vector2d.rb' require 'app/blocks.rb' require 'app/ball.rb' require 'app/rectangle.rb' require 'app/linear_collider.rb' require 'app/square_collider.rb' #Method to init default values def defaults args args.state.board_width ||= args.grid.w / 4 args.state.board_height ||= args.grid.h args.state.game_area ||= [(args.state.board_width + args.grid.w / 8), 0, args.state.board_width, args.grid.h] args.state.balls ||= [] args.state.num_balls ||= 0 args.state.ball_created_at ||= args.state.tick_count args.state.ball_hypotenuse = (10**2 + 10**2)**0.5 args.state.ballParents ||= [] init_blocks args init_balls args end begin :default_methods def init_blocks args block_size = args.state.board_width / 8 #Space inbetween each block block_offset = 4 args.state.squares ||=[ Square.new(args, 2, 0, block_size, :right, block_offset), Square.new(args, 5, 0, block_size, :right, block_offset), Square.new(args, 6, 7, block_size, :right, block_offset) ] #Possible orientations are :right, :left, :up, :down args.state.tshapes ||= [ TShape.new(args, 0, 6, block_size, :left, block_offset), TShape.new(args, 3, 3, block_size, :down, block_offset), TShape.new(args, 0, 3, block_size, :right, block_offset), TShape.new(args, 0, 11, block_size, :up, block_offset) ] args.state.lines ||= [ Line.new(args,3, 8, block_size, :down, block_offset), Line.new(args, 7, 3, block_size, :up, block_offset), Line.new(args, 3, 7, block_size, :right, block_offset) ] #exit() end def init_balls args return unless args.state.num_balls < BALL_COUNT #only create a new ball every 10 ticks return unless args.state.ball_created_at.elapsed_time > 10 if (args.state.num_balls == 0) args.state.balls.append(Ball.new(args,args.state.num_balls,BALL_COUNT-1, nil, nil)) args.state.ballParents = [args.state.balls[0]] else args.state.balls.append(Ball.new(args,args.state.num_balls,BALL_COUNT-1, args.state.balls.last, nil) ) args.state.balls[-2].child = args.state.balls[-1] end args.state.ball_created_at = args.state.tick_count args.state.num_balls += 1 end end #Render loop def render args bgClr = {r:10, g:10, b:200} bgClr = {r:255-30, g:255-30, b:255-30} args.outputs.solids << [0, 0, $args.grid.right, $args.grid.top, bgClr[:r], bgClr[:g], bgClr[:b]]; args.outputs.borders << args.state.game_area render_instructions args render_shapes args render_balls args #args.state.rectangle.draw args args.outputs.sprites << [$args.grid.right-(args.state.board_width + args.grid.w / 8), 0, $args.grid.right, $args.grid.top, "sprites/square-white-2.png", 0, 255, bgClr[:r], bgClr[:g], bgClr[:b]] args.outputs.sprites << [0, 0, (args.state.board_width + args.grid.w / 8), $args.grid.top, "sprites/square-white-2.png", 0, 255, bgClr[:r], bgClr[:g], bgClr[:b]] end begin :render_methods def render_instructions args #gtk.current_framerate args.outputs.labels << [20, $args.grid.top-20, "FPS: " + $gtk.current_framerate.to_s] if (args.state.balls != nil && args.state.balls[0] != nil) bx = args.state.balls[0].velocity.x by = args.state.balls[0].velocity.y bmg = (bx**2.0 + by**2.0)**0.5 args.outputs.labels << [20, $args.grid.top-20-20, "V: " + bmg.to_s ] end end def render_shapes args for s in args.state.squares s.draw args end for l in args.state.lines l.draw args end for t in args.state.tshapes t.draw args end end def render_balls args #args.state.balls.each do |ball| #ball.draw args #end args.outputs.sprites << args.state.balls.map do |ball| ball.getDraw args end end end #Calls all methods necessary for performing calculations def calc args for b in args.state.ballParents b.update args end for s in args.state.squares s.update args end for l in args.state.lines l.update args end for t in args.state.tshapes t.update args end end begin :calc_methods end def tick args defaults args render args calc args end
Physics And Collisions - Arbitrary Collision - paddle.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/paddle.rb class Paddle attr_accessor :enabled def initialize () @x=WIDTH/2 @y=100 @width=100 @height=20 @speed=10 @xyCollision = LinearCollider.new({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5}) @xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @x+@width, y: @y}, :pos) @xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @y+@height+5}) @xyCollision4 = LinearCollider.new({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5}, :pos) @enabled = true end def update args @xyCollision.resetPoints({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5}) @xyCollision2.resetPoints({x: @x,y: @y}, {x: @x+@width, y: @y}) @xyCollision3.resetPoints({x: @x,y: @y}, {x: @x, y: @y+@height+5}) @xyCollision4.resetPoints({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5}) @xyCollision.update args @xyCollision2.update args @xyCollision3.update args @xyCollision4.update args args.inputs.keyboard.key_held.left ||= false args.inputs.keyboard.key_held.right ||= false if not (args.inputs.keyboard.key_held.left == args.inputs.keyboard.key_held.right) if args.inputs.keyboard.key_held.left && @enabled @x-=@speed elsif args.inputs.keyboard.key_held.right && @enabled @x+=@speed end end xmin =WIDTH/4 xmax = 3*(WIDTH/4) @x = (@x+@width > xmax) ? xmax-@width : (@x<xmin) ? xmin : @x; end def render args args.outputs.solids << [@x,@y,@width,@height,255,0,0]; end def rect [@x, @y, @width, @height] end end
Physics And Collisions - Arbitrary Collision - rectangle.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/rectangle.rb class Rectangle def initialize args @image = "sprites/roundSquare_white.png" @width = 160.0 @height = 80.0 @x=$args.grid.right/2.0 - @width/2.0 @y=$args.grid.top/2.0 - @height/2.0 @xtmp = @width * (1.0/10.0) @ytmp = @height * (1.0/10.0) #ball0 = args.state.balls[0] #hypotenuse = (args.state.balls[0].width**2 + args.state.balls[0].height**2)**0.5 hypotenuse=args.state.ball_hypotenuse @boldXY = {x:(@x-hypotenuse/2)-1, y:(@y-hypotenuse/2)-1} @boldWidth = @width + hypotenuse + 2 @boldHeight = @height + hypotenuse + 2 @bold = [(@x-hypotenuse/2)-1,(@y-hypotenuse/2)-1,@width + hypotenuse + 2,@height + hypotenuse + 2] @points = [ {x:@x, y:@y+@ytmp}, {x:@x+@xtmp, y:@y}, {x:@x+@width-@xtmp, y:@y}, {x:@x+@width, y:@y+@ytmp}, {x:@x+@width, y:@y+@height-@ytmp},# {x:@x+@width-@xtmp, y:@y+@height}, {x:@x+@xtmp, y:@y+@height}, {x:@x, y:@y+@height-@ytmp} ] @colliders = [] #i = 0 #while i < @points.length-1 #@colliders.append(LinearCollider.new(@points[i],@points[i+1],:pos)) #i+=1 #end @colliders.append(LinearCollider.new(@points[0],@points[1], :neg)) @colliders.append(LinearCollider.new(@points[1],@points[2], :neg)) @colliders.append(LinearCollider.new(@points[2],@points[3], :neg)) @colliders.append(LinearCollider.new(@points[3],@points[4], :neg)) @colliders.append(LinearCollider.new(@points[4],@points[5], :pos)) @colliders.append(LinearCollider.new(@points[5],@points[6], :pos)) @colliders.append(LinearCollider.new(@points[6],@points[7], :pos)) @colliders.append(LinearCollider.new(@points[0],@points[7], :pos)) end def update args for b in args.state.balls if [b.x, b.y, b.width, b.height].intersect_rect?(@bold) for c in @colliders if c.collision?(args, b.getPoints(args),b) c.collide args, b end end end end end def draw args args.outputs.sprites << [ @x, # X @y, # Y @width, # W @height, # H @image, # PATH 0, # ANGLE 255, # ALPHA 219, # RED_SATURATION 112, # GREEN_SATURATION 147 # BLUE_SATURATION ] #args.outputs.sprites << [@x, @y, @width, @height, "sprites/roundSquare_small_black.png"] end def serialize {x: @x, y:@y} end def inspect serialize.to_s end def to_s serialize.to_s end end
Physics And Collisions - Arbitrary Collision - square_collider.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/square_collider.rb class SquareCollider def initialize x,y,direction,size=COLLISIONWIDTH @x = x @y = y @size = size @direction = direction end def collision? args, ball #args.outputs.solids << [@x, @y, @size, @size, 000, 255, 255] return [@x,@y,@size,@size].intersect_rect?([ball.x,ball.y,ball.width,ball.height]) end def collide args, ball vmag = (ball.velocity.x**2.0 +ball.velocity.y**2.0)**0.5 a = ((2.0**0.5)*vmag)/2.0 if vmag < MAX_VELOCITY ball.velocity.x = (a) * @direction.x * 1.1 ball.velocity.y = (a) * @direction.y * 1.1 else ball.velocity.x = (a) * @direction.x ball.velocity.y = (a) * @direction.y end end end
Physics And Collisions - Arbitrary Collision - vector2d.rb link
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/vector2d.rb class Vector2d attr_accessor :x, :y def initialize x=0, y=0 @x=x @y=y end #returns a vector multiplied by scalar x #x [float] scalar def mult x r = Vector2d.new(0,0) r.x=@x*x r.y=@y*x r end # vect [Vector2d] vector to copy def copy vect Vector2d.new(@x, @y) end #returns a new vector equivalent to this+vect #vect [Vector2d] vector to add to self def add vect Vector2d.new(@x+vect.x,@y+vect.y) end #returns a new vector equivalent to this-vect #vect [Vector2d] vector to subtract to self def sub vect Vector2d.new(@x-vect.c, @y-vect.y) end #return the magnitude of the vector def mag ((@x**2)+(@y**2))**0.5 end #returns a new normalize version of the vector def normalize Vector2d.new(@x/mag, @y/mag) end #TODO delet? def distABS vect (((vect.x-@x)**2+(vect.y-@y)**2)**0.5).abs() end end
Physics And Collisions - Collision With Object Removal - ball.rb link
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/ball.rb class Ball #TODO limit accessors? attr_accessor :xy, :width, :height, :velocity #@xy [Vector2d] x,y position #@velocity [Vector2d] velocity of ball def initialize @xy = Vector2d.new(WIDTH/2,500) @velocity = Vector2d.new(4,-4) @width = 20 @height = 20 end #move the ball according to its velocity def update args @xy.x+=@velocity.x @xy.y+=@velocity.y end #render the ball to the screen def render args args.outputs.solids << [@xy.x,@xy.y,@width,@height,255,0,255]; #args.outputs.labels << [20,HEIGHT-50,"velocity: " +@velocity.x.to_s+","+@velocity.y.to_s + " magnitude:" + @velocity.mag.to_s] end def rect [@xy.x,@xy.y,@width,@height] end end
Physics And Collisions - Collision With Object Removal - linear_collider.rb link
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/linear_collider.rb #The LinearCollider (theoretically) produces collisions upon a line segment defined point.y two x,y cordinates class LinearCollider #start [Array of length 2] start of the line segment as a x,y cordinate #last [Array of length 2] end of the line segment as a x,y cordinate #inorder for the LinearCollider to be functional the line segment must be said to have a thickness #(as it is unlikly that a colliding object will land exactly on the linesegment) #extension defines if the line's thickness extends negatively or positively #extension :pos extends positively #extension :neg extends negatively #thickness [float] how thick the line should be (should always be atleast as large as the magnitude of the colliding object) def initialize (pointA, pointB, extension=:neg, thickness=10) @pointA = pointA @pointB = pointB @thickness = thickness @extension = extension @pointAExtended={ x: @pointA.x + @thickness*(@extension == :neg ? -1 : 1), y: @pointA.y + @thickness*(@extension == :neg ? -1 : 1) } @pointBExtended={ x: @pointB.x + @thickness*(@extension == :neg ? -1 : 1), y: @pointB.y + @thickness*(@extension == :neg ? -1 : 1) } end def resetPoints(pointA,pointB) @pointA = pointA @pointB = pointB @pointAExtended={ x:@pointA.x + @thickness*(@extension == :neg ? -1 : 1), y:@pointA.y + @thickness*(@extension == :neg ? -1 : 1) } @pointBExtended={ x:@pointB.x + @thickness*(@extension == :neg ? -1 : 1), y:@pointB.y + @thickness*(@extension == :neg ? -1 : 1) } end #TODO: Ugly function def slope (pointA, pointB) return (pointB.x==pointA.x) ? INFINITY : (pointB.y+-pointA.y)/(pointB.x+-pointA.x) end #TODO: Ugly function def intercept(pointA, pointB) if (slope(pointA, pointB) == INFINITY) -INFINITY elsif slope(pointA, pointB) == -1*INFINITY INFINITY else pointA.y+-1.0*(slope(pointA, pointB)*pointA.x) end end def calcY(pointA, pointB, x) return slope(pointA, pointB)*x + intercept(pointA, pointB) end #test if a collision has occurred def isCollision? (point) #INFINITY slop breaks down when trying to determin collision, ergo it requires a special test if slope(@pointA, @pointB) == INFINITY && point.x >= [@pointA.x,@pointB.x].min+(@extension == :pos ? -@thickness : 0) && point.x <= [@pointA.x,@pointB.x].max+(@extension == :neg ? @thickness : 0) && point.y >= [@pointA.y,@pointB.y].min && point.y <= [@pointA.y,@pointB.y].max return true end isNegInLine = @extension == :neg && point.y <= slope(@pointA, @pointB)*point.x+intercept(@pointA,@pointB) && point.y >= point.x*slope(@pointAExtended, @pointBExtended)+intercept(@pointAExtended,@pointBExtended) isPosInLine = @extension == :pos && point.y >= slope(@pointA, @pointB)*point.x+intercept(@pointA,@pointB) && point.y <= point.x*slope(@pointAExtended, @pointBExtended)+intercept(@pointAExtended,@pointBExtended) isInBoxBounds = point.x >= [@pointA.x,@pointB.x].min && point.x <= [@pointA.x,@pointB.x].max && point.y >= [@pointA.y,@pointB.y].min+(@extension == :neg ? -@thickness : 0) && point.y <= [@pointA.y,@pointB.y].max+(@extension == :pos ? @thickness : 0) return isInBoxBounds && (isNegInLine || isPosInLine) end def getRepelMagnitude (fbx, fby, vrx, vry, args) a = fbx ; b = vrx ; c = fby d = vry ; e = args.state.ball.velocity.mag if b**2 + d**2 == 0 puts "magnitude error" end x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2) x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)) return ((a+x1*b)**2 + (c+x1*d)**2 == e**2) ? x1 : x2 end def update args #each of the four points on the square ball - NOTE simple to extend to a circle points= [ {x: args.state.ball.xy.x, y: args.state.ball.xy.y}, {x: args.state.ball.xy.x+args.state.ball.width, y: args.state.ball.xy.y}, {x: args.state.ball.xy.x, y: args.state.ball.xy.y+args.state.ball.height}, {x: args.state.ball.xy.x+args.state.ball.width, y: args.state.ball.xy.y + args.state.ball.height} ] #for each point p in points for point in points #isCollision.md has more information on this section #TODO: section can certainly be simplifyed if isCollision?(point) u = Vector2d.new(1.0,((slope(@pointA, @pointB)==0) ? INFINITY : -1/slope(@pointA, @pointB))*1.0).normalize #normal perpendicular (to line segment) vector #the vector with the repeling force can be u or -u depending of where the ball was coming from in relation to the line segment previousBallPosition=Vector2d.new(point.x-args.state.ball.velocity.x,point.y-args.state.ball.velocity.y) choiceA = (u.mult(1)) choiceB = (u.mult(-1)) vectorRepel = nil if (slope(@pointA, @pointB))!=INFINITY && u.y < 0 choiceA, choiceB = choiceB, choiceA end vectorRepel = (previousBallPosition.y > calcY(@pointA, @pointB, previousBallPosition.x)) ? choiceA : choiceB #vectorRepel = (previousBallPosition.y > slope(@pointA, @pointB)*previousBallPosition.x+intercept(@pointA,@pointB)) ? choiceA : choiceB) if (slope(@pointA, @pointB) == INFINITY) #slope INFINITY breaks down in the above test, ergo it requires a custom test vectorRepel = (previousBallPosition.x > @pointA.x) ? (u.mult(1)) : (u.mult(-1)) end #puts (" " + $t[0].to_s + "," + $t[1].to_s + " " + $t[2].to_s + "," + $t[3].to_s + " " + " " + u.x.to_s + "," + u.y.to_s) #vectorRepel now has the repeling force mag = args.state.ball.velocity.mag theta_ball=Math.atan2(args.state.ball.velocity.y,args.state.ball.velocity.x) #the angle of the ball's velocity theta_repel=Math.atan2(vectorRepel.y,vectorRepel.x) #the angle of the repeling force #puts ("theta:" + theta_ball.to_s + " " + theta_repel.to_s) #theta okay fbx = mag * Math.cos(theta_ball) #the x component of the ball's velocity fby = mag * Math.sin(theta_ball) #the y component of the ball's velocity repelMag = getRepelMagnitude(fbx, fby, vectorRepel.x, vectorRepel.y, args) frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby fsumx = fbx+frx #sum of x forces fsumy = fby+fry #sum of y forces fr = mag#fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew) #resulting x velocity ynew = fr*Math.sin(thetaNew) #resulting y velocity args.state.ball.velocity = Vector2d.new(xnew,ynew) #args.state.ball.xy.add(args.state.ball.velocity) break #no need to check the other points ? else end end end #end update end
Physics And Collisions - Collision With Object Removal - main.rb link
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/main.rb # coding: utf-8 INFINITY= 10**10 WIDTH=1280 HEIGHT=720 require 'app/vector2d.rb' require 'app/paddle.rb' require 'app/ball.rb' require 'app/linear_collider.rb' #Method to init default values def defaults args args.state.game_board ||= [(args.grid.w / 2 - args.grid.w / 4), 0, (args.grid.w / 2), args.grid.h] args.state.bricks ||= [] args.state.num_bricks ||= 0 args.state.game_over_at ||= 0 args.state.paddle ||= Paddle.new args.state.ball ||= Ball.new args.state.westWall ||= LinearCollider.new({x: args.grid.w/4, y: 0}, {x: args.grid.w/4, y: args.grid.h}, :pos) args.state.eastWall ||= LinearCollider.new({x: 3*args.grid.w*0.25, y: 0}, {x: 3*args.grid.w*0.25, y: args.grid.h}) args.state.southWall ||= LinearCollider.new({x: 0, y: 0}, {x: args.grid.w, y: 0}) args.state.northWall ||= LinearCollider.new({x: 0, y:args.grid.h}, {x: args.grid.w, y: args.grid.h}, :pos) #args.state.testWall ||= LinearCollider.new({x:0 , y:0},{x:args.grid.w, y:args.grid.h}) end #Render loop def render args render_instructions args render_board args render_bricks args end begin :render_methods #Method to display the instructions of the game def render_instructions args args.outputs.labels << [225, args.grid.h - 30, "← and → to move the paddle left and right", 0, 1] end def render_board args args.outputs.borders << args.state.game_board end def render_bricks args args.outputs.solids << args.state.bricks.map(&:rect) end end #Calls all methods necessary for performing calculations def calc args add_new_bricks args reset_game args calc_collision args win_game args args.state.westWall.update args args.state.eastWall.update args args.state.southWall.update args args.state.northWall.update args args.state.paddle.update args args.state.ball.update args #args.state.testWall.update args args.state.paddle.render args args.state.ball.render args end begin :calc_methods def add_new_bricks args return if args.state.num_bricks > 40 #Width of the game board is 640px brick_width = (args.grid.w / 2) / 10 brick_height = brick_width / 2 (4).map_with_index do |y| #Make a box that is 10 bricks wide and 4 bricks tall args.state.bricks += (10).map_with_index do |x| args.state.new_entity(:brick) do |b| b.x = x * brick_width + (args.grid.w / 2 - args.grid.w / 4) b.y = args.grid.h - ((y + 1) * brick_height) b.rect = [b.x + 1, b.y - 1, brick_width - 2, brick_height - 2, 235, 50 * y, 52] #Add linear colliders to the brick b.collider_bottom = LinearCollider.new([(b.x-2), (b.y-5)], [(b.x+brick_width+1), (b.y-5)], :pos, brick_height) b.collider_right = LinearCollider.new([(b.x+brick_width+1), (b.y-5)], [(b.x+brick_width+1), (b.y+brick_height+1)], :pos) b.collider_left = LinearCollider.new([(b.x-2), (b.y-5)], [(b.x-2), (b.y+brick_height+1)], :neg) b.collider_top = LinearCollider.new([(b.x-2), (b.y+brick_height+1)], [(b.x+brick_width+1), (b.y+brick_height+1)], :neg) # @xyCollision = LinearCollider.new({x: @x,y: @y+@height}, {x: @x+@width, y: @y+@height}) # @xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @x+@width, y: @y}, :pos) # @xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @y+@height}) # @xyCollision4 = LinearCollider.new({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height}, :pos) b.broken = false args.state.num_bricks += 1 end end end end def reset_game args if args.state.ball.xy.y < 20 && args.state.game_over_at.elapsed_time > 60 #Freeze the ball args.state.ball.velocity.x = 0 args.state.ball.velocity.y = 0 #Freeze the paddle args.state.paddle.enabled = false args.state.game_over_at = args.state.tick_count end if args.state.game_over_at.elapsed_time < 60 && args.state.tick_count > 60 && args.state.bricks.count != 0 #Display a "Game over" message args.outputs.labels << [100, 100, "GAME OVER", 10] end #If 60 frames have passed since the game ended, restart the game if args.state.game_over_at != 0 && args.state.game_over_at.elapsed_time == 60 # FIXME: only put value types in state args.state.ball = Ball.new # FIXME: only put value types in state args.state.paddle = Paddle.new args.state.bricks = [] args.state.num_bricks = 0 end end def calc_collision args #Remove the brick if it is hit with the ball ball = args.state.ball ball_rect = [ball.xy.x, ball.xy.y, 20, 20] #Loop through each brick to see if the ball is colliding with it args.state.bricks.each do |b| if b.rect.intersect_rect?(ball_rect) #Run the linear collider for the brick if there is a collision b[:collider_bottom].update args b[:collider_right].update args b[:collider_left].update args b[:collider_top].update args b.broken = true end end args.state.bricks = args.state.bricks.reject(&:broken) end def win_game args if args.state.bricks.count == 0 && args.state.game_over_at.elapsed_time > 60 #Freeze the ball args.state.ball.velocity.x = 0 args.state.ball.velocity.y = 0 #Freeze the paddle args.state.paddle.enabled = false args.state.game_over_at = args.state.tick_count end if args.state.game_over_at.elapsed_time < 60 && args.state.tick_count > 60 && args.state.bricks.count == 0 #Display a "Game over" message args.outputs.labels << [100, 100, "CONGRATULATIONS!", 10] end end end def tick args defaults args render args calc args #args.outputs.lines << [0, 0, args.grid.w, args.grid.h] #$tc+=1 #if $tc == 5 #$train << [args.state.ball.xy.x, args.state.ball.xy.y] #$tc = 0 #end #for t in $train #args.outputs.solids << [t[0],t[1],5,5,255,0,0]; #end end
Physics And Collisions - Collision With Object Removal - paddle.rb link
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/paddle.rb class Paddle attr_accessor :enabled def initialize () @x=WIDTH/2 @y=100 @width=100 @height=20 @speed=10 @xyCollision = LinearCollider.new({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5}) @xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @x+@width, y: @y}, :pos) @xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @y+@height+5}) @xyCollision4 = LinearCollider.new({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5}, :pos) @enabled = true end def update args @xyCollision.resetPoints({x: @x,y: @y+@height+5}, {x: @x+@width, y: @y+@height+5}) @xyCollision2.resetPoints({x: @x,y: @y}, {x: @x+@width, y: @y}) @xyCollision3.resetPoints({x: @x,y: @y}, {x: @x, y: @y+@height+5}) @xyCollision4.resetPoints({x: @x+@width,y: @y}, {x: @x+@width, y: @y+@height+5}) @xyCollision.update args @xyCollision2.update args @xyCollision3.update args @xyCollision4.update args args.inputs.keyboard.key_held.left ||= false args.inputs.keyboard.key_held.right ||= false if not (args.inputs.keyboard.key_held.left == args.inputs.keyboard.key_held.right) if args.inputs.keyboard.key_held.left && @enabled @x-=@speed elsif args.inputs.keyboard.key_held.right && @enabled @x+=@speed end end xmin =WIDTH/4 xmax = 3*(WIDTH/4) @x = (@x+@width > xmax) ? xmax-@width : (@x<xmin) ? xmin : @x; end def render args args.outputs.solids << [@x,@y,@width,@height,255,0,0]; end def rect [@x, @y, @width, @height] end end
Physics And Collisions - Collision With Object Removal - tests.rb link
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/tests.rb # For advanced users: # You can put some quick verification tests here, any method # that starts with the `test_` will be run when you save this file. # Here is an example test and game # To run the test: ./dragonruby mygame --eval app/tests.rb --no-tick class MySuperHappyFunGame attr_gtk def tick outputs.solids << [100, 100, 300, 300] end end def test_universe args, assert game = MySuperHappyFunGame.new game.args = args game.tick assert.true! args.outputs.solids.length == 1, "failure: a solid was not added after tick" assert.false! 1 == 2, "failure: some how, 1 equals 2, the world is ending" puts "test_universe completed successfully" end puts "running tests" $gtk.reset 100 $gtk.log_level = :off $gtk.tests.start
Physics And Collisions - Collision With Object Removal - vector2d.rb link
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/vector2d.rb class Vector2d attr_accessor :x, :y def initialize x=0, y=0 @x=x @y=y end #returns a vector multiplied by scalar x #x [float] scalar def mult x r = Vector2d.new(0,0) r.x=@x*x r.y=@y*x r end # vect [Vector2d] vector to copy def copy vect Vector2d.new(@x, @y) end #returns a new vector equivalent to this+vect #vect [Vector2d] vector to add to self def add vect Vector2d.new(@x+vect.x,@y+vect.y) end #returns a new vector equivalent to this-vect #vect [Vector2d] vector to subtract to self def sub vect Vector2d.new(@x-vect.c, @y-vect.y) end #return the magnitude of the vector def mag ((@x**2)+(@y**2))**0.5 end #returns a new normalize version of the vector def normalize Vector2d.new(@x/mag, @y/mag) end #TODO delet? def distABS vect (((vect.x-@x)**2+(vect.y-@y)**2)**0.5).abs() end end
Physics And Collisions - Bouncing Ball With Gravity - main.rb link
# ./samples/04_physics_and_collisions/11_bouncing_ball_with_gravity/app/main.rb include MatrixFunctions class BouncingBall attr_gtk def tick defaults render input calc reset_ball if args.inputs.keyboard.key_down.r args.state.debug = !args.state.debug if inputs.keyboard.key_down.g debug if args.state.debug end def defaults args.state.rest ||= false args.state.debug ||= false state.walls ||= [ { x: 50.from_left, y: 50.from_bottom, x2: 50.from_left, y2: 50.from_top }, { x: 50.from_left, y: 50.from_bottom, x2: 50.from_right, y2: 50.from_bottom }, { x: 50.from_left, y: 50.from_top, x2: 50.from_right, y2: 50.from_top }, { x: 50.from_right, y: 50.from_bottom, x2: 50.from_right, y2: 50.from_top }, ] state.ball ||= { x: 250, y: 250, w: 50, h: 50, path: 'circle-white.png' } state.ball_old_x ||= state.ball[:x] state.ball_old_y ||= state.ball[:y] state.ball_vector ||= vec2(0, 0) state.stick_length = 200 state.stick_angle ||= 0 state.stick_power ||= 0 # Prevent consecutive bounces on the same normal vector # Solves issue where ball gets stuck on a wall state.prevent_collision ||= {} state.physics.gravity = 0.4 state.physics.restitution = 0.80 state.physics.friction = 0.70 end def render outputs.lines << state.walls outputs.sprites << state.ball render_stick render_point_one end def render_stick stick_vec_x = Math.cos(state.stick_angle.to_radians) stick_vec_y = Math.sin(state.stick_angle.to_radians) ball_center_x = state.ball[:x] + (state.ball[:w] / 2) ball_center_y = state.ball[:y] + (state.ball[:h] / 2) # Draws the line starting 15% of stick_length away from the ball outputs.lines << { x: ball_center_x + (stick_vec_x * state.stick_length * -0.15), y: ball_center_y + (stick_vec_y * state.stick_length * -0.15), w: stick_vec_x * state.stick_length * -1, h: stick_vec_y * state.stick_length * -1, } end def render_point_one return unless state.point_one outputs.lines << { x: state.point_one.x, y: state.point_one.y, x2: inputs.mouse.x, y2: inputs.mouse.y, r: 255 } end def input input_stick input_lines state.point_one = nil if inputs.keyboard.key_down.escape end def input_stick if inputs.keyboard.key_up.space hit_ball state.stick_power = 0 end if inputs.keyboard.key_held.space state.stick_power += 1 unless state.stick_power >= 50 outputs.labels << [100, 100, state.stick_power] end state.stick_angle += inputs.keyboard.left_right end def input_lines return unless inputs.mouse.click if state.point_one x = snap(state.point_one.x) y = snap(state.point_one.y) x2 = snap(inputs.mouse.click.x) y2 = snap(inputs.mouse.click.y) state.walls << { x: x, y: y, x2: x2, y2: y2 } state.point_one = nil else state.point_one = inputs.mouse.click.point end end # FIX: does not snap negative numbers properly def snap value snap_number = 10 min = value.to_i.idiv(snap_number) * snap_number max = min + snap_number result = (max - value).abs < (min - value).abs ? max : min puts "SNAP: #{ value } --> #{ result }" if state.debug result end def hit_ball vec_x = Math.cos(state.stick_angle.to_radians) * state.stick_power vec_y = Math.sin(state.stick_angle.to_radians) * state.stick_power state.ball_vector = vec2(vec_x, vec_y) state.rest = false end def entropy state.ball_vector[:x].abs + state.ball_vector[:y].abs end # Ball is resting if # entropy is low, ball is touching a line # the line is not steep and the ball is above the line def ball_is_resting?(walls, true_normal) entropy < 1.5 && !walls.empty? && true_normal[:y] > 0.96 end def calc walls = [] state.walls.each do |wall| if line_intersect_rect?(wall, state.ball) walls << wall unless state.prevent_collision.key?(wall) end end state.prevent_collision = {} walls.each { |w| state.prevent_collision[w] = true } normals = walls.map { |w| compute_proper_normal(w) } true_normal = normals.inject { |a, b| normalize(vector_add(a, b)) } unless state.rest state.ball_vector = collision(true_normal) unless walls.empty? state.ball_old_x = state.ball[:x] state.ball_old_y = state.ball[:y] state.ball[:x] += state.ball_vector[:x] state.ball[:y] += state.ball_vector[:y] state.ball_vector[:y] -= state.physics.gravity if ball_is_resting?(walls, true_normal) state.ball[:y] += 1 state.rest = true end end end # Line segment intersects rect if it intersects # any of the lines that make up the rect # This doesn't cover the case where the line is completely within the rect def line_intersect_rect?(line, rect) rect_to_lines(rect).each do |rect_line| return true if segments_intersect?(line, rect_line) end false end # https://stackoverflow.com/questions/573084/ def collision(normal_vector) dot_product = dot(state.ball_vector, normal_vector) normal_square = dot(normal_vector, normal_vector) perpendicular = vector_multiply(normal_vector, (dot_product / normal_square)) parallel = vector_minus(state.ball_vector, perpendicular) perpendicular = vector_multiply(perpendicular, state.physics.restitution) parallel = vector_multiply(parallel, state.physics.friction) vector_minus(parallel, perpendicular) end # https://stackoverflow.com/questions/1243614/ def compute_normals(line) h = line[:y2] - line[:y] w = line[:x2] - line[:x] a = normalize vec2(-h, w) b = normalize vec2(h, -w) [a, b] end # https://stackoverflow.com/questions/3838319/ # Get the normal vector that points at the ball from the center of the line def compute_proper_normal(line) normals = compute_normals(line) ball_center_x = state.ball_old_x + (state.ball[:w] / 2) ball_center_y = state.ball_old_y + (state.ball[:h] / 2) v1 = vec2(line[:x2] - line[:x], line[:y2] - line[:y]) v2 = vec2(line[:x2] - ball_center_x, line[:y2] - ball_center_y) cp = v1[:x] * v2[:y] - v1[:y] * v2[:x] cp < 0 ? normals[0] : normals[1] end def vector_multiply(vector, value) vec2(vector[:x] * value, vector[:y] * value) end def vector_minus(vec_a, vec_b) vec2(vec_a[:x] - vec_b[:x], vec_a[:y] - vec_b[:y]) end def vector_add a, b vec2(a[:x] + b[:x], a[:y] + b[:y]) end # The lines composing the boundaries of a rectangle def rect_to_lines(rect) x = rect[:x] y = rect[:y] x2 = rect[:x] + rect[:w] y2 = rect[:y] + rect[:h] [{ x: x, y: y, x2: x2, y2: y }, { x: x, y: y, x2: x, y2: y2 }, { x: x2, y: y, x2: x2, y2: y2 }, { x: x, y: y2, x2: x2, y2: y2 }] end # This is different from args.geometry.line_intersect # This considers line segments instead of lines # http://jeffreythompson.org/collision-detection/line-line.php def segments_intersect?(line_one, line_two) x1 = line_one[:x] y1 = line_one[:y] x2 = line_one[:x2] y2 = line_one[:y2] x3 = line_two[:x] y3 = line_two[:y] x4 = line_two[:x2] y4 = line_two[:y2] uA = ((x4-x3)*(y1-y3) - (y4-y3)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1)) uB = ((x2-x1)*(y1-y3) - (y2-y1)*(x1-x3)) / ((y4-y3)*(x2-x1) - (x4-x3)*(y2-y1)) uA >= 0 && uA <= 1 && uB >= 0 && uB <= 1 end def reset_ball state.ball = nil state.ball_vector = nil state.rest = false end def debug outputs.labels << { x: 50.from_left, y: 50.from_top, text: "Entropy: #{entropy}"} end end def tick args $game ||= BouncingBall.new $game.args = args $game.tick end
Physics And Collisions - Ramp Collision - main.rb link
# ./samples/04_physics_and_collisions/12_ramp_collision/app/main.rb # sample app shows how to do ramp collision # based off of the writeup here: # http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/ # NOTE: at the bottom of the file you'll find $gtk.reset_and_replay "replay.txt" # whenever you make changes to this file, a replay will automatically run so you can # see how your changes affected the game. Comment out the line at the bottom if you # don't want the replay to autmatically run. # toolbar interaction is in a seperate file require 'app/toolbar.rb' def tick args tick_toolbar args tick_game args end def tick_game args game_defaults args game_input args game_calc args game_render args end def game_input args # if space is pressed or held (signifying a jump) if args.inputs.keyboard.space # change the player's dy to the jump power if the # player is not currently touching a ceiling if !args.state.player.on_ceiling args.state.player.dy = args.state.player.jump_power args.state.player.on_floor = false args.state.player.jumping = true end else # if the space key is released, then jumping is false # and the player will no longer be on the ceiling args.state.player.jumping = false args.state.player.on_ceiling = false end # set the player's dx value to the left/right input # NOTE: that the speed of the player's dx movement has # a sensitive relation ship with collision detection. # If you increase the speed of the player, you may # need to tweak the collision code to compensate for # the extra horizontal speed. args.state.player.dx = args.inputs.left_right * 2 end def game_render args # for each terrain entry, render the line that represents the connection # from the tile's left_height to the tile's right_height args.outputs.primitives << args.state.terrain.map { |t| t.line } # determine if the player sprite needs to be flipped hoizontally flip_horizontally = args.state.player.facing == -1 # render the player args.outputs.sprites << args.state.player.merge(flip_horizontally: flip_horizontally) args.outputs.labels << { x: 640, y: 100, alignment_enum: 1, text: "Left and Right to move player. Space to jump. Use the toolbar at the top to add more terrain." } args.outputs.labels << { x: 640, y: 60, alignment_enum: 1, text: "Click any existing terrain on the map to delete it." } end def game_calc args # set the direction the player is facing based on the # the dx value of the player if args.state.player.dx > 0 args.state.player.facing = 1 elsif args.state.player.dx < 0 args.state.player.facing = -1 end # preform the calcuation of ramp collision calc_collision args # reset the player if the go off screen calc_off_screen args end def game_defaults args # how much gravity is in the game args.state.gravity ||= 0.1 # initialized the player to the center of the screen args.state.player ||= { x: 640, y: 360, w: 16, h: 16, dx: 0, dy: 0, jump_power: 3, path: 'sprites/square/blue.png', on_floor: false, on_ceiling: false, facing: 1 } end def calc_collision args # increment the players x position by the dx value args.state.player.x += args.state.player.dx # if the player is not on the floor if !args.state.player.on_floor # then apply gravity args.state.player.dy -= args.state.gravity # clamp the max dy value to -12 to 12 args.state.player.dy = args.state.player.dy.clamp(-12, 12) # update the player's y position by the dy value args.state.player.y += args.state.player.dy end # get all colisions between the player and the terrain collisions = args.state.geometry.find_all_intersect_rect args.state.player, args.state.terrain # if there are no collisions, then the player is not on the floor or ceiling # return from the method since there is nothing more to process if collisions.length == 0 args.state.player.on_floor = false args.state.player.on_ceiling = false return end # set a local variable to the player since # we'll be accessing it a lot player = args.state.player # sort the collisions by the distance from the collision's center to the player's center sorted_collisions = collisions.sort_by do |collision| player_center = player.x + player.w / 2 collision_center = collision.x + collision.w / 2 (player_center - collision_center).abs end # define a one pixel wide rectangle that represents the center of the player # we'll use this value to determine the location of the player's feet on # a ramp player_center_rect = { x: player.x + player.w / 2 - 0.5, y: player.y, w: 1, h: player.h } # for each collision... sorted_collisions.each do |collision| # if the player doesn't intersect with the collision, # then set the player's on_floor and on_ceiling values to false # and continue to the next collision if !collision.intersect_rect? player_center_rect player.on_floor = false player.on_ceiling = false next end if player.dy < 0 # if the player is falling # the percentage of the player's center relative to the collision # is a difference from the collision to the player (as opposed to the player to the collision) perc = (collision.x - player_center_rect.x) / player.w height_of_slope = collision.tile.left_height - collision.tile.right_height new_y = (collision.y + collision.tile.left_height + height_of_slope * perc) diff = new_y - player.y if diff < 0 # if the current fall rate of the player is less than the difference # of the player's new y position and the player's current y position # then don't set the player's y position to the new y position # and wait for another application of gravity to bring the player a little # closer if player.dy.abs >= diff.abs # if the player's current fall speed can cover the distance to the # new y position, then set the player's y position to the new y position # and mark them as being on the floor so that gravity no longer get's processed player.y = new_y player.on_floor = true # given the player's speed, set the player's dy to a value that will # keep them from bouncing off the floor when the ramp is steep # NOTE: if you change the player's speed, then this value will need to be adjusted # to keep the player from bouncing off the floor player.dy = -1 end elsif diff > 0 && diff < 8 # there's a small edge case where collision may be processed from # below the terrain (eg when the player is jumping up and hitting the # ramp from below). The moment when jump is released, the player's dy # value could result in the player tunneling through the terrain, # and get popped on to the top side. # testing to make sure the distance that will be displaced is less than # 8 pixels will keep this tunneling from happening player.y = new_y player.on_floor = true # given the player's speed, set the player's dy to a value that will # keep them from bouncing off the floor when the ramp is steep # NOTE: if you change the player's speed, then this value will need to be adjusted # to keep the player from bouncing off the floor player.dy = -1 end elsif player.dy > 0 # if the player is jumping # the percentage of the player's center relative to the collision # is a difference is reversed from the player to the collision (as opposed to the player to the collision) perc = (player_center_rect.x - collision.x) / player.w # the height of the slope is also reversed when approaching the collision from the bottom height_of_slope = collision.tile.right_height - collision.tile.left_height new_y = collision.y + collision.tile.left_height + height_of_slope * perc # since this collision is being processed from below, the difference # between the current players position and the new y position is # based off of the player's top position (their head) player_top = player.y + player.h diff = new_y - player_top # we also need to calculate the difference between the player's bottom # and the new position. This will be used to determine if the player # can jump from the new_y position diff_bottom = new_y - player.y # if the player's current rising speed can cover the distance to the # new y position, then set the player's y position to the new y position # an mark them as being on the floor so that gravity no longer get's processed can_cover_distance_to_new_y = player.dy >= diff.abs && player.dy.sign == diff.sign # another scenario that needs to be covered is if the player's top is already passed # the new_y position (their rising speed made them partially clip through the collision) player_top_above_new_y = player_top > new_y # if either of the conditions above is true then we want to set the player's y position if can_cover_distance_to_new_y || player_top_above_new_y # only set the player's y position to the new y position if the player's # cannot escape the collision by jumping up from the new_y position if diff_bottom >= player.jump_power player.y = new_y.floor - player.h # after setting the new_y position, we need to determine if the player # if the player is touching the ceiling or not # touching the ceiling disables the ability for the player to jump/increase # their dy value any more than it already is if player.jumping # disable jumping if the player is currently moving upwards player.on_ceiling = true # NOTE: if you change the player's speed, then this value will need to be adjusted # to keep the player from bouncing off the ceiling as they move right and left player.dy = 1 else # if the player is not currently jumping, then set their dy to 0 # so they can immediately start falling after the collision # this also means that they are no longer on the ceiling and can jump again player.dy = 0 player.on_ceiling = false end end end end end end def calc_off_screen args below_screen = args.state.player.y + args.state.player.h < 0 above_screen = args.state.player.y > 720 + args.state.player.h off_screen_left = args.state.player.x + args.state.player.w < 0 off_screen_right = args.state.player.x > 1280 # if the player is off the screen, then reset them to the top of the screen if below_screen || above_screen || off_screen_left || off_screen_right args.state.player.x = 640 args.state.player.y = 720 args.state.player.dy = 0 args.state.player.on_floor = false end end $gtk.reset_and_replay "replay.txt", speed: 2
Physics And Collisions - Ramp Collision - toolbar.rb link
# ./samples/04_physics_and_collisions/12_ramp_collision/app/toolbar.rb def tick_toolbar args # ================================================ # tollbar defaults # ================================================ if !args.state.toolbar # these are the tiles you can select from tile_definitions = [ { name: "16-12", left_height: 16, right_height: 12 }, { name: "12-8", left_height: 12, right_height: 8 }, { name: "8-4", left_height: 8, right_height: 4 }, { name: "4-0", left_height: 4, right_height: 0 }, { name: "0-4", left_height: 0, right_height: 4 }, { name: "4-8", left_height: 4, right_height: 8 }, { name: "8-12", left_height: 8, right_height: 12 }, { name: "12-16", left_height: 12, right_height: 16 }, { name: "16-8", left_height: 16, right_height: 8 }, { name: "8-0", left_height: 8, right_height: 0 }, { name: "0-8", left_height: 0, right_height: 8 }, { name: "8-16", left_height: 8, right_height: 16 }, { name: "0-0", left_height: 0, right_height: 0 }, { name: "8-8", left_height: 8, right_height: 8 }, { name: "16-16", left_height: 16, right_height: 16 }, ] # toolbar data representation which will be used to render the toolbar. # the buttons array will be used to render the buttons # the toolbar_rect will be used to restrict the creation of tiles # within the toolbar area args.state.toolbar = { toolbar_rect: nil, buttons: [] } # for each tile definition, create a button args.state.toolbar.buttons = tile_definitions.map_with_index do |spec, index| left_height = spec.left_height right_height = spec.right_height button_size = 48 column_size = 15 column_padding = 2 column = index % column_size column_padding = column * column_padding margin = 10 row = index.idiv(column_size) row_padding = row * 2 x = margin + column_padding + (column * button_size) y = (margin + button_size + row_padding + (row * button_size)).from_top # when a tile is added, the data of this button will be used # to construct the terrain # each tile has an x, y, w, h which represents the bounding box # of the button. # the button also contains the left_height and right_height which is # important when determining collision of the ramps { name: spec.name, left_height: left_height, right_height: right_height, button_rect: { x: x, y: y, w: 48, h: 48 } } end # with the buttons populated, compute the bounding box of the entire # toolbar (again this will be used to restrict the creation of tiles) min_x = args.state.toolbar.buttons.map { |t| t.button_rect.x }.min min_y = args.state.toolbar.buttons.map { |t| t.button_rect.y }.min max_x = args.state.toolbar.buttons.map { |t| t.button_rect.x }.max max_y = args.state.toolbar.buttons.map { |t| t.button_rect.y }.max args.state.toolbar.rect = { x: min_x - 10, y: min_y - 10, w: max_x - min_x + 10 + 64, h: max_y - min_y + 10 + 64 } end # set the selected tile to the last button in the toolbar args.state.selected_tile ||= args.state.toolbar.buttons.last # ================================================ # starting terrain generation # ================================================ if !args.state.terrain world = [ { row: 14, col: 25, name: "0-8" }, { row: 14, col: 26, name: "8-16" }, { row: 15, col: 27, name: "0-8" }, { row: 15, col: 28, name: "8-16" }, { row: 16, col: 29, name: "0-8" }, { row: 16, col: 30, name: "8-16" }, { row: 17, col: 31, name: "0-8" }, { row: 17, col: 32, name: "8-16" }, { row: 18, col: 33, name: "0-8" }, { row: 18, col: 34, name: "8-16" }, { row: 18, col: 35, name: "16-12" }, { row: 18, col: 36, name: "12-8" }, { row: 18, col: 37, name: "8-4" }, { row: 18, col: 38, name: "4-0" }, { row: 18, col: 39, name: "0-0" }, { row: 18, col: 40, name: "0-0" }, { row: 18, col: 41, name: "0-0" }, { row: 18, col: 42, name: "0-4" }, { row: 18, col: 43, name: "4-8" }, { row: 18, col: 44, name: "8-12" }, { row: 18, col: 45, name: "12-16" }, ] args.state.terrain = world.map do |tile| template = tile_by_name(args, tile.name) next if !template grid_rect = grid_rect_for(tile.row, tile.col) new_terrain_definition(grid_rect, template) end end # ================================================ # toolbar input and rendering # ================================================ # store the mouse position alligned to the tile grid mouse_grid_aligned_rect = grid_aligned_rect args.inputs.mouse, 16 # determine if the mouse intersects the toolbar mouse_intersects_toolbar = args.state.toolbar.rect.intersect_rect? args.inputs.mouse # determine if the mouse intersects a toolbar button toolbar_button = args.state.toolbar.buttons.find { |t| t.button_rect.intersect_rect? args.inputs.mouse } # determine if the mouse click occurred over a tile in the terrain terrain_tile = args.geometry.find_intersect_rect mouse_grid_aligned_rect, args.state.terrain # if a mouse click occurs.... if args.inputs.mouse.click if toolbar_button # if a toolbar button was clicked, set the currently selected tile to the toolbar tile args.state.selected_tile = toolbar_button elsif terrain_tile # if a tile was clicked, delete it from the terrain args.state.terrain.delete terrain_tile elsif !args.state.toolbar.rect.intersect_rect? args.inputs.mouse # if the mouse was not clicked in the toolbar area # add a new terrain based off of the information in the selected tile args.state.terrain << new_terrain_definition(mouse_grid_aligned_rect, args.state.selected_tile) end end # render a light blue background for the toolbar button that is currently # being hovered over (if any) if toolbar_button args.outputs.primitives << toolbar_button.button_rect.merge(primitive_marker: :solid, a: 10, b: 255) end # put a blue background around the currently selected tile args.outputs.primitives << args.state.selected_tile.button_rect.merge(primitive_marker: :solid, b: 255) if !mouse_intersects_toolbar if terrain_tile # if the mouse is hoving over an existing terrain tile, render a red border around the # tile to signify that it will be deleted if the mouse is clicked args.outputs.borders << terrain_tile.merge(a: 255, r: 255) else # if the mouse is not hovering over an existing terrain tile, render the currently # selected tile at the mouse position grid_aligned_rect = grid_aligned_rect args.inputs.mouse, 16 args.outputs.solids << { **grid_aligned_rect, a: 30, g: 128 } args.outputs.lines << { x: grid_aligned_rect.x, y: grid_aligned_rect.y + args.state.selected_tile.left_height, x2: grid_aligned_rect.x + grid_aligned_rect.w, y2: grid_aligned_rect.y + args.state.selected_tile.right_height, } end end # render each toolbar button using two primitives, a border to denote # the click area of the button, and a line to denote the terrain that # will be created when the button is clicked args.outputs.primitives << args.state.toolbar.buttons.map do |toolbar_tile| primitives = [] scale = toolbar_tile.button_rect.w / 16 primitive_type = :border [ { **toolbar_tile.button_rect, primitive_marker: primitive_type, a: 64, }, { x: toolbar_tile.button_rect.x, y: toolbar_tile.button_rect.y + toolbar_tile.left_height * scale, x2: toolbar_tile.button_rect.x + toolbar_tile.button_rect.w, y2: toolbar_tile.button_rect.y + toolbar_tile.right_height * scale } ] end end # ================================================ # helper methods #================================================= # converts a row and column on the grid to # a rect def grid_rect_for row, col { x: col * 16, y: row * 16, w: 16, h: 16 } end # find a tile by name def tile_by_name args, name args.state.toolbar.buttons.find { |b| b.name == name } end # data structure containing terrain information # specifcially tile.left_height and tile.right_height def new_terrain_definition grid_rect, tile grid_rect.merge( tile: tile, line: { x: grid_rect.x, y: grid_rect.y + tile.left_height, x2: grid_rect.x + grid_rect.w, y2: grid_rect.y + tile.right_height } ) end # helper method that returns a grid aligned rect given # an arbitrary rect and a grid size def grid_aligned_rect point, size grid_aligned_x = point.x - (point.x % size) grid_aligned_y = point.y - (point.y % size) { x: grid_aligned_x.to_i, y: grid_aligned_y.to_i, w: size.to_i, h: size.to_i } end
Mouse - Mouse Click - main.rb link
# ./samples/05_mouse/01_mouse_click/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - product: Returns an array of all combinations of elements from all arrays. For example, [1,2].product([1,2]) would return the following array... [[1,1], [1,2], [2,1], [2,2]] More than two arrays can be given to product and it will still work, such as [1,2].product([1,2],[3,4]). What would product return in this case? Answer: [[1,1,3],[1,1,4],[1,2,3],[1,2,4],[2,1,3],[2,1,4],[2,2,3],[2,2,4]] - num1.fdiv(num2): Returns the float division (will have a decimal) of the two given numbers. For example, 5.fdiv(2) = 2.5 and 5.fdiv(5) = 1.0 - yield: Allows you to call a method with a code block and yield to that block. Reminders: - ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect. - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - args.inputs.mouse.click: This property will be set if the mouse was clicked. - Ternary operator (?): Will evaluate a statement (just like an if statement) and perform an action if the result is true or another action if it is false. - reject: Removes elements from a collection if they meet certain requirements. - args.outputs.borders: An array. The values generate a border. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about borders, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels. =end # This sample app is a classic game of Tic Tac Toe. class TicTacToe attr_accessor :_, :state, :outputs, :inputs, :grid, :gtk # Starts the game with player x's turn and creates an array (to_a) for space combinations. # Calls methods necessary for the game to run properly. def tick init_new_game render_board input_board end def init_new_game state.current_turn ||= :x state.space_combinations ||= [-1, 0, 1].product([-1, 0, 1]).to_a state.spaces ||= {} state.space_combinations.each do |x, y| state.spaces[x] ||= {} state.spaces[x][y] ||= state.new_entity(:space) end end # Uses borders to create grid squares for the game's board. Also outputs the game pieces using labels. def render_board square_size = 80 # Positions the game's board in the center of the screen. # Try removing what follows grid.w_half or grid.h_half and see how the position changes! board_left = grid.w_half - square_size * 1.5 board_top = grid.h_half - square_size * 1.5 # At first glance, the add(1) looks pretty trivial. But if you remove it, # you'll see that the positioning of the board would be skewed without it! # Or if you put 2 in the parenthesis, the pieces will be placed in the wrong squares # due to the change in board placement. outputs.borders << all_spaces do |x, y, space| # outputs borders for all board spaces space.border ||= [ board_left + x.add(1) * square_size, # space.border is initialized using this definition board_top + y.add(1) * square_size, square_size, square_size ] end # Again, the calculations ensure that the piece is placed in the center of the grid square. # Remove the '- 20' and the piece will be placed at the top of the grid square instead of the center. outputs.labels << filled_spaces do |x, y, space| # put label in each filled space of board label board_left + x.add(1) * square_size + square_size.fdiv(2), board_top + y.add(1) * square_size + square_size - 20, space.piece # text of label, either "x" or "o" end # Uses a label to output whether x or o won, or if a draw occurred. # If the game is ongoing, a label shows whose turn it currently is. outputs.labels << if state.x_won label grid.w_half, grid.top - 80, "x won" # the '-80' positions the label 80 pixels lower than top elsif state.o_won label grid.w_half, grid.top - 80, "o won" # grid.w_half positions the label in the center horizontally elsif state.draw label grid.w_half, grid.top - 80, "a draw" else # if no one won and the game is ongoing label grid.w_half, grid.top - 80, "turn: #{state.current_turn}" end end # Calls the methods responsible for handling user input and determining the winner. # Does nothing unless the mouse is clicked. def input_board return unless inputs.mouse.click input_place_piece input_restart_game determine_winner end # Handles user input for placing pieces on the board. def input_place_piece return if state.game_over # Checks to find the space that the mouse was clicked inside of, and makes sure the space does not already # have a piece in it. __, __, space = all_spaces.find do |__, __, space| inputs.mouse.click.point.inside_rect?(space.border) && !space.piece end # The piece that goes into the space belongs to the player whose turn it currently is. return unless space space.piece = state.current_turn # This ternary operator statement allows us to change the current player's turn. # If it is currently x's turn, it becomes o's turn. If it is not x's turn, it become's x's turn. state.current_turn = state.current_turn == :x ? :o : :x end # Resets the game. def input_restart_game return unless state.game_over gtk.reset init_new_game end # Checks if x or o won the game. # If neither player wins and all nine squares are filled, a draw happens. # Once a player is chosen as the winner or a draw happens, the game is over. def determine_winner state.x_won = won? :x # evaluates to either true or false (boolean values) state.o_won = won? :o state.draw = true if filled_spaces.length == 9 && !state.x_won && !state.o_won state.game_over = state.x_won || state.o_won || state.draw end # Determines if a player won by checking if there is a horizontal match or vertical match. # Horizontal_match and vertical_match have boolean values. If either is true, the game has been won. def won? piece # performs action on all space combinations won = [[-1, 0, 1]].product([-1, 0, 1]).map do |xs, y| # Checks if the 3 grid spaces with the same y value (or same row) and # x values that are next to each other have pieces that belong to the same player. # Remember, the value of piece is equal to the current turn (which is the player). horizontal_match = state.spaces[xs[0]][y].piece == piece && state.spaces[xs[1]][y].piece == piece && state.spaces[xs[2]][y].piece == piece # Checks if the 3 grid spaces with the same x value (or same column) and # y values that are next to each other have pieces that belong to the same player. # The && represents an "and" statement: if even one part of the statement is false, # the entire statement evaluates to false. vertical_match = state.spaces[y][xs[0]].piece == piece && state.spaces[y][xs[1]].piece == piece && state.spaces[y][xs[2]].piece == piece horizontal_match || vertical_match # if either is true, true is returned end # Sees if there is a diagonal match, starting from the bottom left and ending at the top right. # Is added to won regardless of whether the statement is true or false. won << (state.spaces[-1][-1].piece == piece && # bottom left state.spaces[ 0][ 0].piece == piece && # center state.spaces[ 1][ 1].piece == piece) # top right # Sees if there is a diagonal match, starting at the bottom right and ending at the top left # and is added to won. won << (state.spaces[ 1][-1].piece == piece && # bottom right state.spaces[ 0][ 0].piece == piece && # center state.spaces[-1][ 1].piece == piece) # top left # Any false statements (meaning false diagonal matches) are rejected from won won.reject_false.any? end # Defines filled spaces on the board by rejecting all spaces that do not have game pieces in them. # The ! before a statement means "not". For example, we are rejecting any space combinations that do # NOT have pieces in them. def filled_spaces state.space_combinations .reject { |x, y| !state.spaces[x][y].piece } # reject spaces with no pieces in them .map do |x, y| if block_given? yield x, y, state.spaces[x][y] else [x, y, state.spaces[x][y]] # sets definition of space end end end # Defines all spaces on the board. def all_spaces if !block_given? state.space_combinations.map do |x, y| [x, y, state.spaces[x][y]] # sets definition of space end else # if a block is given (block_given? is true) state.space_combinations.map do |x, y| yield x, y, state.spaces[x][y] # yield if a block is given end end end # Sets values for a label, such as the position, value, size, alignment, and color. def label x, y, value [x, y + 10, value, 20, 1, 0, 0, 0] end end $tic_tac_toe = TicTacToe.new def tick args $tic_tac_toe._ = args $tic_tac_toe.state = args.state $tic_tac_toe.outputs = args.outputs $tic_tac_toe.inputs = args.inputs $tic_tac_toe.grid = args.grid $tic_tac_toe.gtk = args.gtk $tic_tac_toe.tick tick_instructions args, "Sample app shows how to work with mouse clicks." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Mouse - Mouse Move - main.rb link
# ./samples/05_mouse/02_mouse_move/app/main.rb =begin Reminders: - num1.greater(num2): Returns the greater value. For example, if we have the command puts 4.greater(3) the number 4 would be printed to the console since it has a greater value than 3. Similar to lesser, which returns the lesser value. - find_all: Finds all elements of a collection that meet certain requirements. For example, in this sample app, we're using find_all to find all zombies that have intersected or hit the player's sprite since these zombies have been killed. - args.inputs.keyboard.key_down.KEY: Determines if a key is being held or pressed. Stores the frame the "down" event occurred. For more information about the keyboard, go to mygame/documentation/06-keyboard.md. - args.outputs.sprites: An array. The values generate a sprite. The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE] For more information about sprites, go to mygame/documentation/05-sprites.md. - args.state.new_entity: Used when we want to create a new object, like a sprite or button. When we want to create a new object, we can declare it as a new entity and then define its properties. (Remember, you can use state to define ANY property and it will be retained across frames.) - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - map: Ruby method used to transform data; used in arrays, hashes, and collections. Can be used to perform an action on every element of a collection, such as multiplying each element by 2 or declaring every element as a new entity. - sample: Chooses a random element from the array. - reject: Removes elements that meet certain requirements. In this sample app, we're removing/rejecting zombies that reach the center of the screen. We're also rejecting zombies that were killed more than 30 frames ago. =end # This sample app allows users to move around the screen in order to kill zombies. Zombies appear from every direction so the goal # is to kill the zombies as fast as possible! class ProtectThePuppiesFromTheZombies attr_accessor :grid, :inputs, :state, :outputs # Calls the methods necessary for the game to run properly. def tick defaults render calc input end # Sets default values for the zombies and for the player. # Initialization happens only in the first frame. def defaults state.flash_at ||= 0 state.zombie_min_spawn_rate ||= 60 state.zombie_spawn_countdown ||= random_spawn_countdown state.zombie_min_spawn_rate state.zombies ||= [] state.killed_zombies ||= [] # Declares player as a new entity and sets its properties. # The player begins the game in the center of the screen, not moving in any direction. state.player ||= state.new_entity(:player, { x: 640, y: 360, attack_angle: 0, dx: 0, dy: 0 }) end # Outputs a gray background. # Calls the methods needed to output the player, zombies, etc onto the screen. def render outputs.solids << [grid.rect, 100, 100, 100] render_zombies render_killed_zombies render_player render_flash end # Outputs the zombies on the screen and sets values for the sprites, such as the position, width, height, and animation. def render_zombies outputs.sprites << state.zombies.map do |z| # performs action on all zombies in the collection z.sprite = [z.x, z.y, 4 * 3, 8 * 3, animation_sprite(z)].sprite # sets definition for sprite, calls animation_sprite method z.sprite end end # Outputs sprites of killed zombies, and displays a slash image to show that a zombie has been killed. def render_killed_zombies outputs.sprites << state.killed_zombies.map do |z| # performs action on all killed zombies in collection z.sprite = [z.x, z.y, 4 * 3, 8 * 3, animation_sprite(z, z.death_at), # calls animation_sprite method 0, # angle 255 * z.death_at.ease(30, :flip)].sprite # transparency of a zombie changes when they die # change the value of 30 and see what happens when a zombie is killed # Sets values to output the slash over the zombie's sprite when a zombie is killed. # The slash is tilted 45 degrees from the angle of the player's attack. # Change the 3 inside scale_rect to 30 and the slash will be HUGE! Scale_rect positions # the slash over the killed zombie's sprite. [z.sprite, [z.sprite.rect, 'sprites/slash.png', 45 + state.player.attack_angle_on_click, z.sprite.a].scale_rect(3, 0.5, 0.5)] end end # Outputs the player sprite using the images in the sprites folder. def render_player state.player_sprite = [state.player.x, state.player.y, 4 * 3, 8 * 3, "sprites/player-#{animation_index(state.player.created_at_elapsed)}.png"] # string interpolation outputs.sprites << state.player_sprite # Outputs a small red square that previews the angles that the player can attack in. # It can be moved in a perfect circle around the player to show possible movements. # Change the 60 in the parenthesis and see what happens to the movement of the red square. outputs.solids << [state.player.x + state.player.attack_angle.vector_x(60), state.player.y + state.player.attack_angle.vector_y(60), 3, 3, 255, 0, 0] end # Renders flash as a solid. The screen turns white for 10 frames when a zombie is killed. def render_flash return if state.flash_at.elapsed_time > 10 # return if more than 10 frames have passed since flash. # Transparency gradually changes (or eases) during the 10 frames of flash. outputs.primitives << [grid.rect, 255, 255, 255, 255 * state.flash_at.ease(10, :flip)].solid end # Calls all methods necessary for performing calculations. def calc calc_spawn_zombie calc_move_zombies calc_player calc_kill_zombie end # Decreases the zombie spawn countdown by 1 if it has a value greater than 0. def calc_spawn_zombie if state.zombie_spawn_countdown > 0 state.zombie_spawn_countdown -= 1 return end # New zombies are created, positioned on the screen, and added to the zombies collection. state.zombies << state.new_entity(:zombie) do |z| # each zombie is declared a new entity if rand > 0.5 z.x = grid.rect.w.randomize(:ratio) # random x position on screen (within grid scope) z.y = [-10, 730].sample # y position is set to either -10 or 730 (randomly chosen) # the possible values exceed the screen's scope so zombies appear to be coming from far away else z.x = [-10, 1290].sample # x position is set to either -10 or 1290 (randomly chosen) z.y = grid.rect.w.randomize(:ratio) # random y position on screen end end # Calls random_spawn_countdown method (determines how fast new zombies appear) state.zombie_spawn_countdown = random_spawn_countdown state.zombie_min_spawn_rate state.zombie_min_spawn_rate -= 1 # set to either the current zombie_min_spawn_rate or 0, depending on which value is greater state.zombie_min_spawn_rate = state.zombie_min_spawn_rate.greater(0) end # Moves all zombies towards the center of the screen. # All zombies that reach the center (640, 360) are rejected from the zombies collection and disappear. def calc_move_zombies state.zombies.each do |z| # for each zombie in the collection z.y = z.y.towards(360, 0.1) # move the zombie towards the center (640, 360) at a rate of 0.1 z.x = z.x.towards(640, 0.1) # change 0.1 to 1.1 and see how much faster the zombies move to the center end state.zombies = state.zombies.reject { |z| z.y == 360 && z.x == 640 } # remove zombies that are in center end # Calculates the position and movement of the player on the screen. def calc_player state.player.x += state.player.dx # changes x based on dx (change in x) state.player.y += state.player.dy # changes y based on dy (change in y) state.player.dx *= 0.9 # scales dx down state.player.dy *= 0.9 # scales dy down # Compares player's x to 1280 to find lesser value, then compares result to 0 to find greater value. # This ensures that the player remains within the screen's scope. state.player.x = state.player.x.lesser(1280).greater(0) state.player.y = state.player.y.lesser(720).greater(0) # same with player's y end # Finds all zombies that intersect with the player's sprite. These zombies are removed from the zombies collection # and added to the killed_zombies collection since any zombie that intersects with the player is killed. def calc_kill_zombie # Find all zombies that intersect with the player. They are considered killed. killed_this_frame = state.zombies.find_all { |z| z.sprite && (z.sprite.intersect_rect? state.player_sprite) } state.zombies = state.zombies - killed_this_frame # remove newly killed zombies from zombies collection state.killed_zombies += killed_this_frame # add newly killed zombies to killed zombies if killed_this_frame.length > 0 # if atleast one zombie was killed in the frame state.flash_at = state.tick_count # flash_at set to the frame when the zombie was killed # Don't forget, the rendered flash lasts for 10 frames after the zombie is killed (look at render_flash method) end # Sets the tick_count (passage of time) as the value of the death_at variable for each killed zombie. # Death_at stores the frame a zombie was killed. killed_this_frame.each do |z| z.death_at = state.tick_count end # Zombies are rejected from the killed_zombies collection depending on when they were killed. # They are rejected if more than 30 frames have passed since their death. state.killed_zombies = state.killed_zombies.reject { |z| state.tick_count - z.death_at > 30 } end # Uses input from the user to move the player around the screen. def input # If the "a" key or left key is pressed, the x position of the player decreases. # Otherwise, if the "d" key or right key is pressed, the x position of the player increases. if inputs.keyboard.key_held.a || inputs.keyboard.key_held.left state.player.x -= 5 elsif inputs.keyboard.key_held.d || inputs.keyboard.key_held.right state.player.x += 5 end # If the "w" or up key is pressed, the y position of the player increases. # Otherwise, if the "s" or down key is pressed, the y position of the player decreases. if inputs.keyboard.key_held.w || inputs.keyboard.key_held.up state.player.y += 5 elsif inputs.keyboard.key_held.s || inputs.keyboard.key_held.down state.player.y -= 5 end # Sets the attack angle so the player can move and attack in the precise direction it wants to go. # If the mouse is moved, the attack angle is changed (based on the player's position and mouse position). # Attack angle also contributes to the position of red square. if inputs.mouse.moved state.player.attack_angle = inputs.mouse.position.angle_from [state.player.x, state.player.y] end if inputs.mouse.click && state.player.dx < 0.5 && state.player.dy < 0.5 state.player.attack_angle_on_click = inputs.mouse.position.angle_from [state.player.x, state.player.y] state.player.attack_angle = state.player.attack_angle_on_click # player's attack angle is set state.player.dx = state.player.attack_angle.vector_x(25) # change in player's position state.player.dy = state.player.attack_angle.vector_y(25) end end # Sets the zombie spawn's countdown to a random number. # How fast zombies appear (change the 60 to 6 and too many zombies will appear at once!) def random_spawn_countdown minimum 10.randomize(:ratio, :sign).to_i + 60 end # Helps to iterate through the images in the sprites folder by setting the animation index. # 3 frames is how long to show an image, and 6 is how many images to flip through. def animation_index at at.idiv(3).mod(6) end # Animates the zombies by using the animation index to go through the images in the sprites folder. def animation_sprite zombie, at = nil at ||= zombie.created_at_elapsed # how long it is has been since a zombie was created index = animation_index at "sprites/zombie-#{index}.png" # string interpolation to iterate through images end end $protect_the_puppies_from_the_zombies = ProtectThePuppiesFromTheZombies.new def tick args $protect_the_puppies_from_the_zombies.grid = args.grid $protect_the_puppies_from_the_zombies.inputs = args.inputs $protect_the_puppies_from_the_zombies.state = args.state $protect_the_puppies_from_the_zombies.outputs = args.outputs $protect_the_puppies_from_the_zombies.tick tick_instructions args, "How to get the mouse position and translate it to an x, y position using .vector_x and .vector_y. CLICK to play." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Mouse - Mouse Move Paint App - main.rb link
# ./samples/05_mouse/03_mouse_move_paint_app/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Floor: Method that returns an integer number smaller than or equal to the original with no decimal. For example, if we have a variable, a = 13.7, and we called floor on it, it would look like this... puts a.floor() which would print out 13. (There is also a ceil method, which returns an integer number greater than or equal to the original with no decimal. If we had called ceil on the variable a, the result would have been 14.) Reminders: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. For example, if we have a "numbers" hash that stores numbers in English as the key and numbers in Spanish as the value, we'd have a hash that looks like this... numbers = { "one" => "uno", "two" => "dos", "three" => "tres" } and on it goes. Now if we wanted to find the corresponding value of the "one" key, we could say puts numbers["one"] which would print "uno" to the console. - args.state.new_entity: Used when we want to create a new object, like a sprite or button. In this sample app, new_entity is used to create a new button that clears the grid. (Remember, you can use state to define ANY property and it will be retained across frames.) - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. - args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in. - args.outputs.labels: An array. The values in the array generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect. =end # This sample app shows an empty grid that the user can paint on. # To paint, the user must keep their mouse presssed and drag it around the grid. # The "clear" button allows users to clear the grid so they can start over. class PaintApp attr_accessor :inputs, :state, :outputs, :grid, :args # Runs methods necessary for the game to function properly. def tick print_title add_grid check_click draw_buttons end # Prints the title onto the screen by using a label. # Also separates the title from the grid with a line as a horizontal separator. def print_title args.outputs.labels << [ 640, 700, 'Paint!', 0, 1 ] outputs.lines << horizontal_separator(660, 0, 1280) end # Sets the starting position, ending position, and color for the horizontal separator. # The starting and ending positions have the same y values. def horizontal_separator y, x, x2 [x, y, x2, y, 150, 150, 150] end # Sets the starting position, ending position, and color for the vertical separator. # The starting and ending positions have the same x values. def vertical_separator x, y, y2 [x, y, x, y2, 150, 150, 150] end # Outputs a border and a grid containing empty squares onto the screen. def add_grid # Sets the x, y, height, and width of the grid. # There are 31 horizontal lines and 31 vertical lines in the grid. # Feel free to count them yourself before continuing! x, y, h, w = 640 - 500/2, 640 - 500, 500, 500 # calculations done so the grid appears in screen's center lines_h = 31 lines_v = 31 # Sets values for the grid's border, grid lines, and filled squares. # The filled_squares variable is initially set to an empty array. state.grid_border ||= [ x, y, h, w ] # definition of grid's outer border state.grid_lines ||= draw_grid(x, y, h, w, lines_h, lines_v) # calls draw_grid method state.filled_squares ||= [] # there are no filled squares until the user fills them in # Outputs the grid lines, border, and filled squares onto the screen. outputs.lines.concat state.grid_lines outputs.borders << state.grid_border outputs.solids << state.filled_squares end # Draws the grid by adding in vertical and horizontal separators. def draw_grid x, y, h, w, lines_h, lines_v # The grid starts off empty. grid = [] # Calculates the placement and adds horizontal lines or separators into the grid. curr_y = y # start at the bottom of the box dist_y = h / (lines_h + 1) # finds distance to place horizontal lines evenly throughout 500 height of grid lines_h.times do curr_y += dist_y # increment curr_y by the distance between the horizontal lines grid << horizontal_separator(curr_y, x, x + w - 1) # add a separator into the grid end # Calculates the placement and adds vertical lines or separators into the grid. curr_x = x # now start at the left of the box dist_x = w / (lines_v + 1) # finds distance to place vertical lines evenly throughout 500 width of grid lines_v.times do curr_x += dist_x # increment curr_x by the distance between the vertical lines grid << vertical_separator(curr_x, y + 1, y + h) # add separator end # paint_grid uses a hash to assign values to keys. state.paint_grid ||= {"x" => x, "y" => y, "h" => h, "w" => w, "lines_h" => lines_h, "lines_v" => lines_v, "dist_x" => dist_x, "dist_y" => dist_y } return grid end # Checks if the user is keeping the mouse pressed down and sets the mouse_hold variable accordingly using boolean values. # If the mouse is up, the user cannot drag the mouse. def check_click if inputs.mouse.down #is mouse up or down? state.mouse_held = true # mouse is being held down elsif inputs.mouse.up # if mouse is up state.mouse_held = false # mouse is not being held down or dragged state.mouse_dragging = false end if state.mouse_held && # mouse needs to be down !inputs.mouse.click && # must not be first click ((inputs.mouse.previous_click.point.x - inputs.mouse.position.x).abs > 15) # Need to move 15 pixels before "drag" state.mouse_dragging = true end # If the user clicks their mouse inside the grid, the search_lines method is called with a click input type. if ((inputs.mouse.click) && (inputs.mouse.click.point.inside_rect? state.grid_border)) search_lines(inputs.mouse.click.point, :click) # If the user drags their mouse inside the grid, the search_lines method is called with a drag input type. elsif ((state.mouse_dragging) && (inputs.mouse.position.inside_rect? state.grid_border)) search_lines(inputs.mouse.position, :drag) end end # Sets the definition of a grid box and handles user input to fill in or clear grid boxes. def search_lines (point, input_type) point.x -= state.paint_grid["x"] # subtracts the value assigned to the "x" key in the paint_grid hash point.y -= state.paint_grid["y"] # subtracts the value assigned to the "y" key in the paint_grid hash # Remove code following the .floor and see what happens when you try to fill in grid squares point.x = (point.x / state.paint_grid["dist_x"]).floor * state.paint_grid["dist_x"] point.y = (point.y / state.paint_grid["dist_y"]).floor * state.paint_grid["dist_y"] point.x += state.paint_grid["x"] point.y += state.paint_grid["y"] # Sets definition of a grid box, meaning its x, y, width, and height. # Floor is called on the point.x and point.y variables. # Ceil method is called on values of the distance hash keys, setting the width and height of a box. grid_box = [ point.x.floor, point.y.floor, state.paint_grid["dist_x"].ceil, state.paint_grid["dist_y"].ceil ] if input_type == :click # if user clicks their mouse if state.filled_squares.include? grid_box # if grid box is already filled in state.filled_squares.delete grid_box # box is cleared and removed from filled_squares else state.filled_squares << grid_box # otherwise, box is filled in and added to filled_squares end elsif input_type == :drag # if user drags mouse unless state.filled_squares.include? grid_box # unless the grid box dragged over is already filled in state.filled_squares << grid_box # the box is filled in and added to filled_squares end end end # Creates and outputs a "Clear" button on the screen using a label and a border. # If the button is clicked, the filled squares are cleared, making the filled_squares collection empty. def draw_buttons x, y, w, h = 390, 50, 240, 50 state.clear_button ||= state.new_entity(:button_with_fade) # The x and y positions are set to display the label in the center of the button. # Try changing the first two parameters to simply x, y and see what happens to the text placement! state.clear_button.label ||= [x + w.half, y + h.half + 10, "Clear", 0, 1] # placed in center of border state.clear_button.border ||= [x, y, w, h] # If the mouse is clicked inside the borders of the clear button, # the filled_squares collection is emptied and the squares are cleared. if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.clear_button.border) state.clear_button.clicked_at = inputs.mouse.click.created_at # time (frame) the click occurred state.filled_squares.clear inputs.mouse.previous_click = nil end outputs.labels << state.clear_button.label outputs.borders << state.clear_button.border # When the clear button is clicked, the color of the button changes # and the transparency changes, as well. If you change the time from # 0.25.seconds to 1.25.seconds or more, the change will last longer. if state.clear_button.clicked_at outputs.solids << [x, y, w, h, 0, 180, 80, 255 * state.clear_button.clicked_at.ease(0.25.seconds, :flip)] end end end $paint_app = PaintApp.new def tick args $paint_app.inputs = args.inputs $paint_app.state = args.state $paint_app.grid = args.grid $paint_app.args = args $paint_app.outputs = args.outputs $paint_app.tick tick_instructions args, "How to create a simple paint app. CLICK and HOLD to draw." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Mouse - Coordinate Systems - main.rb link
# ./samples/05_mouse/04_coordinate_systems/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - args.inputs.mouse.click.position: Coordinates of the mouse's position on the screen. Unlike args.inputs.mouse.click.point, the mouse does not need to be pressed down for position to know the mouse's coordinates. For more information about the mouse, go to mygame/documentation/07-mouse.md. Reminders: - args.inputs.mouse.click: This property will be set if the mouse was clicked. - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. In this sample app, string interpolation is used to show the current position of the mouse in a label. - args.outputs.labels: An array that generates a label. The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.outputs.solids: An array that generates a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.lines: An array that generates a line. The parameters are [X, Y, X2, Y2, RED, GREEN, BLUE, ALPHA] For more information about lines, go to mygame/documentation/04-lines.md. =end # This sample app shows a coordinate system or grid. The user can move their mouse around the screen and the # coordinates of their position on the screen will be displayed. Users can choose to view one quadrant or # four quadrants by pressing the button. def tick args # The addition and subtraction in the first two parameters of the label and solid # ensure that the outputs don't overlap each other. Try removing them and see what happens. pos = args.inputs.mouse.position # stores coordinates of mouse's position args.outputs.labels << [pos.x + 10, pos.y + 10, "#{pos}"] # outputs label of coordinates args.outputs.solids << [pos.x - 2, pos.y - 2, 5, 5] # outputs small blackk box placed where mouse is hovering button = [0, 0, 370, 50] # sets definition of toggle button args.outputs.borders << button # outputs button as border (not filled in) args.outputs.labels << [10, 35, "click here toggle coordinate system"] # label of button args.outputs.lines << [ 0, -720, 0, 720] # vertical line dividing quadrants args.outputs.lines << [-1280, 0, 1280, 0] # horizontal line dividing quadrants if args.inputs.mouse.click # if the user clicks the mouse pos = args.inputs.mouse.click.point # pos's value is point where user clicked (coordinates) if pos.inside_rect? button # if the click occurred inside the button if args.grid.name == :bottom_left # if the grid shows bottom left as origin args.grid.origin_center! # origin will be shown in center else args.grid.origin_bottom_left! # otherwise, the view will change to show bottom left as origin end end end tick_instructions args, "Sample app shows the two supported coordinate systems in Game Toolkit." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Mouse - Clicking Buttons - main.rb link
# ./samples/05_mouse/05_clicking_buttons/app/main.rb def tick args # create buttons args.state.buttons ||= [ create_button(args, id: :button_1, row: 0, col: 0, text: "button 1"), create_button(args, id: :button_2, row: 1, col: 0, text: "button 2"), create_button(args, id: :clear, row: 2, col: 0, text: "clear") ] # render button's border and label args.outputs.primitives << args.state.buttons.map do |b| b.primitives end # render center label if the text is set if args.state.center_label_text args.outputs.labels << { x: 640, y: 360, text: args.state.center_label_text, alignment_enum: 1, vertical_alignment_enum: 1 } end # if the mouse is clicked, see if the mouse click intersected # with a button if args.inputs.mouse.click button = args.state.buttons.find do |b| args.inputs.mouse.intersect_rect? b end # update the center label text based on button clicked case button.id when :button_1 args.state.center_label_text = "button 1 was clicked" when :button_2 args.state.center_label_text = "button 2 was clicked" when :clear args.state.center_label_text = nil end end end def create_button args, id:, row:, col:, text:; # args.layout.rect(row:, col:, w:, h:) is method that will # return a rectangle inside of a grid with 12 rows and 24 columns rect = args.layout.rect row: row, col: col, w: 3, h: 1 # get senter of rect for label center = args.geometry.rect_center_point rect { id: id, x: rect.x, y: rect.y, w: rect.w, h: rect.h, primitives: [ { x: rect.x, y: rect.y, w: rect.w, h: rect.h, primitive_marker: :border }, { x: center.x, y: center.y, text: text, size_enum: -1, alignment_enum: 1, vertical_alignment_enum: 1, primitive_marker: :label } ] } end $gtk.reset
Save Load - Reading Writing Files - main.rb link
# ./samples/06_save_load/00_reading_writing_files/app/main.rb # APIs covered: # args.gtk.write_file "file-1.txt", args.state.tick_count.to_s # args.gtk.append_file "file-1.txt", args.state.tick_count.to_s # stat = args.gtk.stat_file "file-1.txt" # contents = args.gtk.read_file "file-1.txt" # args.gtk.delete_file "file-1.txt" # args.gtk.delete_file_if_exist "file-1.txt" # root_files = args.gtk.list_files "" # app_files = args.gtk.list_files "app" def tick args # create buttons args.state.buttons ||= [ create_button(args, id: :write_file_1, row: 0, col: 0, text: "write file-1.txt"), create_button(args, id: :append_file_1, row: 1, col: 0, text: "append file-1.txt"), create_button(args, id: :delete_file_1, row: 2, col: 0, text: "delete file-1.txt"), create_button(args, id: :read_file_1, row: 0, col: 3, text: "read file-1.txt"), create_button(args, id: :stat_file_1, row: 1, col: 3, text: "stat file-1.txt"), create_button(args, id: :list_files, row: 2, col: 3, text: "list files"), ] # render button's border and label args.outputs.primitives << args.state.buttons.map do |b| b.primitives end # render center label if the text is set if args.state.center_label_text long_string = args.state.center_label_text max_character_length = 80 long_strings_split = args.string.wrapped_lines long_string, max_character_length line_height = 23 offset = (long_strings_split.length / 2) * line_height args.outputs.labels << long_strings_split.map_with_index do |s, i| { x: 400, y: 60.from_top - (i * line_height), text: s } end end # if the mouse is clicked, see if the mouse click intersected # with a button if args.inputs.mouse.click button = args.state.buttons.find do |b| args.inputs.mouse.intersect_rect? b end # update the center label text based on button clicked case button.id when :write_file_1 args.gtk.write_file("file-1.txt", args.state.tick_count.to_s + "\n") args.state.center_label_text = "" args.state.center_label_text += "* Success (#{args.state.tick_count}):\n" args.state.center_label_text += " Click \"read file-1.txt\" to see the contents.\n" args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " args.gtk.write_file(\"file-1.txt\", args.state.tick_count.to_s + \"\\n\")\n" when :append_file_1 args.gtk.append_file("file-1.txt", args.state.tick_count.to_s + "\n") args.state.center_label_text = "" args.state.center_label_text += "* Success (#{args.state.tick_count}):\n" args.state.center_label_text += " Click \"read file-1.txt\" to see the contents.\n" args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " args.gtk.append_file(\"file-1.txt\", args.state.tick_count.to_s + \"\\n\")\n" when :stat_file_1 stat = args.gtk.stat_file "file-1.txt" args.state.center_label_text = "" args.state.center_label_text += "* Stat File (#{args.state.tick_count})\n" args.state.center_label_text += "#{stat || "nil (file does not exist)"}" args.state.center_label_text += "\n" args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " args.gtk.stat_files(\"file-1.txt\")\n" when :read_file_1 contents = args.gtk.read_file("file-1.txt") args.state.center_label_text = "" if contents args.state.center_label_text += "* Contents (#{args.state.tick_count}):\n" args.state.center_label_text += contents args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " contents = args.gtk.read_file(\"file-1.txt\")\n" else args.state.center_label_text += "* Contents (#{args.state.tick_count}):\n" args.state.center_label_text += "Contents of file was nil. Click stat file-1.txt for file information." args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " contents = args.gtk.read_file(\"file-1.txt\")\n" end when :delete_file_1 args.state.center_label_text = "" if args.gtk.stat_file "file-1.txt" args.gtk.delete_file "file-1.txt" args.state.center_label_text += "* Delete File\n" args.state.center_label_text += "file-1.txt was deleted. Click \"list files\" or \"stat file-1.txt\" for more info." args.state.center_label_text += "\n" args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " args.gtk.delete_file(\"file-1.txt\")\n" else args.state.center_label_text = "" args.state.center_label_text += "* Delete File\n" args.state.center_label_text += "File does not exist. Click \"write file-1.txt\" or \"append file-1.txt\" to create file." args.state.center_label_text += "\n" args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " if args.gtk.stat_file(\"file-1.txt\") ...\n" end when :list_files root_files = args.gtk.list_files "" app_files = args.gtk.list_files "app" args.state.center_label_text = "" args.state.center_label_text += "** Root Files (#{args.state.tick_count}):\n" args.state.center_label_text += root_files.join "\n" args.state.center_label_text += "\n" args.state.center_label_text += "\n" args.state.center_label_text += "** App Files (#{args.state.tick_count}):\n" args.state.center_label_text += app_files.join "\n" args.state.center_label_text += "\n" args.state.center_label_text += "\n" args.state.center_label_text += "** Sample Code\n" args.state.center_label_text += " root_files = args.gtk.list_files(\"\")\n" args.state.center_label_text += " app_files = args.gtk.list_files(\"app\")\n" end end end def create_button args, id:, row:, col:, text:; # args.layout.rect(row:, col:, w:, h:) is method that will # return a rectangle inside of a grid with 12 rows and 24 columns rect = args.layout.rect row: row, col: col, w: 3, h: 1 # get senter of rect for label center = args.geometry.rect_center_point rect { id: id, x: rect.x, y: rect.y, w: rect.w, h: rect.h, primitives: [ { x: rect.x, y: rect.y, w: rect.w, h: rect.h, primitive_marker: :border }, { x: center.x, y: center.y, text: text, size_enum: -2, alignment_enum: 1, vertical_alignment_enum: 1, primitive_marker: :label } ] } end $gtk.reset
Save Load - Save Load Game - main.rb link
# ./samples/06_save_load/01_save_load_game/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Symbol (:): Ruby object with a name and an internal ID. Symbols are useful because with a given symbol name, you can refer to the same object throughout a Ruby program. In this sample app, we're using symbols for our buttons. We have buttons that light fires, save, load, etc. Each of these buttons has a distinct symbol like :light_fire, :save_game, :load_game, etc. - to_sym: Returns the symbol corresponding to the given string; creates the symbol if it does not already exist. For example, 'car'.to_sym would return the symbol :car. - last: Returns the last element of an array. Reminders: - num1.lesser(num2): finds the lower value of the given options. For example, in the statement a = 4.lesser(3) 3 has a lower value than 4, which means that the value of a would be set to 3, but if the statement had been a = 4.lesser(5) 4 has a lower value than 5, which means that the value of a would be set to 4. - num1.fdiv(num2): returns the float division (will have a decimal) of the two given numbers. For example, 5.fdiv(2) = 2.5 and 5.fdiv(5) = 1.0 - String interpolation: uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - args.outputs.labels: An array. Values generate a label. Parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information, go to mygame/documentation/02-labels.md. - ARRAY#inside_rect?: An array with at least two values is considered a point. An array with at least four values is considered a rect. The inside_rect? function returns true or false depending on if the point is inside the rect. =end # This code allows users to perform different tasks, such as saving and loading the game. # Users also have options to reset the game and light a fire. class TextedBasedGame # Contains methods needed for game to run properly. # Increments tick count by 1 each time it runs (60 times in a single second) def tick default show_intro state.engine_tick_count += 1 tick_fire end # Sets default values. # The ||= ensures that a variable's value is only set to the value following the = sign # if the value has not already been set before. Intialization happens only in the first frame. def default state.engine_tick_count ||= 0 state.active_module ||= :room state.fire_progress ||= 0 state.fire_ready_in ||= 10 state.previous_fire ||= :dead state.fire ||= :dead end def show_intro return unless state.engine_tick_count == 0 # return unless the game just started set_story_line "awake." # calls set_story_line method, sets to "awake" end # Sets story line. def set_story_line story_line state.story_line = story_line # story line set to value of parameter state.active_module = :alert # active module set to alert end # Clears story line. def clear_storyline state.active_module = :none # active module set to none state.story_line = nil # story line is cleared, set to nil (or empty) end # Determines fire progress (how close the fire is to being ready to light). def tick_fire return if state.active_module == :alert # return if active module is alert state.fire_progress += 1 # increment fire progress # fire_ready_in is 10. The fire_progress is either the current value or 10, whichever has a lower value. state.fire_progress = state.fire_progress.lesser(state.fire_ready_in) end # Sets the value of fire (whether it is dead or roaring), and the story line def light_fire return unless fire_ready? # returns unless the fire is ready to be lit state.fire = :roaring # fire is lit, set to roaring state.fire_progress = 0 # the fire progress returns to 0, since the fire has been lit if state.fire != state.previous_fire set_story_line "the fire is #{state.fire}." # the story line is set using string interpolation state.previous_fire = state.fire end end # Checks if the fire is ready to be lit. Returns a boolean value. def fire_ready? # If fire_progress (value between 0 and 10) is equal to fire_ready_in (value of 10), # the fire is ready to be lit. state.fire_progress == state.fire_ready_in end # Divides the value of the fire_progress variable by 10 to determine how close the user is to # being able to light a fire. def light_fire_progress state.fire_progress.fdiv(10) # float division end # Defines fire as the state.fire variable. def fire state.fire end # Sets the title of the room. def room_title return "a room that is dark" if state.fire == :dead # room is dark if the fire is dead return "a room that is lit" # room is lit if the fire is not dead end # Sets the active_module to room. def go_to_room state.active_module = :room end # Defines active_module as the state.active_module variable. def active_module state.active_module end # Defines story_line as the state.story_line variable. def story_line state.story_line end # Update every 60 frames (or every second) def should_tick? state.tick_count.mod_zero?(60) end # Sets the value of the game state provider. def initialize game_state_provider @game_state_provider = game_state_provider end # Defines the game state. # Any variable prefixed with an @ symbol is an instance variable. def state @game_state_provider.state end # Saves the state of the game in a text file called game_state.txt. def save $gtk.serialize_state('game_state.txt', state) end # Loads the game state from the game_state.txt text file. # If the load is unsuccessful, the user is informed since the story line indicates the failure. def load parsed_state = $gtk.deserialize_state('game_state.txt') if !parsed_state set_story_line "no game to load. press save first." else $gtk.args.state = parsed_state end end # Resets the game. def reset $gtk.reset end end class TextedBasedGamePresenter attr_accessor :state, :outputs, :inputs # Creates empty collection called highlights. # Calls methods necessary to run the game. def tick state.layout.highlights ||= [] game.tick if game.should_tick? render process_input end # Outputs a label of the tick count (passage of time) and calls all render methods. def render outputs.labels << [10, 30, state.tick_count] render_alert render_room render_highlights end # Outputs a label onto the screen that shows the story line, and also outputs a "close" button. def render_alert return unless game.active_module == :alert outputs.labels << [640, 480, game.story_line, 5, 1] # outputs story line label outputs.primitives << button(:alert_dismiss, 490, 380, "close") # positions "close" button under story line end def render_room return unless game.active_module == :room outputs.labels << [640, 700, game.room_title, 4, 1] # outputs room title label at top of screen # The parameters for these outputs are (symbol, x, y, text, value/percentage) and each has a y value # that positions it 60 pixels lower than the previous output. # outputs the light_fire_progress bar, uses light_fire_progress for its percentage (which changes bar's appearance) outputs.primitives << progress_bar(:light_fire, 490, 600, "light fire", game.light_fire_progress) outputs.primitives << button( :save_game, 490, 540, "save") # outputs save button outputs.primitives << button( :load_game, 490, 480, "load") # outputs load button outputs.primitives << button( :reset_game, 490, 420, "reset") # outputs reset button outputs.labels << [640, 30, "the fire is #{game.fire}", 0, 1] # outputs fire label at bottom of screen end # Outputs a collection of highlights using an array to set their values, and also rejects certain values from the collection. def render_highlights state.layout.highlights.each do |h| # for each highlight in the collection h.lifetime -= 1 # decrease the value of its lifetime end outputs.solids << state.layout.highlights.map do |h| # outputs highlights collection [h.x, h.y, h.w, h.h, h.color, 255 * h.lifetime / h.max_lifetime] # sets definition for each highlight # transparency changes; divide lifetime by max_lifetime, multiply result by 255 end # reject highlights from collection that have no remaining lifetime state.layout.highlights = state.layout.highlights.reject { |h| h.lifetime <= 0 } end # Checks whether or not a button was clicked. # Returns a boolean value. def process_input button = button_clicked? # calls button_clicked? method end # Returns a boolean value. # Finds the button that was clicked from the button list and determines what method to call. # Adds a highlight to the highlights collection. def button_clicked? return nil unless click_pos # return nil unless click_pos holds coordinates of mouse click button = @button_list.find do |k, v| # goes through button_list to find button clicked click_pos.inside_rect? v[:primitives].last.rect # was the mouse clicked inside the rect of button? end return unless button # return unless a button was clicked method_to_call = "#{button[0]}_clicked".to_sym # sets method_to_call to symbol (like :save_game or :load_game) if self.respond_to? method_to_call # returns true if self responds to the given method (method actually exists) border = button[1][:primitives].last # sets border definition using value of last key in button list hash # declares each highlight as a new entity, sets properties state.layout.highlights << state.new_entity(:highlight) do |h| h.x = border.x h.y = border.y h.w = border.w h.h = border.h h.max_lifetime = 10 h.lifetime = h.max_lifetime h.color = [120, 120, 180] # sets color to shade of purple end self.send method_to_call # invoke method identified by symbol else # otherwise, if self doesn't respond to given method border = button[1][:primitives].last # sets border definition using value of last key in hash # declares each highlight as a new entity, sets properties state.layout.highlights << state.new_entity(:highlight) do |h| h.x = border.x h.y = border.y h.w = border.w h.h = border.h h.max_lifetime = 4 # different max_lifetime than the one set if respond_to? had been true h.lifetime = h.max_lifetime h.color = [120, 80, 80] # sets color to dark color end # instructions for users on how to add the missing method_to_call to the code puts "It looks like #{method_to_call} doesn't exists on TextedBasedGamePresenter. Please add this method:" puts "Just copy the code below and put it in the #{TextedBasedGamePresenter} class definition." puts "" puts "```" puts "class TextedBasedGamePresenter <--- find this class and put the method below in it" puts "" puts " def #{method_to_call}" puts " puts 'Yay that worked!'" puts " end" puts "" puts "end <-- make sure to put the #{method_to_call} method in between the `class` word and the final `end` statement." puts "```" puts "" end end # Returns the position of the mouse when it is clicked. def click_pos return nil unless inputs.mouse.click # returns nil unless the mouse was clicked return inputs.mouse.click.point # returns location of mouse click (coordinates) end # Creates buttons for the button_list and sets their values using a hash (uses symbols as keys) def button id, x, y, text @button_list[id] ||= { # assigns values to hash keys id: id, text: text, primitives: [ [x + 10, y + 30, text, 2, 0].label, # positions label inside border [x, y, 300, 50].border, # sets definition of border ] } @button_list[id][:primitives] # returns label and border for buttons end # Creates a progress bar (used for lighting the fire) and sets its values. def progress_bar id, x, y, text, percentage @button_list[id] = { # assigns values to hash keys id: id, text: text, primitives: [ [x, y, 300, 50, 100, 100, 100].solid, # sets definition for solid (which fills the bar with gray) [x + 10, y + 30, text, 2, 0].label, # sets definition for label, positions inside border [x, y, 300, 50].border, # sets definition of border ] } # Fills progress bar based on percentage. If the fire was ready to be lit (100%) and we multiplied by # 100, only 1/3 of the bar would only be filled in. 200 would cause only 2/3 to be filled in. @button_list[id][:primitives][0][2] = 300 * percentage @button_list[id][:primitives] end # Defines the game. def game @game end # Initalizes the game and creates an empty list of buttons. def initialize @game = TextedBasedGame.new self @button_list ||= {} end # Clears the storyline and takes the user to the room. def alert_dismiss_clicked game.clear_storyline game.go_to_room end # Lights the fire when the user clicks the "light fire" option. def light_fire_clicked game.light_fire end # Saves the game when the user clicks the "save" option. def save_game_clicked game.save end # Resets the game when the user clicks the "reset" option. def reset_game_clicked game.reset end # Loads the game when the user clicks the "load" option. def load_game_clicked game.load end end $text_based_rpg = TextedBasedGamePresenter.new def tick args $text_based_rpg.state = args.state $text_based_rpg.outputs = args.outputs $text_based_rpg.inputs = args.inputs $text_based_rpg.tick end
Advanced Audio - Audio Mixer - main.rb link
# ./samples/07_advanced_audio/01_audio_mixer/app/main.rb # these are the properties that you can sent on args.audio def spawn_new_sound args, name, path # Spawn randomly in an area that won't be covered by UI. screenx = (rand * 600.0) + 200.0 screeny = (rand * 400.0) + 100.0 id = new_sound_id! args # you can hang anything on the audio hashes you want, so we store the # actual screen position in here for convenience. args.audio[id] = { name: name, input: path, screenx: screenx, screeny: screeny, x: ((screenx / 1279.0) * 2.0) - 1.0, # scale to -1.0 - 1.0 range y: ((screeny / 719.0) * 2.0) - 1.0, # scale to -1.0 - 1.0 range z: 0.0, gain: 1.0, pitch: 1.0, looping: true, paused: false } args.state.selected = id end # these are values you can change on the ~args.audio~ data structure def input_panel args return unless args.state.panel return if args.state.dragging audio_entry = args.audio[args.state.selected] results = args.state.panel if args.state.mouse_state == :held && args.inputs.mouse.position.inside_rect?(results.pitch_slider_rect.rect) audio_entry.pitch = 2.0 * ((args.inputs.mouse.x - results.pitch_slider_rect.x).to_f / (results.pitch_slider_rect.w - 1.0)) elsif args.state.mouse_state == :held && args.inputs.mouse.position.inside_rect?(results.playtime_slider_rect.rect) audio_entry.playtime = audio_entry.length_ * ((args.inputs.mouse.x - results.playtime_slider_rect.x).to_f / (results.playtime_slider_rect.w - 1.0)) elsif args.state.mouse_state == :held && args.inputs.mouse.position.inside_rect?(results.gain_slider_rect.rect) audio_entry.gain = (args.inputs.mouse.x - results.gain_slider_rect.x).to_f / (results.gain_slider_rect.w - 1.0) elsif args.inputs.mouse.click && args.inputs.mouse.position.inside_rect?(results.looping_checkbox_rect.rect) audio_entry.looping = !audio_entry.looping elsif args.inputs.mouse.click && args.inputs.mouse.position.inside_rect?(results.paused_checkbox_rect.rect) audio_entry.paused = !audio_entry.paused elsif args.inputs.mouse.click && args.inputs.mouse.position.inside_rect?(results.delete_button_rect.rect) args.audio.delete args.state.selected end end def render_sources args args.outputs.primitives << args.audio.keys.map do |k| s = args.audio[k] isselected = (k == args.state.selected) color = isselected ? [ 0, 255, 0, 255 ] : [ 0, 0, 255, 255 ] [ [s.screenx, s.screeny, args.state.boxsize, args.state.boxsize, *color].solid, { x: s.screenx + args.state.boxsize.half, y: s.screeny, text: s.name, r: 255, g: 255, b: 255, alignment_enum: 1 }.label! ] end end def playtime_str t return "" unless t minutes = (t / 60.0).floor seconds = t - (minutes * 60.0).to_f return minutes.to_s + ':' + seconds.floor.to_s + ((seconds - seconds.floor).to_s + "000")[1..3] end def label_with_drop_shadow x, y, text [ { x: x + 1, y: y + 1, text: text, vertical_alignment_enum: 1, alignment_enum: 1, r: 0, g: 0, b: 0 }.label!, { x: x + 2, y: y + 0, text: text, vertical_alignment_enum: 1, alignment_enum: 1, r: 0, g: 0, b: 0 }.label!, { x: x + 0, y: y + 1, text: text, vertical_alignment_enum: 1, alignment_enum: 1, r: 200, g: 200, b: 200 }.label! ] end def check_box opts = {} checkbox_template = opts.args.layout.rect(w: 0.5, h: 0.5, col: 2) final_rect = checkbox_template.center_inside_rect_y(opts.args.layout.rect(row: opts.row, col: opts.col)) color = { r: 0, g: 0, b: 0 } color = { r: 255, g: 255, b: 255 } if opts.checked { rect: final_rect, primitives: [ (final_rect.to_solid color) ] } end def progress_bar opts = {} outer_rect = opts.args.layout.rect(row: opts.row, col: opts.col, w: 5, h: 1) color = opts.percentage * 255 baseline_progress_bar = opts.args .layout .rect(w: 5, h: 0.5) final_rect = baseline_progress_bar.center_inside_rect(outer_rect) center = final_rect.rect_center_point { rect: final_rect, primitives: [ final_rect.merge(r: color, g: color, b: color, a: 128).solid!, label_with_drop_shadow(center.x, center.y, opts.text) ] } end def panel_primitives args, audio_entry results = { primitives: [] } return results unless audio_entry # this uses DRGTK's layout apis to layout the controls # imagine the screen is split into equal cells (24 cells across, 12 cells up and down) # args.layout.rect returns a hash which we merge values with to create primitives # using args.layout.rect removes the need for pixel pushing # args.outputs.debug << args.layout.debug_primitives(r: 255, g: 255, b: 255) white_color = { r: 255, g: 255, b: 255 } label_style = white_color.merge(vertical_alignment_enum: 1) # panel background results.primitives << args.layout.rect(row: 0, col: 0, w: 7, h: 6, include_col_gutter: true, include_row_gutter: true) .border!(r: 255, g: 255, b: 255) # title results.primitives << args.layout.point(row: 0, col: 3.5, row_anchor: 0.5) .merge(label_style) .merge(text: "Source #{args.state.selected} (#{args.audio[args.state.selected].name})", size_enum: 3, alignment_enum: 1) # seperator line results.primitives << args.layout.rect(row: 1, col: 0, w: 7, h: 0) .line!(white_color) # screen location results.primitives << args.layout.point(row: 1.0, col: 0, row_anchor: 0.5) .merge(label_style) .merge(text: "screen:") results.primitives << args.layout.point(row: 1.0, col: 2, row_anchor: 0.5) .merge(label_style) .merge(text: "(#{audio_entry.screenx.to_i}, #{audio_entry.screeny.to_i})") # position results.primitives << args.layout.point(row: 1.5, col: 0, row_anchor: 0.5) .merge(label_style) .merge(text: "position:") results.primitives << args.layout.point(row: 1.5, col: 2, row_anchor: 0.5) .merge(label_style) .merge(text: "(#{audio_entry[:x].round(5).to_s[0..6]}, #{audio_entry[:y].round(5).to_s[0..6]})") results.primitives << args.layout.point(row: 2.0, col: 0, row_anchor: 0.5) .merge(label_style) .merge(text: "pitch:") results.pitch_slider_rect = progress_bar(row: 2.0, col: 2, percentage: audio_entry.pitch / 2.0, text: "#{audio_entry.pitch.to_sf}", args: args) results.primitives << results.pitch_slider_rect.primitives results.primitives << args.layout.point(row: 2.5, col: 0, row_anchor: 0.5) .merge(label_style) .merge(text: "playtime:") results.playtime_slider_rect = progress_bar(args: args, row: 2.5, col: 2, percentage: (audio_entry.playtime || 1) / (audio_entry.length_ || 1), text: "#{playtime_str(audio_entry.playtime)} / #{playtime_str(audio_entry.length_)}") results.primitives << results.playtime_slider_rect.primitives results.primitives << args.layout.point(row: 3.0, col: 0, row_anchor: 0.5) .merge(label_style) .merge(text: "gain:") results.gain_slider_rect = progress_bar(args: args, row: 3.0, col: 2, percentage: audio_entry.gain, text: "#{audio_entry.gain.to_sf}") results.primitives << results.gain_slider_rect.primitives results.primitives << args.layout.point(row: 3.5, col: 0, row_anchor: 0.5) .merge(label_style) .merge(text: "looping:") checkbox_template = args.layout.rect(w: 0.5, h: 0.5, col: 2) results.looping_checkbox_rect = check_box(args: args, row: 3.5, col: 2, checked: audio_entry.looping) results.primitives << results.looping_checkbox_rect.primitives results.primitives << args.layout.point(row: 4.0, col: 0, row_anchor: 0.5) .merge(label_style) .merge(text: "paused:") checkbox_template = args.layout.rect(w: 0.5, h: 0.5, col: 2) results.paused_checkbox_rect = check_box(args: args, row: 4.0, col: 2, checked: !audio_entry.paused) results.primitives << results.paused_checkbox_rect.primitives results.delete_button_rect = { rect: args.layout.rect(row: 5, col: 0, w: 7, h: 1) } results.primitives << results.delete_button_rect.to_solid(r: 180) results.primitives << args.layout.point(row: 5, col: 3.5, row_anchor: 0.5) .merge(label_style) .merge(text: "DELETE", alignment_enum: 1) return results end def render_panel args args.state.panel = nil audio_entry = args.audio[args.state.selected] return unless audio_entry mouse_down = (args.state.mouse_held >= 0) args.state.panel = panel_primitives args, audio_entry args.outputs.primitives << args.state.panel.primitives end def new_sound_id! args args.state.sound_id ||= 0 args.state.sound_id += 1 args.state.sound_id end def render_launcher args args.outputs.primitives << args.state.spawn_sound_buttons.map(&:primitives) end def render_ui args render_launcher args render_panel args end def tick args defaults args render args input args end def input args if !args.audio[args.state.selected] args.state.selected = nil args.state.dragging = nil end # spawn button and node interaction if args.inputs.mouse.click spawn_sound_button = args.state.spawn_sound_buttons.find { |b| args.inputs.mouse.inside_rect? b.rect } audio_click_key, audio_click_value = args.audio.find do |k, v| args.inputs.mouse.inside_rect? [v.screenx, v.screeny, args.state.boxsize, args.state.boxsize] end if spawn_sound_button args.state.selected = nil spawn_new_sound args, spawn_sound_button.name, spawn_sound_button.path elsif audio_click_key args.state.selected = audio_click_key end end if args.state.mouse_state == :held && args.state.selected v = args.audio[args.state.selected] if args.inputs.mouse.inside_rect? [v.screenx, v.screeny, args.state.boxsize, args.state.boxsize] args.state.dragging = args.state.selected end if args.state.dragging s = args.audio[args.state.selected] # you can hang anything on the audio hashes you want, so we store the # actual screen position so it doesn't scale weirdly vs your mouse. s.screenx = args.inputs.mouse.x - (args.state.boxsize / 2) s.screeny = args.inputs.mouse.y - (args.state.boxsize / 2) s.screeny = 50 if s.screeny < 50 s.screeny = (719 - args.state.boxsize) if s.screeny > (719 - args.state.boxsize) s.screenx = 0 if s.screenx < 0 s.screenx = (1279 - args.state.boxsize) if s.screenx > (1279 - args.state.boxsize) s.x = ((s.screenx / 1279.0) * 2.0) - 1.0 # scale to -1.0 - 1.0 range s.y = ((s.screeny / 719.0) * 2.0) - 1.0 # scale to -1.0 - 1.0 range end elsif args.state.mouse_state == :released args.state.dragging = nil end input_panel args end def defaults args args.state.mouse_state ||= :released args.state.dragging_source ||= false args.state.selected ||= 0 args.state.next_sound_index ||= 0 args.state.boxsize ||= 30 args.state.sound_files ||= [ { name: :tada, path: "sounds/tada.wav" }, { name: :splash, path: "sounds/splash.wav" }, { name: :drum, path: "sounds/drum.mp3" }, { name: :spring, path: "sounds/spring.wav" }, { name: :music, path: "sounds/music.ogg" } ] # generate buttons based off the sound collection above args.state.spawn_sound_buttons ||= begin # create a group of buttons # column centered (using col_offset to calculate the column offset) # where each item is 2 columns apart rects = args.layout.rect_group row: 11, col_offset: { count: args.state.sound_files.length, w: 2 }, dcol: 2, w: 2, h: 1, group: args.state.sound_files # now that you have the rects # construct the metadata for the buttons rects.map do |rect| { rect: rect, name: rect.name, path: rect.path, primitives: [ rect.to_border(r: 255, g: 255, b: 255), rect.to_label(x: rect.center_x, y: rect.center_y, text: "#{rect.name}", alignment_enum: 1, vertical_alignment_enum: 1, r: 255, g: 255, b: 255) ] } end end if args.inputs.mouse.up args.state.mouse_state = :released args.state.dragging_source = false elsif args.inputs.mouse.down args.state.mouse_state = :held end args.outputs.background_color = [ 0, 0, 0, 255 ] end def render args render_ui args render_sources args end
Advanced Audio - Audio Mixer - server_ip_address.txt link
# ./samples/07_advanced_audio/01_audio_mixer/app/server_ip_address.txt 192.168.1.65
Advanced Audio - Sound Synthesis - main.rb link
# ./samples/07_advanced_audio/02_sound_synthesis/app/main.rb begin # region: top level tick methods def tick args defaults args render args input args process_audio_queue args end def defaults args args.state.sine_waves ||= {} args.state.square_waves ||= {} args.state.saw_tooth_waves ||= {} args.state.triangle_waves ||= {} args.state.audio_queue ||= [] args.state.buttons ||= [ (frequency_buttons args), (sine_wave_note_buttons args), (bell_buttons args), (square_wave_note_buttons args), (saw_tooth_wave_note_buttons args), (triangle_wave_note_buttons args), ].flatten end def render args args.outputs.borders << args.state.buttons.map { |b| b[:border] } args.outputs.labels << args.state.buttons.map { |b| b[:label] } end def input args args.state.buttons.each do |b| if args.inputs.mouse.click && (args.inputs.mouse.click.inside_rect? b[:rect]) parameter_string = (b.slice :frequency, :note, :octave).map { |k, v| "#{k}: #{v}" }.join ", " args.gtk.notify! "#{b[:method_to_call]} #{parameter_string}" send b[:method_to_call], args, b end end if args.inputs.mouse.click && (args.inputs.mouse.click.inside_rect? (args.layout.rect(row: 0).yield_self { |r| r.merge y: r.y + r.h.half, h: r.h.half })) args.gtk.openurl 'https://www.youtube.com/watch?v=zEzovM5jT-k&ab_channel=AmirRajan' end end def process_audio_queue args to_queue = args.state.audio_queue.find_all { |v| v[:queue_at] <= args.tick_count } args.state.audio_queue -= to_queue to_queue.each { |a| args.audio[a[:id]] = a } args.audio.find_all { |k, v| v[:decay_rate] } .each { |k, v| v[:gain] -= v[:decay_rate] } sounds_to_stop = args.audio .find_all { |k, v| v[:stop_at] && args.state.tick_count >= v[:stop_at] } .map { |k, v| k } sounds_to_stop.each { |k| args.audio.delete k } end end begin # region: button definitions, ui layout, callback functions def button args, opts button_def = opts.merge rect: (args.layout.rect (opts.merge w: 2, h: 1)) button_def[:border] = button_def[:rect].merge r: 0, g: 0, b: 0 label_offset_x = 5 label_offset_y = 30 button_def[:label] = button_def[:rect].merge text: opts[:text], size_enum: -2.5, x: button_def[:rect].x + label_offset_x, y: button_def[:rect].y + label_offset_y button_def end def play_sine_wave args, sender queue_sine_wave args, frequency: sender[:frequency], duration: 1.seconds, fade_out: true end def play_note args, sender method_to_call = :queue_sine_wave method_to_call = :queue_square_wave if sender[:type] == :square method_to_call = :queue_saw_tooth_wave if sender[:type] == :saw_tooth method_to_call = :queue_triangle_wave if sender[:type] == :triangle method_to_call = :queue_bell if sender[:type] == :bell send method_to_call, args, frequency: (frequency_for note: sender[:note], octave: sender[:octave]), duration: 1.seconds, fade_out: true end def frequency_buttons args [ (button args, row: 4.0, col: 0, text: "300hz", frequency: 300, method_to_call: :play_sine_wave), (button args, row: 5.0, col: 0, text: "400hz", frequency: 400, method_to_call: :play_sine_wave), (button args, row: 6.0, col: 0, text: "500hz", frequency: 500, method_to_call: :play_sine_wave), ] end def sine_wave_note_buttons args [ (button args, row: 1.5, col: 2, text: "Sine C4", note: :c, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 2.5, col: 2, text: "Sine D4", note: :d, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 3.5, col: 2, text: "Sine E4", note: :e, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 4.5, col: 2, text: "Sine F4", note: :f, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 5.5, col: 2, text: "Sine G4", note: :g, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 6.5, col: 2, text: "Sine A5", note: :a, octave: 5, type: :sine, method_to_call: :play_note), (button args, row: 7.5, col: 2, text: "Sine B5", note: :b, octave: 5, type: :sine, method_to_call: :play_note), (button args, row: 8.5, col: 2, text: "Sine C5", note: :c, octave: 5, type: :sine, method_to_call: :play_note), ] end def square_wave_note_buttons args [ (button args, row: 1.5, col: 6, text: "Square C4", note: :c, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 2.5, col: 6, text: "Square D4", note: :d, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 3.5, col: 6, text: "Square E4", note: :e, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 4.5, col: 6, text: "Square F4", note: :f, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 5.5, col: 6, text: "Square G4", note: :g, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 6.5, col: 6, text: "Square A5", note: :a, octave: 5, type: :square, method_to_call: :play_note), (button args, row: 7.5, col: 6, text: "Square B5", note: :b, octave: 5, type: :square, method_to_call: :play_note), (button args, row: 8.5, col: 6, text: "Square C5", note: :c, octave: 5, type: :square, method_to_call: :play_note), ] end def saw_tooth_wave_note_buttons args [ (button args, row: 1.5, col: 8, text: "Saw C4", note: :c, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 2.5, col: 8, text: "Saw D4", note: :d, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 3.5, col: 8, text: "Saw E4", note: :e, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 4.5, col: 8, text: "Saw F4", note: :f, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 5.5, col: 8, text: "Saw G4", note: :g, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 6.5, col: 8, text: "Saw A5", note: :a, octave: 5, type: :saw_tooth, method_to_call: :play_note), (button args, row: 7.5, col: 8, text: "Saw B5", note: :b, octave: 5, type: :saw_tooth, method_to_call: :play_note), (button args, row: 8.5, col: 8, text: "Saw C5", note: :c, octave: 5, type: :saw_tooth, method_to_call: :play_note), ] end def triangle_wave_note_buttons args [ (button args, row: 1.5, col: 10, text: "Triangle C4", note: :c, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 2.5, col: 10, text: "Triangle D4", note: :d, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 3.5, col: 10, text: "Triangle E4", note: :e, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 4.5, col: 10, text: "Triangle F4", note: :f, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 5.5, col: 10, text: "Triangle G4", note: :g, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 6.5, col: 10, text: "Triangle A5", note: :a, octave: 5, type: :triangle, method_to_call: :play_note), (button args, row: 7.5, col: 10, text: "Triangle B5", note: :b, octave: 5, type: :triangle, method_to_call: :play_note), (button args, row: 8.5, col: 10, text: "Triangle C5", note: :c, octave: 5, type: :triangle, method_to_call: :play_note), ] end def bell_buttons args [ (button args, row: 1.5, col: 4, text: "Bell C4", note: :c, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 2.5, col: 4, text: "Bell D4", note: :d, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 3.5, col: 4, text: "Bell E4", note: :e, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 4.5, col: 4, text: "Bell F4", note: :f, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 5.5, col: 4, text: "Bell G4", note: :g, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 6.5, col: 4, text: "Bell A5", note: :a, octave: 5, type: :bell, method_to_call: :play_note), (button args, row: 7.5, col: 4, text: "Bell B5", note: :b, octave: 5, type: :bell, method_to_call: :play_note), (button args, row: 8.5, col: 4, text: "Bell C5", note: :c, octave: 5, type: :bell, method_to_call: :play_note), ] end end begin # region: wave generation begin # sine wave def defaults_sine_wave_for { frequency: 440, sample_rate: 48000 } end def sine_wave_for opts = {} opts = defaults_sine_wave_for.merge opts frequency = opts[:frequency] sample_rate = opts[:sample_rate] period_size = (sample_rate.fdiv frequency).ceil period_size.map_with_index do |i| Math::sin((2.0 * Math::PI) / (sample_rate.to_f / frequency.to_f) * i) end.to_a end def defaults_queue_sine_wave { frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 } end def queue_sine_wave args, opts = {} opts = defaults_queue_sine_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 sine_wave = sine_wave_for frequency: frequency, sample_rate: sample_rate args.state.sine_waves[frequency] ||= sine_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.sine_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: sine_wave end end begin # region: square wave def defaults_square_wave_for { frequency: 440, sample_rate: 48000 } end def square_wave_for opts = {} opts = defaults_square_wave_for.merge opts sine_wave = sine_wave_for opts sine_wave.map do |v| if v >= 0 1.0 else -1.0 end end.to_a end def defaults_queue_square_wave { frequency: 440, duration: 60, gain: 0.3, fade_out: false, queue_in: 0 } end def queue_square_wave args, opts = {} opts = defaults_queue_square_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 square_wave = square_wave_for frequency: frequency, sample_rate: sample_rate args.state.square_waves[frequency] ||= square_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.square_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: square_wave end end begin # region: saw tooth wave def defaults_saw_tooth_wave_for { frequency: 440, sample_rate: 48000 } end def saw_tooth_wave_for opts = {} opts = defaults_saw_tooth_wave_for.merge opts sine_wave = sine_wave_for opts period_size = sine_wave.length sine_wave.map_with_index do |v, i| (((i % period_size).fdiv period_size) * 2) - 1 end end def defaults_queue_saw_tooth_wave { frequency: 440, duration: 60, gain: 0.3, fade_out: false, queue_in: 0 } end def queue_saw_tooth_wave args, opts = {} opts = defaults_queue_saw_tooth_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 saw_tooth_wave = saw_tooth_wave_for frequency: frequency, sample_rate: sample_rate args.state.saw_tooth_waves[frequency] ||= saw_tooth_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.saw_tooth_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: saw_tooth_wave end end begin # region: triangle wave def defaults_triangle_wave_for { frequency: 440, sample_rate: 48000 } end def triangle_wave_for opts = {} opts = defaults_saw_tooth_wave_for.merge opts sine_wave = sine_wave_for opts period_size = sine_wave.length sine_wave.map_with_index do |v, i| ratio = (i.fdiv period_size) if ratio <= 0.5 (ratio * 4) - 1 else ratio -= 0.5 1 - (ratio * 4) end end end def defaults_queue_triangle_wave { frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 } end def queue_triangle_wave args, opts = {} opts = defaults_queue_triangle_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 triangle_wave = triangle_wave_for frequency: frequency, sample_rate: sample_rate args.state.triangle_waves[frequency] ||= triangle_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.triangle_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: triangle_wave end end begin # region: bell def defaults_queue_bell { frequency: 440, duration: 1.seconds, queue_in: 0 } end def queue_bell args, opts = {} (bell_to_sine_waves (defaults_queue_bell.merge opts)).each { |b| queue_sine_wave args, b } end def bell_harmonics [ { frequency_ratio: 0.5, duration_ratio: 1.00 }, { frequency_ratio: 1.0, duration_ratio: 0.80 }, { frequency_ratio: 2.0, duration_ratio: 0.60 }, { frequency_ratio: 3.0, duration_ratio: 0.40 }, { frequency_ratio: 4.2, duration_ratio: 0.25 }, { frequency_ratio: 5.4, duration_ratio: 0.20 }, { frequency_ratio: 6.8, duration_ratio: 0.15 } ] end def defaults_bell_to_sine_waves { frequency: 440, duration: 1.seconds, queue_in: 0 } end def bell_to_sine_waves opts = {} opts = defaults_bell_to_sine_waves.merge opts bell_harmonics.map do |b| { frequency: opts[:frequency] * b[:frequency_ratio], duration: opts[:duration] * b[:duration_ratio], queue_in: opts[:queue_in], gain: (1.fdiv bell_harmonics.length), fade_out: true } end end end begin # audio entity construction def generate_audio_data sine_wave, sample_rate sample_size = (sample_rate.fdiv (1000.fdiv 60)).ceil copy_count = (sample_size.fdiv sine_wave.length).ceil sine_wave * copy_count end def defaults_new_audio_state { frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 } end def new_audio_state args, opts = {} opts = defaults_new_audio_state.merge opts decay_rate = 0 decay_rate = 1.fdiv(opts[:duration]) * opts[:gain] if opts[:fade_out] frequency = opts[:frequency] sample_rate = 48000 { id: (new_id! args), frequency: frequency, sample_rate: 48000, stop_at: args.tick_count + opts[:queue_in] + opts[:duration], gain: opts[:gain].to_f, queue_at: args.state.tick_count + opts[:queue_in], decay_rate: decay_rate, pitch: 1.0, looping: true, paused: false } end def queue_audio args, opts = {} graph_wave args, opts[:wave], opts[:audio_state][:frequency] args.state.audio_queue << opts[:audio_state] end def new_id! args args.state.audio_id ||= 0 args.state.audio_id += 1 end def graph_wave args, wave, frequency if args.state.tick_count != args.state.graphed_at args.outputs.static_lines.clear args.outputs.static_sprites.clear end wave = wave r, g, b = frequency.to_i % 85, frequency.to_i % 170, frequency.to_i % 255 starting_rect = args.layout.rect(row: 5, col: 13) x_scale = 10 y_scale = 100 max_points = 25 points = wave if wave.length > max_points resolution = wave.length.idiv max_points points = wave.find_all.with_index { |y, i| (i % resolution == 0) } end args.outputs.static_lines << points.map_with_index do |y, x| next_y = points[x + 1] if next_y { x: starting_rect.x + (x * x_scale), y: starting_rect.y + starting_rect.h.half + y_scale * y, x2: starting_rect.x + ((x + 1) * x_scale), y2: starting_rect.y + starting_rect.h.half + y_scale * next_y, r: r, g: g, b: b } end end args.outputs.static_sprites << points.map_with_index do |y, x| { x: (starting_rect.x + (x * x_scale)) - 2, y: (starting_rect.y + starting_rect.h.half + y_scale * y) - 2, w: 4, h: 4, path: 'sprites/square-white.png', r: r, g: g, b: b } end args.state.graphed_at = args.state.tick_count end end begin # region: musical note mapping def defaults_frequency_for { note: :a, octave: 5, sharp: false, flat: false } end def frequency_for opts = {} opts = defaults_frequency_for.merge opts octave_offset_multiplier = opts[:octave] - 5 note = note_frequencies_octave_5[opts[:note]] if octave_offset_multiplier < 0 note = note * 1 / (octave_offset_multiplier.abs + 1) elsif octave_offset_multiplier > 0 note = note * (octave_offset_multiplier.abs + 1) / 1 end note end def note_frequencies_octave_5 { a: 440.0, a_sharp: 466.16, b_flat: 466.16, b: 493.88, c: 523.25, c_sharp: 554.37, d_flat: 587.33, d: 587.33, d_sharp: 622.25, e_flat: 659.25, e: 659.25, f: 698.25, f_sharp: 739.99, g_flat: 739.99, g: 783.99, g_sharp: 830.61, a_flat: 830.61 } end end end $gtk.reset
Advanced Rendering - Labels With Wrapped Text - main.rb link
# ./samples/07_advanced_rendering/00_labels_with_wrapped_text/app/main.rb def tick args # defaults args.state.scroll_location ||= 0 args.state.textbox.messages ||= [] args.state.textbox.scroll ||= 0 # render args.outputs.background_color = [0, 0, 0, 255] render_messages args render_instructions args # inputs if args.inputs.keyboard.key_down.one queue_message args, "Hello there neighbour! my name is mark, how is your day today?" end if args.inputs.keyboard.key_down.two queue_message args, "I'm doing great sir, actually I'm having a picnic today" end if args.inputs.keyboard.key_down.three queue_message args, "Well that sounds wonderful!" end if args.inputs.keyboard.key_down.home args.state.scroll_location = 1 end if args.inputs.keyboard.key_down.delete clear_message_queue args end end def queue_message args, msg args.state.textbox.messages.concat msg.wrapped_lines 50 end def clear_message_queue args args.state.textbox.messages = nil args.state.textbox.scroll = 0 end def render_messages args args.outputs[:textbox].transient! args.outputs[:textbox].w = 400 args.outputs[:textbox].h = 720 args.outputs.primitives << args.state.textbox.messages.each_with_index.map do |s, idx| { x: 0, y: 20 * (args.state.textbox.messages.size - idx) + args.state.textbox.scroll * 20, text: s, size_enum: -3, alignment_enum: 0, r: 255, g:255, b: 255, a: 255 } end args.outputs[:textbox].labels << args.state.textbox.messages.each_with_index.map do |s, idx| { x: 0, y: 20 * (args.state.textbox.messages.size - idx) + args.state.textbox.scroll * 20, text: s, size_enum: -3, alignment_enum: 0, r: 255, g:255, b: 255, a: 255 } end args.outputs[:textbox].borders << [0, 0, args.outputs[:textbox].w, 720] args.state.textbox.scroll += args.inputs.mouse.wheel.y unless args.inputs.mouse.wheel.nil? if args.state.scroll_location > 0 args.state.textbox.scroll = 0 args.state.scroll_location = 0 end args.outputs.sprites << [900, 0, args.outputs[:textbox].w, 720, :textbox] end def render_instructions args args.outputs.labels << [30, 30.from_top, "press 1, 2, 3 to display messages, MOUSE WHEEL to scroll, HOME to go to top, BACKSPACE to delete.", 0, 255, 255] args.outputs.primitives << [0, 55.from_top, 1280, 30, :pixel, 0, 255, 0, 0, 0].sprite end
Advanced Rendering - Rotating Label - main.rb link
# ./samples/07_advanced_rendering/00_rotating_label/app/main.rb def tick args # set the render target width and height to match the label args.outputs[:scene].transient! args.outputs[:scene].w = 220 args.outputs[:scene].h = 30 # make the background transparent args.outputs[:scene].background_color = [255, 255, 255, 0] # set the blendmode of the label to 0 (no blending) # center it inside of the scene # set the vertical_alignment_enum to 1 (center) args.outputs[:scene].labels << { x: 0, y: 15, text: "label in render target", blendmode_enum: 0, vertical_alignment_enum: 1 } # add a border to the render target args.outputs[:scene].borders << { x: 0, y: 0, w: args.outputs[:scene].w, h: args.outputs[:scene].h } # add the rendertarget to the main output as a sprite args.outputs.sprites << { x: 640 - args.outputs[:scene].w.half, y: 360 - args.outputs[:scene].h.half, w: args.outputs[:scene].w, h: args.outputs[:scene].h, angle: args.state.tick_count, path: :scene } end
Advanced Rendering - Render Targets Combining Sprites - main.rb link
# ./samples/07_advanced_rendering/01_render_targets_combining_sprites/app/main.rb # sample app shows how to use a render target to # create a combined sprite def tick args create_combined_sprite args # render the combined sprite # using its name :two_squares # have it move across the screen and rotate args.outputs.sprites << { x: args.state.tick_count % 1280, y: 0, w: 80, h: 80, angle: args.state.tick_count, path: :two_squares } end def create_combined_sprite args # NOTE: you can have the construction of the combined # sprite to happen every tick or only once (if the # combined sprite never changes). # # if the combined sprite never changes, comment out the line # below to only construct it on the first frame and then # use the cached texture # return if args.state.tick_count != 0 # <---- guard clause to only construct on first frame and cache # define the dimensions of the combined sprite # the name of the combined sprite is :two_squares args.outputs[:two_squares].transient! args.outputs[:two_squares].w = 80 args.outputs[:two_squares].h = 80 # put a blue sprite within the combined sprite # who's width is "thin" args.outputs[:two_squares].sprites << { x: 40 - 10, y: 0, w: 20, h: 80, path: 'sprites/square/blue.png' } # put a red sprite within the combined sprite # who's height is "thin" args.outputs[:two_squares].sprites << { x: 0, y: 40 - 10, w: 80, h: 20, path: 'sprites/square/red.png' } end
Advanced Rendering - Simple Render Targets - main.rb link
# ./samples/07_advanced_rendering/01_simple_render_targets/app/main.rb def tick args # args.outputs.render_targets are really really powerful. # They essentially allow you to create a sprite programmatically and cache the result. # Create a render_target of a :block and a :gradient on tick zero. if args.state.tick_count == 0 args.render_target(:block).solids << [0, 0, 1280, 100] # The gradient is actually just a collection of black solids with increasing # opacities. args.render_target(:gradient).solids << 90.map_with_index do |x| 50.map_with_index do |y| [x * 15, y * 15, 15, 15, 0, 0, 0, (x * 3).fdiv(255) * 255] end end end # Take the :block render_target and present it horizontally centered. # Use a subsection of the render_targetd specified by source_x, # source_y, source_w, source_h. args.outputs.sprites << { x: 0, y: 310, w: 1280, h: 100, path: :block, source_x: 0, source_y: 0, source_w: 1280, source_h: 100 } # After rendering :block, render gradient on top of :block. args.outputs.sprites << [0, 0, 1280, 720, :gradient] args.outputs.labels << [1270, 710, args.gtk.current_framerate, 0, 2, 255, 255, 255] tick_instructions args, "Sample app shows how to use render_targets (programmatically create cached sprites)." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end $gtk.reset
Advanced Rendering - Coordinate Systems And Render Targets - main.rb link
# ./samples/07_advanced_rendering/02_coordinate_systems_and_render_targets/app/main.rb def tick args # every 4.5 seconds, swap between origin_bottom_left and origin_center args.state.origin_state ||= :bottom_left if args.state.tick_count.zmod? 270 args.state.origin_state = if args.state.origin_state == :bottom_left :center else :bottom_left end end if args.state.origin_state == :bottom_left tick_origin_bottom_left args else tick_origin_center args end end def tick_origin_center args # set the coordinate system to origin_center args.grid.origin_center! args.outputs.labels << { x: 0, y: 100, text: "args.grid.origin_center! with sprite inside of a render target, centered at 0, 0", vertical_alignment_enum: 1, alignment_enum: 1 } # create a render target with a sprint in the center assuming the origin is center screen args.outputs[:scene].transient! args.outputs[:scene].sprites << { x: -50, y: -50, w: 100, h: 100, path: 'sprites/square/blue.png' } args.outputs.sprites << { x: -640, y: -360, w: 1280, h: 720, path: :scene } end def tick_origin_bottom_left args args.grid.origin_bottom_left! args.outputs.labels << { x: 640, y: 360 + 100, text: "args.grid.origin_bottom_left! with sprite inside of a render target, centered at 640, 360", vertical_alignment_enum: 1, alignment_enum: 1 } # create a render target with a sprint in the center assuming the origin is bottom left args.outputs[:scene].transient! args.outputs[:scene].sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: 'sprites/square/blue.png' } args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :scene } end
Advanced Rendering - Render Targets Thick Lines - main.rb link
# ./samples/07_advanced_rendering/02_render_targets_thick_lines/app/main.rb # Sample app shows how you can use render targets to create arbitrary shapes like a thicker line def tick args args.state.line_cache ||= {} args.outputs.primitives << thick_line(args, args.state.line_cache, x: 0, y: 0, x2: 640, y2: 360, thickness: 3).merge(r: 0, g: 0, b: 0) end def thick_line args, cache, line line_length = Math.sqrt((line.x2 - line.x)**2 + (line.y2 - line.y)**2) name = "line-sprite-#{line_length}-#{line.thickness}" cached_line = cache[name] line_angle = Math.atan2(line.y2 - line.y1, line.x2 - line.x1) * 180 / Math::PI if cached_line perpendicular_angle = (line_angle + 90) % 360 return cached_line.sprite.merge(x: line.x - perpendicular_angle.vector_x * (line.thickness / 2), y: line.y - perpendicular_angle.vector_y * (line.thickness / 2), angle: line_angle) end cache[name] = { line: line, thickness: line.thickness, sprite: { w: line_length, h: line.thickness, path: name, angle_anchor_x: 0, angle_anchor_y: 0 } } args.outputs[name].w = line_length args.outputs[name].h = line.thickness args.outputs[name].solids << { x: 0, y: 0, w: line_length, h: line.thickness, r: 255, g: 255, b: 255 } return thick_line args, cache, line end
Advanced Rendering - Render Targets With Tile Manipulation - main.rb link
# ./samples/07_advanced_rendering/02_render_targets_with_tile_manipulation/app/main.rb # This sample is meant to show you how to do that dripping transition thing # at the start of the original Doom. Most of this file is here to animate # a scene to wipe away; the actual wipe effect is in the last 20 lines or # so. $gtk.reset # reset all game state if reloaded. def circle_of_blocks pass, xoffset, yoffset, angleoffset, blocksize, distance numblocks = 10 for i in 1..numblocks do angle = ((360 / numblocks) * i) + angleoffset radians = angle * (Math::PI / 180) x = (xoffset + (distance * Math.cos(radians))).round y = (yoffset + (distance * Math.sin(radians))).round pass.solids << [ x, y, blocksize, blocksize, 255, 255, 0 ] end end def draw_scene args, pass pass.solids << [0, 360, 1280, 360, 0, 0, 200] pass.solids << [0, 0, 1280, 360, 0, 127, 0] blocksize = 100 angleoffset = args.state.tick_count * 2.5 centerx = (1280 - blocksize) / 2 centery = (720 - blocksize) / 2 circle_of_blocks pass, centerx, centery, angleoffset, blocksize * 2, 500 circle_of_blocks pass, centerx, centery, angleoffset, blocksize, 325 circle_of_blocks pass, centerx, centery, angleoffset, blocksize / 2, 200 circle_of_blocks pass, centerx, centery, angleoffset, blocksize / 4, 100 end def tick args segments = 160 # On the first tick, initialize some stuff. if !args.state.yoffsets args.state.baseyoff = 0 args.state.yoffsets = [] for i in 0..segments do args.state.yoffsets << rand * 100 end end # Just draw some random stuff for a few seconds. args.state.static_debounce ||= 60 * 2.5 if args.state.static_debounce > 0 last_frame = args.state.static_debounce == 1 target = last_frame ? args.render_target(:last_frame) : args.outputs draw_scene args, target args.state.static_debounce -= 1 return unless last_frame end # build up the wipe... # this is the thing we're wiping to. args.outputs.sprites << [ 0, 0, 1280, 720, 'dragonruby.png' ] return if (args.state.baseyoff > (1280 + 100)) # stop when done sliding segmentw = 1280 / segments x = 0 for i in 0..segments do yoffset = 0 if args.state.yoffsets[i] < args.state.baseyoff yoffset = args.state.baseyoff - args.state.yoffsets[i] end # (720 - yoffset) flips the coordinate system, (- 720) adjusts for the height of the segment. args.outputs.sprites << [ x, (720 - yoffset) - 720, segmentw, 720, 'last_frame', 0, 255, 255, 255, 255, x, 0, segmentw, 720 ] x += segmentw end args.state.baseyoff += 4 tick_instructions args, "Sample app shows an advanced usage of render_target." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Advanced Rendering - Render Target Viewports - main.rb link
# ./samples/07_advanced_rendering/03_render_target_viewports/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - args.state.new_entity: Used when we want to create a new object, like a sprite or button. For example, if we want to create a new button, we would declare it as a new entity and then define its properties. (Remember, you can use state to define ANY property and it will be retained across frames.) If you have a solar system and you're creating args.state.sun and setting its image path to an image in the sprites folder, you would do the following: (See samples/99_sample_nddnug_workshop for more details.) args.state.sun ||= args.state.new_entity(:sun) do |s| s.path = 'sprites/sun.png' end - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. For example, if we have a variable name = "Ruby" then the line puts "How are you, #{name}?" would print "How are you, Ruby?" to the console. (Remember, string interpolation only works with double quotes!) - Ternary operator (?): Similar to if statement; first evalulates whether a statement is true or false, and then executes a command depending on that result. For example, if we had a variable grade = 75 and used the ternary operator in the command pass_or_fail = grade > 65 ? "pass" : "fail" then the value of pass_or_fail would be "pass" since grade's value was greater than 65. Reminders: - args.grid.(left|right|top|bottom): Pixel value for the boundaries of the virtual 720 p screen (Dragon Ruby Game Toolkits's virtual resolution is always 1280x720). - Numeric#shift_(left|right|up|down): Shifts the Numeric in the correct direction by adding or subracting. - ARRAY#inside_rect?: An array with at least two values is considered a point. An array with at least four values is considered a rect. The inside_rect? function returns true or false depending on if the point is inside the rect. - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.inputs.mouse.click: This property will be set if the mouse was clicked. For more information about the mouse, go to mygame/documentation/07-mouse.md. - args.inputs.keyboard.key_up.KEY: The value of the properties will be set to the frame that the key_up event occurred (the frame correlates to args.state.tick_count). For more information about the keyboard, go to mygame/documentation/06-keyboard.md. - args.state.labels: The parameters for a label are 1. the position (x, y) 2. the text 3. the size 4. the alignment 5. the color (red, green, and blue saturations) 6. the alpha (or transparency) For more information about labels, go to mygame/documentation/02-labels.md. - args.state.lines: The parameters for a line are 1. the starting position (x, y) 2. the ending position (x2, y2) 3. the color (red, green, and blue saturations) 4. the alpha (or transparency) For more information about lines, go to mygame/documentation/04-lines.md. - args.state.solids (and args.state.borders): The parameters for a solid (or border) are 1. the position (x, y) 2. the width (w) 3. the height (h) 4. the color (r, g, b) 5. the alpha (or transparency) For more information about solids and borders, go to mygame/documentation/03-solids-and-borders.md. - args.state.sprites: The parameters for a sprite are 1. the position (x, y) 2. the width (w) 3. the height (h) 4. the image path 5. the angle 6. the alpha (or transparency) For more information about sprites, go to mygame/documentation/05-sprites.md. =end # This sample app shows different objects that can be used when making games, such as labels, # lines, sprites, solids, buttons, etc. Each demo section shows how these objects can be used. # Also note that state.tick_count refers to the passage of time, or current frame. class TechDemo attr_accessor :inputs, :state, :outputs, :grid, :args # Calls all methods necessary for the app to run properly. def tick labels_tech_demo lines_tech_demo solids_tech_demo borders_tech_demo sprites_tech_demo keyboards_tech_demo controller_tech_demo mouse_tech_demo point_to_rect_tech_demo rect_to_rect_tech_demo button_tech_demo export_game_state_demo window_state_demo render_seperators end # Shows output of different kinds of labels on the screen def labels_tech_demo outputs.labels << [grid.left.shift_right(5), grid.top.shift_down(5), "This is a label located at the top left."] outputs.labels << [grid.left.shift_right(5), grid.bottom.shift_up(30), "This is a label located at the bottom left."] outputs.labels << [ 5, 690, "Labels (x, y, text, size, align, r, g, b, a)"] outputs.labels << [ 5, 660, "Smaller label.", -2] outputs.labels << [ 5, 630, "Small label.", -1] outputs.labels << [ 5, 600, "Medium label.", 0] outputs.labels << [ 5, 570, "Large label.", 1] outputs.labels << [ 5, 540, "Larger label.", 2] outputs.labels << [300, 660, "Left aligned.", 0, 2] outputs.labels << [300, 640, "Center aligned.", 0, 1] outputs.labels << [300, 620, "Right aligned.", 0, 0] outputs.labels << [175, 595, "Red Label.", 0, 0, 255, 0, 0] outputs.labels << [175, 575, "Green Label.", 0, 0, 0, 255, 0] outputs.labels << [175, 555, "Blue Label.", 0, 0, 0, 0, 255] outputs.labels << [175, 535, "Faded Label.", 0, 0, 0, 0, 0, 128] end # Shows output of lines on the screen def lines_tech_demo outputs.labels << [5, 500, "Lines (x, y, x2, y2, r, g, b, a)"] outputs.lines << [5, 450, 100, 450] outputs.lines << [5, 430, 300, 430] outputs.lines << [5, 410, 300, 410, state.tick_count % 255, 0, 0, 255] # red saturation changes outputs.lines << [5, 390 - state.tick_count % 25, 300, 390, 0, 0, 0, 255] # y position changes outputs.lines << [5 + state.tick_count % 200, 360, 300, 360, 0, 0, 0, 255] # x position changes end # Shows output of different kinds of solids on the screen def solids_tech_demo outputs.labels << [ 5, 350, "Solids (x, y, w, h, r, g, b, a)"] outputs.solids << [ 10, 270, 50, 50] outputs.solids << [ 70, 270, 50, 50, 0, 0, 0] outputs.solids << [130, 270, 50, 50, 255, 0, 0] outputs.solids << [190, 270, 50, 50, 255, 0, 0, 128] outputs.solids << [250, 270, 50, 50, 0, 0, 0, 128 + state.tick_count % 128] # transparency changes end # Shows output of different kinds of borders on the screen # The parameters for a border are the same as the parameters for a solid def borders_tech_demo outputs.labels << [ 5, 260, "Borders (x, y, w, h, r, g, b, a)"] outputs.borders << [ 10, 180, 50, 50] outputs.borders << [ 70, 180, 50, 50, 0, 0, 0] outputs.borders << [130, 180, 50, 50, 255, 0, 0] outputs.borders << [190, 180, 50, 50, 255, 0, 0, 128] outputs.borders << [250, 180, 50, 50, 0, 0, 0, 128 + state.tick_count % 128] # transparency changes end # Shows output of different kinds of sprites on the screen def sprites_tech_demo outputs.labels << [ 5, 170, "Sprites (x, y, w, h, path, angle, a)"] outputs.sprites << [ 10, 40, 128, 101, 'dragonruby.png'] outputs.sprites << [ 150, 40, 128, 101, 'dragonruby.png', state.tick_count % 360] # angle changes outputs.sprites << [ 300, 40, 128, 101, 'dragonruby.png', 0, state.tick_count % 255] # transparency changes end # Holds size, alignment, color (black), and alpha (transparency) parameters # Using small_font as a parameter accounts for all remaining parameters # so they don't have to be repeatedly typed def small_font [-2, 0, 0, 0, 0, 255] end # Sets position of each row # Converts given row value to pixels that DragonRuby understands def row_to_px row_number # Row 0 starts 5 units below the top of the grid. # Each row afterward is 20 units lower. grid.top.shift_down(5).shift_down(20 * row_number) end # Uses labels to output current game time (passage of time), and whether or not "h" was pressed # If "h" is pressed, the frame is output when the key_up event occurred def keyboards_tech_demo outputs.labels << [460, row_to_px(0), "Current game time: #{state.tick_count}", small_font] outputs.labels << [460, row_to_px(2), "Keyboard input: inputs.keyboard.key_up.h", small_font] outputs.labels << [460, row_to_px(3), "Press \"h\" on the keyboard.", small_font] if inputs.keyboard.key_up.h # if "h" key_up event occurs state.h_pressed_at = state.tick_count # frame it occurred is stored end # h_pressed_at is initially set to false, and changes once the user presses the "h" key. state.h_pressed_at ||= false if state.h_pressed_at # if h is pressed (pressed_at has a frame number and is no longer false) outputs.labels << [460, row_to_px(4), "\"h\" was pressed at time: #{state.h_pressed_at}", small_font] else # otherwise, label says "h" was never pressed outputs.labels << [460, row_to_px(4), "\"h\" has never been pressed.", small_font] end # border around keyboard input demo section outputs.borders << [455, row_to_px(5), 360, row_to_px(2).shift_up(5) - row_to_px(5)] end # Sets definition for a small label # Makes it easier to position labels in respect to the position of other labels def small_label x, row, message [x, row_to_px(row), message, small_font] end # Uses small labels to show whether the "a" button on the controller is down, held, or up. # y value of each small label is set by calling the row_to_px method def controller_tech_demo x = 460 outputs.labels << small_label(x, 6, "Controller one input: inputs.controller_one") outputs.labels << small_label(x, 7, "Current state of the \"a\" button.") outputs.labels << small_label(x, 8, "Check console window for more info.") if inputs.controller_one.key_down.a # if "a" is in "down" state outputs.labels << small_label(x, 9, "\"a\" button down: #{inputs.controller_one.key_down.a}") puts "\"a\" button down at #{inputs.controller_one.key_down.a}" # prints frame the event occurred elsif inputs.controller_one.key_held.a # if "a" is held down outputs.labels << small_label(x, 9, "\"a\" button held: #{inputs.controller_one.key_held.a}") elsif inputs.controller_one.key_up.a # if "a" is in up state outputs.labels << small_label(x, 9, "\"a\" button up: #{inputs.controller_one.key_up.a}") puts "\"a\" key up at #{inputs.controller_one.key_up.a}" else # if no event has occurred outputs.labels << small_label(x, 9, "\"a\" button state is nil.") end # border around controller input demo section outputs.borders << [455, row_to_px(10), 360, row_to_px(6).shift_up(5) - row_to_px(10)] end # Outputs when the mouse was clicked, as well as the coordinates on the screen # of where the click occurred def mouse_tech_demo x = 460 outputs.labels << small_label(x, 11, "Mouse input: inputs.mouse") if inputs.mouse.click # if click has a value and is not nil state.last_mouse_click = inputs.mouse.click # coordinates of click are stored end if state.last_mouse_click # if mouse is clicked (has coordinates as value) # outputs the time (frame) the click occurred, as well as how many frames have passed since the event outputs.labels << small_label(x, 12, "Mouse click happened at: #{state.last_mouse_click.created_at}, #{state.last_mouse_click.created_at_elapsed}") # outputs coordinates of click outputs.labels << small_label(x, 13, "Mouse click location: #{state.last_mouse_click.point.x}, #{state.last_mouse_click.point.y}") else # otherwise if the mouse has not been clicked outputs.labels << small_label(x, 12, "Mouse click has not occurred yet.") outputs.labels << small_label(x, 13, "Please click mouse.") end end # Outputs whether a mouse click occurred inside or outside of a box def point_to_rect_tech_demo x = 460 outputs.labels << small_label(x, 15, "Click inside the blue box maybe ---->") box = [765, 370, 50, 50, 0, 0, 170] # blue box outputs.borders << box if state.last_mouse_click # if the mouse was clicked if state.last_mouse_click.point.inside_rect? box # if mouse clicked inside box outputs.labels << small_label(x, 16, "Mouse click happened inside the box.") else # otherwise, if mouse was clicked outside the box outputs.labels << small_label(x, 16, "Mouse click happened outside the box.") end else # otherwise, if was not clicked at all outputs.labels << small_label(x, 16, "Mouse click has not occurred yet.") # output if the mouse was not clicked end # border around mouse input demo section outputs.borders << [455, row_to_px(14), 360, row_to_px(11).shift_up(5) - row_to_px(14)] end # Outputs a red box onto the screen. A mouse click from the user inside of the red box will output # a smaller box. If two small boxes are inside of the red box, it will be determined whether or not # they intersect. def rect_to_rect_tech_demo x = 460 outputs.labels << small_label(x, 17.5, "Click inside the red box below.") # label with instructions red_box = [460, 250, 355, 90, 170, 0, 0] # definition of the red box outputs.borders << red_box # output as a border (not filled in) # If the mouse is clicked inside the red box, two collision boxes are created. if inputs.mouse.click if inputs.mouse.click.point.inside_rect? red_box if !state.box_collision_one # if the collision_one box does not yet have a definition # Subtracts 25 from the x and y positions of the click point in order to make the click point the center of the box. # You can try deleting the subtraction to see how it impacts the box placement. state.box_collision_one = [inputs.mouse.click.point.x - 25, inputs.mouse.click.point.y - 25, 50, 50, 180, 0, 0, 180] # sets definition elsif !state.box_collision_two # if collision_two does not yet have a definition state.box_collision_two = [inputs.mouse.click.point.x - 25, inputs.mouse.click.point.y - 25, 50, 50, 0, 0, 180, 180] # sets definition else state.box_collision_one = nil # both boxes are empty state.box_collision_two = nil end end end # If collision boxes exist, they are output onto screen inside the red box as solids if state.box_collision_one outputs.solids << state.box_collision_one end if state.box_collision_two outputs.solids << state.box_collision_two end # Outputs whether or not the two collision boxes intersect. if state.box_collision_one && state.box_collision_two # if both collision_boxes are defined (and not nil or empty) if state.box_collision_one.intersect_rect? state.box_collision_two # if the two boxes intersect outputs.labels << small_label(x, 23.5, 'The boxes intersect.') else # otherwise, if the two boxes do not intersect outputs.labels << small_label(x, 23.5, 'The boxes do not intersect.') end else outputs.labels << small_label(x, 23.5, '--') # if the two boxes are not defined (are nil or empty), this label is output end end # Creates a button and outputs it onto the screen using labels and borders. # If the button is clicked, the color changes to make it look faded. def button_tech_demo x, y, w, h = 460, 160, 300, 50 state.button ||= state.new_entity(:button_with_fade) # Adds w.half to x and h.half + 10 to y in order to display the text inside the button's borders. state.button.label ||= [x + w.half, y + h.half + 10, "click me and watch me fade", 0, 1] state.button.border ||= [x, y, w, h] if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.button.border) # if mouse is clicked, and clicked inside button's border state.button.clicked_at = inputs.mouse.click.created_at # stores the time the click occurred end outputs.labels << state.button.label outputs.borders << state.button.border if state.button.clicked_at # if button was clicked (variable has a value and is not nil) # The appearance of the button changes for 0.25 seconds after the time the button is clicked at. # The color changes (rgb is set to 0, 180, 80) and the transparency gradually changes. # Change 0.25 to 1.25 and notice that the transparency takes longer to return to normal. outputs.solids << [x, y, w, h, 0, 180, 80, 255 * state.button.clicked_at.ease(0.25.seconds, :flip)] end end # Creates a new button by declaring it as a new entity, and sets values. def new_button_prefab x, y, message w, h = 300, 50 button = state.new_entity(:button_with_fade) button.label = [x + w.half, y + h.half + 10, message, 0, 1] # '+ 10' keeps label's text within button's borders button.border = [x, y, w, h] # sets border definition button end # If the mouse has been clicked and the click's location is inside of the button's border, that means # that the button has been clicked. This method returns a boolean value. def button_clicked? button inputs.mouse.click && inputs.mouse.click.point.inside_rect?(button.border) end # Determines if button was clicked, and changes its appearance if it is clicked def tick_button_prefab button outputs.labels << button.label # outputs button's label and border outputs.borders << button.border if button_clicked? button # if button is clicked button.clicked_at = inputs.mouse.click.created_at # stores the time that the button was clicked end if button.clicked_at # if clicked_at has a frame value and is not nil # button is output; color changes and transparency changes for 0.25 seconds after click occurs outputs.solids << [button.border.x, button.border.y, button.border.w, button.border.h, 0, 180, 80, 255 * button.clicked_at.ease(0.25.seconds, :flip)] # transparency changes for 0.25 seconds end end # Exports the app's game state if the export button is clicked. def export_game_state_demo state.export_game_state_button ||= new_button_prefab(460, 100, "click to export app state") tick_button_prefab(state.export_game_state_button) # calls method to output button if button_clicked? state.export_game_state_button # if the export button is clicked args.gtk.export! "Exported from clicking the export button in the tech demo." # the export occurs end end # The mouse and keyboard focus are set to "yes" when the Dragonruby window is the active window. def window_state_demo m = $gtk.args.inputs.mouse.has_focus ? 'Y' : 'N' # ternary operator (similar to if statement) k = $gtk.args.inputs.keyboard.has_focus ? 'Y' : 'N' outputs.labels << [460, 20, "mouse focus: #{m} keyboard focus: #{k}", small_font] end #Sets values for the horizontal separator (divides demo sections) def horizontal_seperator y, x, x2 [x, y, x2, y, 150, 150, 150] end #Sets the values for the vertical separator (divides demo sections) def vertical_seperator x, y, y2 [x, y, x, y2, 150, 150, 150] end # Outputs vertical and horizontal separators onto the screen to separate each demo section. def render_seperators outputs.lines << horizontal_seperator(505, grid.left, 445) outputs.lines << horizontal_seperator(353, grid.left, 445) outputs.lines << horizontal_seperator(264, grid.left, 445) outputs.lines << horizontal_seperator(174, grid.left, 445) outputs.lines << vertical_seperator(445, grid.top, grid.bottom) outputs.lines << horizontal_seperator(690, 445, 820) outputs.lines << horizontal_seperator(426, 445, 820) outputs.lines << vertical_seperator(820, grid.top, grid.bottom) end end $tech_demo = TechDemo.new def tick args $tech_demo.inputs = args.inputs $tech_demo.state = args.state $tech_demo.grid = args.grid $tech_demo.args = args $tech_demo.outputs = args.render_target(:mini_map) $tech_demo.outputs.transient = true $tech_demo.tick args.outputs.labels << [830, 715, "Render target:", [-2, 0, 0, 0, 0, 255]] args.outputs.sprites << [0, 0, 1280, 720, :mini_map] args.outputs.sprites << [830, 300, 675, 379, :mini_map] tick_instructions args, "Sample app shows all the rendering apis available." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Advanced Rendering - Render Primitive Hierarchies - main.rb link
# ./samples/07_advanced_rendering/04_render_primitive_hierarchies/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Nested array: An array whose individual elements are also arrays; useful for storing groups of similar data. Also called multidimensional arrays. In this sample app, we see nested arrays being used in object definitions. Notice the parameters for solids, listed below. Parameters 1-3 set the definition for the rect, and parameter 4 sets the definition of the color. Instead of having a solid definition that looks like this, [X, Y, W, H, R, G, B] we can separate it into two separate array definitions in one, like this [[X, Y, W, H], [R, G, B]] and both options work fine in defining our solid (or any object). - Collections: Lists of data; useful for organizing large amounts of data. One element of a collection could be an array (which itself contains many elements). For example, a collection that stores two solid objects would look like this: [ [100, 100, 50, 50, 0, 0, 0], [100, 150, 50, 50, 255, 255, 255] ] If this collection was added to args.outputs.solids, two solids would be output next to each other, one black and one white. Nested arrays can be used in collections, as you will see in this sample app. Reminders: - args.outputs.solids: An array. The values generate a solid. The parameters for a solid are 1. The position on the screen (x, y) 2. The width (w) 3. The height (h) 4. The color (r, g, b) (if a color is not assigned, the object's default color will be black) NOTE: THE PARAMETERS ARE THE SAME FOR BORDERS! Here is an example of a (red) border or solid definition: [100, 100, 400, 500, 255, 0, 0] It will be a solid or border depending on if it is added to args.outputs.solids or args.outputs.borders. For more information about solids and borders, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.sprites: An array. The values generate a sprite. The parameters for sprites are 1. The position on the screen (x, y) 2. The width (w) 3. The height (h) 4. The image path (p) Here is an example of a sprite definition: [100, 100, 400, 500, 'sprites/dragonruby.png'] For more information about sprites, go to mygame/documentation/05-sprites.md. =end # This code demonstrates the creation and output of objects like sprites, borders, and solids # If filled in, they are solids # If hollow, they are borders # If images, they are sprites # Solids are added to args.outputs.solids # Borders are added to args.outputs.borders # Sprites are added to args.outputs.sprites # The tick method runs 60 frames every second. # Your game is going to happen under this one function. def tick args border_as_solid_and_solid_as_border args sprite_as_border_or_solids args collection_of_borders_and_solids args collection_of_sprites args end # Shows a border being output onto the screen as a border and a solid # Also shows how colors can be set def border_as_solid_and_solid_as_border args border = [0, 0, 50, 50] args.outputs.borders << border args.outputs.solids << border # Red, green, blue saturations (last three parameters) can be any number between 0 and 255 border_with_color = [0, 100, 50, 50, 255, 0, 0] args.outputs.borders << border_with_color args.outputs.solids << border_with_color border_with_nested_color = [0, 200, 50, 50, [0, 255, 0]] # nested color args.outputs.borders << border_with_nested_color args.outputs.solids << border_with_nested_color border_with_nested_rect = [[0, 300, 50, 50], 0, 0, 255] # nested rect args.outputs.borders << border_with_nested_rect args.outputs.solids << border_with_nested_rect border_with_nested_color_and_rect = [[0, 400, 50, 50], [255, 0, 255]] # nested rect and color args.outputs.borders << border_with_nested_color_and_rect args.outputs.solids << border_with_nested_color_and_rect end # Shows a sprite output onto the screen as a sprite, border, and solid # Demonstrates that all three outputs appear differently on screen def sprite_as_border_or_solids args sprite = [100, 0, 50, 50, 'sprites/ship.png'] args.outputs.sprites << sprite # Sprite_as_border variable has same parameters (excluding position) as above object, # but will appear differently on screen because it is added to args.outputs.borders sprite_as_border = [100, 100, 50, 50, 'sprites/ship.png'] args.outputs.borders << sprite_as_border # Sprite_as_solid variable has same parameters (excluding position) as above object, # but will appear differently on screen because it is added to args.outputs.solids sprite_as_solid = [100, 200, 50, 50, 'sprites/ship.png'] args.outputs.solids << sprite_as_solid end # Holds and outputs a collection of borders and a collection of solids # Collections are created by using arrays to hold parameters of each individual object def collection_of_borders_and_solids args collection_borders = [ [ [200, 0, 50, 50], # black border [200, 100, 50, 50, 255, 0, 0], # red border [200, 200, 50, 50, [0, 255, 0]], # nested color ], [[200, 300, 50, 50], 0, 0, 255], # nested rect [[200, 400, 50, 50], [255, 0, 255]] # nested rect and nested color ] args.outputs.borders << collection_borders collection_solids = [ [ [[300, 300, 50, 50], 0, 0, 255], # nested rect [[300, 400, 50, 50], [255, 0, 255]] # nested rect and nested color ], [300, 0, 50, 50], [300, 100, 50, 50, 255, 0, 0], [300, 200, 50, 50, [0, 255, 0]], # nested color ] args.outputs.solids << collection_solids end # Holds and outputs a collection of sprites by adding it to args.outputs.sprites # Also outputs a collection with same parameters (excluding position) by adding # it to args.outputs.solids and another to args.outputs.borders def collection_of_sprites args sprites_collection = [ [ [400, 0, 50, 50, 'sprites/ship.png'], [400, 100, 50, 50, 'sprites/ship.png'], ], [400, 200, 50, 50, 'sprites/ship.png'] ] args.outputs.sprites << sprites_collection args.outputs.solids << [ [500, 0, 50, 50, 'sprites/ship.png'], [500, 100, 50, 50, 'sprites/ship.png'], [[[500, 200, 50, 50, 'sprites/ship.png']]] ] args.outputs.borders << [ [ [600, 0, 50, 50, 'sprites/ship.png'], [600, 100, 50, 50, 'sprites/ship.png'], ], [600, 200, 50, 50, 'sprites/ship.png'] ] end
Advanced Rendering - Render Primitives As Hash - main.rb link
# ./samples/07_advanced_rendering/05_render_primitives_as_hash/app/main.rb =begin Reminders: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. For example, if we have a "numbers" hash that stores numbers in English as the key and numbers in Spanish as the value, we'd have a hash that looks like this... numbers = { "one" => "uno", "two" => "dos", "three" => "tres" } and on it goes. Now if we wanted to find the corresponding value of the "one" key, we could say puts numbers["one"] which would print "uno" to the console. - args.outputs.sprites: An array. The values generate a sprite. The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE] For more information about sprites, go to mygame/documentation/05-sprites.md. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.borders: An array. The values generate a border. The parameters are the same as a solid. For more information about borders, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.lines: An array. The values generate a line. The parameters are [X1, Y1, X2, Y2, RED, GREEN, BLUE] For more information about labels, go to mygame/documentation/02-labels.md. =end # This sample app demonstrates how hashes can be used to output different kinds of objects. def tick args args.state.angle ||= 0 # initializes angle to 0 args.state.angle += 1 # increments angle by 1 every frame (60 times a second) # Outputs sprite using a hash args.outputs.sprites << { x: 30, # sprite position y: 550, w: 128, # sprite size h: 101, path: "dragonruby.png", # image path angle: args.state.angle, # angle a: 255, # alpha (transparency) r: 255, # color saturation g: 255, b: 255, tile_x: 0, # sprite sub division/tile tile_y: 0, tile_w: -1, tile_h: -1, flip_vertically: false, # don't flip sprite flip_horizontally: false, angle_anchor_x: 0.5, # rotation center set to middle angle_anchor_y: 0.5 } # Outputs label using a hash args.outputs.labels << { x: 200, # label position y: 550, text: "dragonruby", # label text size_enum: 2, alignment_enum: 1, r: 155, # color saturation g: 50, b: 50, a: 255, # transparency font: "fonts/manaspc.ttf" # font style; without mentioned file, label won't output correctly } # Outputs solid using a hash # [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA] args.outputs.solids << { x: 400, # position y: 550, w: 160, # size h: 90, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency } # Outputs border using a hash # Same parameters as a solid args.outputs.borders << { x: 600, y: 550, w: 160, h: 90, r: 120, g: 50, b: 50, a: 255 } # Outputs line using a hash args.outputs.lines << { x: 900, # starting position y: 550, x2: 1200, # ending position y2: 550, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency } # Outputs sprite as a primitive using a hash args.outputs.primitives << { x: 30, # position y: 200, w: 128, # size h: 101, path: "dragonruby.png", # image path angle: args.state.angle, # angle a: 255, # transparency r: 255, # color saturation g: 255, b: 255, tile_x: 0, # sprite sub division/tile tile_y: 0, tile_w: -1, tile_h: -1, flip_vertically: false, # don't flip flip_horizontally: false, angle_anchor_x: 0.5, # rotation center set to middle angle_anchor_y: 0.5 }.sprite! # Outputs label as primitive using a hash args.outputs.primitives << { x: 200, # position y: 200, text: "dragonruby", # text size: 2, alignment: 1, r: 155, # color saturation g: 50, b: 50, a: 255, # transparency font: "fonts/manaspc.ttf" # font style }.label! # Outputs solid as primitive using a hash args.outputs.primitives << { x: 400, # position y: 200, w: 160, # size h: 90, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency }.solid! # Outputs border as primitive using a hash # Same parameters as solid args.outputs.primitives << { x: 600, # position y: 200, w: 160, # size h: 90, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency }.border! # Outputs line as primitive using a hash args.outputs.primitives << { x: 900, # starting position y: 200, x2: 1200, # ending position y2: 200, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency }.line! end
Advanced Rendering - Buttons As Render Targets - main.rb link
# ./samples/07_advanced_rendering/06_buttons_as_render_targets/app/main.rb def tick args # create a texture/render_target that's composed of a border and a label create_button args, :hello_world_button, "Hello World", 500, 50 # two button primitives using the hello_world_button render_target args.state.buttons ||= [ # one button at the top { id: :top_button, x: 640 - 250, y: 80.from_top, w: 500, h: 50, path: :hello_world_button }, # another button at the buttom, upside down, and flipped horizontally { id: :bottom_button, x: 640 - 250, y: 30, w: 500, h: 50, path: :hello_world_button, angle: 180, flip_horizontally: true }, ] # check if a mouse click occurred if args.inputs.mouse.click # check to see if any of the buttons were intersected # and set the selected button if so args.state.selected_button = args.state.buttons.find { |b| b.intersect_rect? args.inputs.mouse } end # render the buttons args.outputs.sprites << args.state.buttons # if there was a selected button, print it's id if args.state.selected_button args.outputs.labels << { x: 30, y: 30.from_top, text: "#{args.state.selected_button.id} was clicked." } end end def create_button args, id, text, w, h # render_targets only need to be created once, we use the the id to determine if the texture # has already been created args.state.created_buttons ||= {} return if args.state.created_buttons[id] # if the render_target hasn't been created, then generate it and store it in the created_buttons cache args.state.created_buttons[id] = { created_at: args.state.tick_count, id: id, w: w, h: h, text: text } # define the w/h of the texture args.outputs[id].w = w args.outputs[id].h = h # create a border args.outputs[id].borders << { x: 0, y: 0, w: w, h: h } # create a label centered vertically and horizontally within the texture args.outputs[id].labels << { x: w / 2, y: h / 2, text: text, vertical_alignment_enum: 1, alignment_enum: 1 } end
Advanced Rendering - Pixel Arrays - main.rb link
# ./samples/07_advanced_rendering/06_pixel_arrays/app/main.rb def tick args args.state.posinc ||= 1 args.state.pos ||= 0 args.state.rotation ||= 0 dimension = 10 # keep it small and let the GPU scale it when rendering the sprite. # Set up our "scanner" pixel array and fill it with black pixels. args.pixel_array(:scanner).width = dimension args.pixel_array(:scanner).height = dimension args.pixel_array(:scanner).pixels.fill(0xFF000000, 0, dimension * dimension) # black, full alpha # Draw a green line that bounces up and down the sprite. args.pixel_array(:scanner).pixels.fill(0xFF00FF00, dimension * args.state.pos, dimension) # green, full alpha # Adjust position for next frame. args.state.pos += args.state.posinc if args.state.posinc > 0 && args.state.pos >= dimension args.state.posinc = -1 args.state.pos = dimension - 1 elsif args.state.posinc < 0 && args.state.pos < 0 args.state.posinc = 1 args.state.pos = 1 end # New/changed pixel arrays get uploaded to the GPU before we render # anything. At that point, they can be scaled, rotated, and otherwise # used like any other sprite. w = 100 h = 100 x = (1280 - w) / 2 y = (720 - h) / 2 args.outputs.background_color = [64, 0, 128] args.outputs.primitives << [x, y, w, h, :scanner, args.state.rotation].sprite args.state.rotation += 1 args.outputs.primitives << args.gtk.current_framerate_primitives end $gtk.reset
Advanced Rendering - Pixel Arrays From File - main.rb link
# ./samples/07_advanced_rendering/06_pixel_arrays_from_file/app/main.rb def tick args args.state.rotation ||= 0 # on load, get pixels from png and load it into a pixel array if args.state.tick_count == 0 pixel_array = args.gtk.get_pixels 'sprites/square/blue.png' args.pixel_array(:square).w = pixel_array.w args.pixel_array(:square).h = pixel_array.h pixel_array.pixels.each_with_index do |p, i| args.pixel_array(:square).pixels[i] = p end end w = 100 h = 100 x = (1280 - w) / 2 y = (720 - h) / 2 args.outputs.background_color = [64, 0, 128] # render the pixel array by name args.outputs.primitives << { x: x, y: y, w: w, h: h, path: :square, angle: args.state.rotation } args.state.rotation += 1 args.outputs.primitives << args.gtk.current_framerate_primitives end $gtk.reset
Advanced Rendering - Shake Camera - main.rb link
# ./samples/07_advanced_rendering/07_shake_camera/app/main.rb # Demo of camera shake # Hold space to shake and release to stop class ScreenShake attr_gtk def tick defaults calc_camera outputs.labels << { x: 600, y: 400, text: "Hold Space!" } # Add outputs to :scene outputs[:scene].transient! outputs[:scene].sprites << { x: 100, y: 100, w: 80, h: 80, path: 'sprites/square/blue.png' } outputs[:scene].sprites << { x: 200, y: 300.from_top, w: 80, h: 80, path: 'sprites/square/blue.png' } outputs[:scene].sprites << { x: 900, y: 200, w: 80, h: 80, path: 'sprites/square/blue.png' } # Describe how to render :scene outputs.sprites << { x: 0 - state.camera.x_offset, y: 0 - state.camera.y_offset, w: 1280, h: 720, angle: state.camera.angle, path: :scene } end def defaults state.camera.trauma ||= 0 state.camera.angle ||= 0 state.camera.x_offset ||= 0 state.camera.y_offset ||= 0 end def calc_camera if inputs.keyboard.key_held.space state.camera.trauma += 0.02 end next_camera_angle = 180.0 / 20.0 * state.camera.trauma**2 next_offset = 100.0 * state.camera.trauma**2 # Ensure that the camera angle always switches from # positive to negative and vice versa # which gives the effect of shaking back and forth state.camera.angle = state.camera.angle > 0 ? next_camera_angle * -1 : next_camera_angle state.camera.x_offset = next_offset.randomize(:sign, :ratio) state.camera.y_offset = next_offset.randomize(:sign, :ratio) # Gracefully degrade trauma state.camera.trauma *= 0.95 end end def tick args $screen_shake ||= ScreenShake.new $screen_shake.args = args $screen_shake.tick end
Advanced Rendering - Simple Camera - main.rb link
# ./samples/07_advanced_rendering/07_simple_camera/app/main.rb def tick args # variables you can play around with args.state.world.w ||= 1280 args.state.world.h ||= 720 args.state.player.x ||= 0 args.state.player.y ||= 0 args.state.player.size ||= 32 args.state.enemy.x ||= 700 args.state.enemy.y ||= 700 args.state.enemy.size ||= 16 args.state.camera.x ||= 640 args.state.camera.y ||= 300 args.state.camera.scale ||= 1.0 args.state.camera.show_empty_space ||= :yes # instructions args.outputs.primitives << { x: 0, y: 80.from_top, w: 360, h: 80, r: 0, g: 0, b: 0, a: 128 }.solid! args.outputs.primitives << { x: 10, y: 10.from_top, text: "arrow keys to move around", r: 255, g: 255, b: 255}.label! args.outputs.primitives << { x: 10, y: 30.from_top, text: "+/- to change zoom of camera", r: 255, g: 255, b: 255}.label! args.outputs.primitives << { x: 10, y: 50.from_top, text: "tab to change camera edge behavior", r: 255, g: 255, b: 255}.label! # render scene args.outputs[:scene].transient! args.outputs[:scene].w = args.state.world.w args.outputs[:scene].h = args.state.world.h args.outputs[:scene].solids << { x: 0, y: 0, w: args.state.world.w, h: args.state.world.h, r: 20, g: 60, b: 80 } args.outputs[:scene].solids << { x: args.state.player.x, y: args.state.player.y, w: args.state.player.size, h: args.state.player.size, r: 80, g: 155, b: 80 } args.outputs[:scene].solids << { x: args.state.enemy.x, y: args.state.enemy.y, w: args.state.enemy.size, h: args.state.enemy.size, r: 155, g: 80, b: 80 } # render camera scene_position = calc_scene_position args args.outputs.sprites << { x: scene_position.x, y: scene_position.y, w: scene_position.w, h: scene_position.h, path: :scene } # move player if args.inputs.directional_angle args.state.player.x += args.inputs.directional_angle.vector_x * 5 args.state.player.y += args.inputs.directional_angle.vector_y * 5 args.state.player.x = args.state.player.x.clamp(0, args.state.world.w - args.state.player.size) args.state.player.y = args.state.player.y.clamp(0, args.state.world.h - args.state.player.size) end # +/- to zoom in and out if args.inputs.keyboard.plus && args.state.tick_count.zmod?(3) args.state.camera.scale += 0.05 elsif args.inputs.keyboard.hyphen && args.state.tick_count.zmod?(3) args.state.camera.scale -= 0.05 elsif args.inputs.keyboard.key_down.tab if args.state.camera.show_empty_space == :yes args.state.camera.show_empty_space = :no else args.state.camera.show_empty_space = :yes end end args.state.camera.scale = args.state.camera.scale.greater(0.1) end def calc_scene_position args result = { x: args.state.camera.x - (args.state.player.x * args.state.camera.scale), y: args.state.camera.y - (args.state.player.y * args.state.camera.scale), w: args.state.world.w * args.state.camera.scale, h: args.state.world.h * args.state.camera.scale, scale: args.state.camera.scale } return result if args.state.camera.show_empty_space == :yes if result.w < args.grid.w result.merge!(x: (args.grid.w - result.w).half) elsif (args.state.player.x * result.scale) < args.grid.w.half result.merge!(x: 10) elsif (result.x + result.w) < args.grid.w result.merge!(x: - result.w + (args.grid.w - 10)) end if result.h < args.grid.h result.merge!(y: (args.grid.h - result.h).half) elsif (result.y) > 10 result.merge!(y: 10) elsif (result.y + result.h) < args.grid.h result.merge!(y: - result.h + (args.grid.h - 10)) end result end
Advanced Rendering - Simple Camera Multiple Targets - main.rb link
# ./samples/07_advanced_rendering/07_simple_camera_multiple_targets/app/main.rb def tick args args.outputs.background_color = [0, 0, 0] # variables you can play around with args.state.world.w ||= 1280 args.state.world.h ||= 720 args.state.target_hero ||= :hero_1 args.state.target_hero_changed_at ||= -30 args.state.hero_size ||= 32 # initial state of heros and camera args.state.hero_1 ||= { x: 100, y: 100 } args.state.hero_2 ||= { x: 100, y: 600 } args.state.camera ||= { x: 640, y: 360, scale: 1.0 } # render instructions args.outputs.primitives << { x: 0, y: 80.from_top, w: 360, h: 80, r: 0, g: 0, b: 0, a: 128 }.solid! args.outputs.primitives << { x: 10, y: 10.from_top, text: "+/- to change zoom of camera", r: 255, g: 255, b: 255}.label! args.outputs.primitives << { x: 10, y: 30.from_top, text: "arrow keys to move target hero", r: 255, g: 255, b: 255}.label! args.outputs.primitives << { x: 10, y: 50.from_top, text: "space to cycle target hero", r: 255, g: 255, b: 255}.label! # render scene args.outputs[:scene].transient! args.outputs[:scene].w = args.state.world.w args.outputs[:scene].h = args.state.world.h # render world args.outputs[:scene].solids << { x: 0, y: 0, w: args.state.world.w, h: args.state.world.h, r: 20, g: 60, b: 80 } # render hero_1 args.outputs[:scene].solids << { x: args.state.hero_1.x, y: args.state.hero_1.y, w: args.state.hero_size, h: args.state.hero_size, r: 255, g: 155, b: 80 } # render hero_2 args.outputs[:scene].solids << { x: args.state.hero_2.x, y: args.state.hero_2.y, w: args.state.hero_size, h: args.state.hero_size, r: 155, g: 255, b: 155 } # render scene relative to camera scene_position = calc_scene_position args args.outputs.sprites << { x: scene_position.x, y: scene_position.y, w: scene_position.w, h: scene_position.h, path: :scene } # mini map args.outputs.borders << { x: 10, y: 10, w: args.state.world.w.idiv(8), h: args.state.world.h.idiv(8), r: 255, g: 255, b: 255 } args.outputs.sprites << { x: 10, y: 10, w: args.state.world.w.idiv(8), h: args.state.world.h.idiv(8), path: :scene } # cycle target hero if args.inputs.keyboard.key_down.space if args.state.target_hero == :hero_1 args.state.target_hero = :hero_2 else args.state.target_hero = :hero_1 end args.state.target_hero_changed_at = args.state.tick_count end # move target hero hero_to_move = if args.state.target_hero == :hero_1 args.state.hero_1 else args.state.hero_2 end if args.inputs.directional_angle hero_to_move.x += args.inputs.directional_angle.vector_x * 5 hero_to_move.y += args.inputs.directional_angle.vector_y * 5 hero_to_move.x = hero_to_move.x.clamp(0, args.state.world.w - hero_to_move.size) hero_to_move.y = hero_to_move.y.clamp(0, args.state.world.h - hero_to_move.size) end # +/- to zoom in and out if args.inputs.keyboard.plus && args.state.tick_count.zmod?(3) args.state.camera.scale += 0.05 elsif args.inputs.keyboard.hyphen && args.state.tick_count.zmod?(3) args.state.camera.scale -= 0.05 end args.state.camera.scale = 0.1 if args.state.camera.scale < 0.1 end def other_hero args if args.state.target_hero == :hero_1 return args.state.hero_2 else return args.state.hero_1 end end def calc_scene_position args target_hero = if args.state.target_hero == :hero_1 args.state.hero_1 else args.state.hero_2 end other_hero = if args.state.target_hero == :hero_1 args.state.hero_2 else args.state.hero_1 end # calculate the lerp percentage based on the time since the target hero changed lerp_percentage = args.easing.ease args.state.target_hero_changed_at, args.state.tick_count, 30, :smooth_stop_quint, :flip # calculate the angle and distance between the target hero and the other hero angle_to_other_hero = args.geometry.angle_to target_hero, other_hero # calculate the distance between the target hero and the other hero distance_to_other_hero = args.geometry.distance target_hero, other_hero # the camera position is the target hero position plus the angle and distance to the other hero (lerped) { x: args.state.camera.x - (target_hero.x + (angle_to_other_hero.vector_x * distance_to_other_hero * lerp_percentage)) * args.state.camera.scale, y: args.state.camera.y - (target_hero.y + (angle_to_other_hero.vector_y * distance_to_other_hero * lerp_percentage)) * args.state.camera.scale, w: args.state.world.w * args.state.camera.scale, h: args.state.world.h * args.state.camera.scale } end
Advanced Rendering - Splitscreen Camera - main.rb link
# ./samples/07_advanced_rendering/08_splitscreen_camera/app/main.rb class CameraMovement attr_accessor :state, :inputs, :outputs, :grid #============================================================================================== #Serialize def serialize {state: state, inputs: inputs, outputs: outputs, grid: grid } end def inspect serialize.to_s end def to_s serialize.to_s end #============================================================================================== #Tick def tick defaults calc render input end #============================================================================================== #Default functions def defaults outputs[:scene].transient! outputs[:scene].background_color = [0,0,0] state.trauma ||= 0.0 state.trauma_power ||= 2 state.player_cyan ||= new_player_cyan state.player_magenta ||= new_player_magenta state.camera_magenta ||= new_camera_magenta state.camera_cyan ||= new_camera_cyan state.camera_center ||= new_camera_center state.room ||= new_room end def default_player x, y, w, h, sprite_path state.new_entity(:player, { x: x, y: y, dy: 0, dx: 0, w: w, h: h, damage: 0, dead: false, orientation: "down", max_alpha: 255, sprite_path: sprite_path}) end def default_floor_tile x, y, w, h, sprite_path state.new_entity(:room, { x: x, y: y, w: w, h: h, sprite_path: sprite_path}) end def default_camera x, y, w, h state.new_entity(:camera, { x: x, y: y, dx: 0, dy: 0, w: w, h: h}) end def new_player_cyan default_player(0, 0, 64, 64, "sprites/player/player_#{state.player_cyan.orientation}_standing.png") end def new_player_magenta default_player(64, 0, 64, 64, "sprites/player/player_#{state.player_magenta.orientation}_standing.png") end def new_camera_magenta default_camera(0,0,720,720) end def new_camera_cyan default_camera(0,0,720,720) end def new_camera_center default_camera(0,0,1280,720) end def new_room default_floor_tile(0,0,1024,1024,'sprites/rooms/camera_room.png') end #============================================================================================== #Calculation functions def calc calc_camera_magenta calc_camera_cyan calc_camera_center calc_player_cyan calc_player_magenta calc_trauma_decay end def center_camera_tolerance return Math.sqrt(((state.player_magenta.x - state.player_cyan.x) ** 2) + ((state.player_magenta.y - state.player_cyan.y) ** 2)) > 640 end def calc_player_cyan state.player_cyan.x += state.player_cyan.dx state.player_cyan.y += state.player_cyan.dy end def calc_player_magenta state.player_magenta.x += state.player_magenta.dx state.player_magenta.y += state.player_magenta.dy end def calc_camera_center timeScale = 1 midX = (state.player_magenta.x + state.player_cyan.x)/2 midY = (state.player_magenta.y + state.player_cyan.y)/2 targetX = midX - state.camera_center.w/2 targetY = midY - state.camera_center.h/2 state.camera_center.x += (targetX - state.camera_center.x) * 0.1 * timeScale state.camera_center.y += (targetY - state.camera_center.y) * 0.1 * timeScale end def calc_camera_magenta timeScale = 1 targetX = state.player_magenta.x + state.player_magenta.w - state.camera_magenta.w/2 targetY = state.player_magenta.y + state.player_magenta.h - state.camera_magenta.h/2 state.camera_magenta.x += (targetX - state.camera_magenta.x) * 0.1 * timeScale state.camera_magenta.y += (targetY - state.camera_magenta.y) * 0.1 * timeScale end def calc_camera_cyan timeScale = 1 targetX = state.player_cyan.x + state.player_cyan.w - state.camera_cyan.w/2 targetY = state.player_cyan.y + state.player_cyan.h - state.camera_cyan.h/2 state.camera_cyan.x += (targetX - state.camera_cyan.x) * 0.1 * timeScale state.camera_cyan.y += (targetY - state.camera_cyan.y) * 0.1 * timeScale end def calc_player_quadrant angle if angle < 45 and angle > -45 and state.player_cyan.x < state.player_magenta.x return 1 elsif angle < 45 and angle > -45 and state.player_cyan.x > state.player_magenta.x return 3 elsif (angle > 45 or angle < -45) and state.player_cyan.y < state.player_magenta.y return 2 elsif (angle > 45 or angle < -45) and state.player_cyan.y > state.player_magenta.y return 4 end end def calc_camera_shake state.trauma end def calc_trauma_decay state.trauma = state.trauma * 0.9 end def calc_random_float_range(min, max) rand * (max-min) + min end #============================================================================================== #Render Functions def render render_floor render_player_cyan render_player_magenta if center_camera_tolerance render_split_camera_scene else render_camera_center_scene end end def render_player_cyan outputs[:scene].sprites << {x: state.player_cyan.x, y: state.player_cyan.y, w: state.player_cyan.w, h: state.player_cyan.h, path: "sprites/player/player_#{state.player_cyan.orientation}_standing.png", r: 0, g: 255, b: 255} end def render_player_magenta outputs[:scene].sprites << {x: state.player_magenta.x, y: state.player_magenta.y, w: state.player_magenta.w, h: state.player_magenta.h, path: "sprites/player/player_#{state.player_magenta.orientation}_standing.png", r: 255, g: 0, b: 255} end def render_floor outputs[:scene].sprites << [state.room.x, state.room.y, state.room.w, state.room.h, state.room.sprite_path] end def render_camera_center_scene zoomFactor = 1 outputs[:scene].width = state.room.w outputs[:scene].height = state.room.h maxAngle = 10.0 maxOffset = 20.0 angle = maxAngle * calc_camera_shake * calc_random_float_range(-1,1) offsetX = 32 - (maxOffset * calc_camera_shake * calc_random_float_range(-1,1)) offsetY = 32 - (maxOffset * calc_camera_shake * calc_random_float_range(-1,1)) outputs.sprites << {x: (-state.camera_center.x - offsetX)/zoomFactor, y: (-state.camera_center.y - offsetY)/zoomFactor, w: outputs[:scene].width/zoomFactor, h: outputs[:scene].height/zoomFactor, path: :scene, angle: angle, source_w: -1, source_h: -1} outputs.labels << [128,64,"#{state.trauma.round(1)}",8,2,255,0,255,255] end def render_split_camera_scene outputs[:scene].width = state.room.w outputs[:scene].height = state.room.h render_camera_magenta_scene render_camera_cyan_scene angle = Math.atan((state.player_magenta.y - state.player_cyan.y)/(state.player_magenta.x- state.player_cyan.x)) * 180/Math::PI output_split_camera angle end def render_camera_magenta_scene zoomFactor = 1 offsetX = 32 offsetY = 32 outputs[:scene_magenta].transient! outputs[:scene_magenta].sprites << {x: (-state.camera_magenta.x*2), y: (-state.camera_magenta.y), w: outputs[:scene].width*2, h: outputs[:scene].height, path: :scene} end def render_camera_cyan_scene zoomFactor = 1 offsetX = 32 offsetY = 32 outputs[:scene_cyan].transient! outputs[:scene_cyan].sprites << {x: (-state.camera_cyan.x*2), y: (-state.camera_cyan.y), w: outputs[:scene].width*2, h: outputs[:scene].height, path: :scene} end def output_split_camera angle #TODO: Clean this up! quadrant = calc_player_quadrant angle outputs.labels << [128,64,"#{quadrant}",8,2,255,0,255,255] if quadrant == 1 set_camera_attributes(w: 640, h: 720, m_x: 640, m_y: 0, c_x: 0, c_y: 0) elsif quadrant == 2 set_camera_attributes(w: 1280, h: 360, m_x: 0, m_y: 360, c_x: 0, c_y: 0) elsif quadrant == 3 set_camera_attributes(w: 640, h: 720, m_x: 0, m_y: 0, c_x: 640, c_y: 0) elsif quadrant == 4 set_camera_attributes(w: 1280, h: 360, m_x: 0, m_y: 0, c_x: 0, c_y: 360) end end def set_camera_attributes(w: 0, h: 0, m_x: 0, m_y: 0, c_x: 0, c_y: 0) state.camera_cyan.w = w + 64 state.camera_cyan.h = h + 64 outputs[:scene_cyan].width = (w) * 2 outputs[:scene_cyan].height = h state.camera_magenta.w = w + 64 state.camera_magenta.h = h + 64 outputs[:scene_magenta].width = (w) * 2 outputs[:scene_magenta].height = h outputs.sprites << {x: m_x, y: m_y, w: w, h: h, path: :scene_magenta} outputs.sprites << {x: c_x, y: c_y, w: w, h: h, path: :scene_cyan} end def add_trauma amount state.trauma = [state.trauma + amount, 1.0].min end def remove_trauma amount state.trauma = [state.trauma - amount, 0.0].max end #============================================================================================== #Input functions def input input_move_cyan input_move_magenta if inputs.keyboard.key_down.t add_trauma(0.5) elsif inputs.keyboard.key_down.y remove_trauma(0.1) end end def input_move_cyan if inputs.keyboard.key_held.up state.player_cyan.dy = 5 state.player_cyan.orientation = "up" elsif inputs.keyboard.key_held.down state.player_cyan.dy = -5 state.player_cyan.orientation = "down" else state.player_cyan.dy *= 0.8 end if inputs.keyboard.key_held.left state.player_cyan.dx = -5 state.player_cyan.orientation = "left" elsif inputs.keyboard.key_held.right state.player_cyan.dx = 5 state.player_cyan.orientation = "right" else state.player_cyan.dx *= 0.8 end outputs.labels << [128,512,"#{state.player_cyan.x.round()}",8,2,0,255,255,255] outputs.labels << [128,480,"#{state.player_cyan.y.round()}",8,2,0,255,255,255] end def input_move_magenta if inputs.keyboard.key_held.w state.player_magenta.dy = 5 state.player_magenta.orientation = "up" elsif inputs.keyboard.key_held.s state.player_magenta.dy = -5 state.player_magenta.orientation = "down" else state.player_magenta.dy *= 0.8 end if inputs.keyboard.key_held.a state.player_magenta.dx = -5 state.player_magenta.orientation = "left" elsif inputs.keyboard.key_held.d state.player_magenta.dx = 5 state.player_magenta.orientation = "right" else state.player_magenta.dx *= 0.8 end outputs.labels << [128,360,"#{state.player_magenta.x.round()}",8,2,255,0,255,255] outputs.labels << [128,328,"#{state.player_magenta.y.round()}",8,2,255,0,255,255] end end $camera_movement = CameraMovement.new def tick args args.outputs.background_color = [0,0,0] $camera_movement.inputs = args.inputs $camera_movement.outputs = args.outputs $camera_movement.state = args.state $camera_movement.grid = args.grid $camera_movement.tick end
Advanced Rendering - Z Targeting Camera - main.rb link
# ./samples/07_advanced_rendering/09_z_targeting_camera/app/main.rb class Game attr_gtk def tick defaults render input calc end def defaults outputs.background_color = [219, 208, 191] player.x ||= 634 player.y ||= 153 player.angle ||= 90 player.distance ||= arena_radius target.x ||= 634 target.y ||= 359 end def render outputs[:scene].transient! outputs[:scene].sprites << ([0, 0, 933, 700, 'sprites/arena.png'].center_inside_rect grid.rect) outputs[:scene].sprites << target_sprite outputs[:scene].sprites << player_sprite outputs.sprites << scene end def target_sprite { x: target.x, y: target.y, w: 10, h: 10, path: 'sprites/square/black.png' }.anchor_rect 0.5, 0.5 end def input if inputs.up && player.distance > 30 player.distance -= 2 elsif inputs.down && player.distance < 200 player.distance += 2 end player.angle += inputs.left_right * -1 end def calc player.x = target.x + ((player.angle * 1).vector_x player.distance) player.y = target.y + ((player.angle * -1).vector_y player.distance) end def player_sprite { x: player.x, y: player.y, w: 50, h: 100, path: 'sprites/player.png', angle: (player.angle * -1) + 90 }.anchor_rect 0.5, 0 end def center_map { x: 634, y: 359 } end def zoom_factor_single 2 - ((args.geometry.distance player, center_map).fdiv arena_radius) end def zoom_factor zoom_factor_single ** 2 end def arena_radius 206 end def scene { x: (640 - player.x) + (640 - (640 * zoom_factor)), y: (360 - player.y - (75 * zoom_factor)) + (320 - (320 * zoom_factor)), w: 1280 * zoom_factor, h: 720 * zoom_factor, path: :scene, angle: player.angle - 90, angle_anchor_x: (player.x.fdiv 1280), angle_anchor_y: (player.y.fdiv 720) } end def player state.player end def target state.target end end def tick args $game ||= Game.new $game.args = args $game.tick end $gtk.reset
Advanced Rendering - Camera And Large Map - main.rb link
# ./samples/07_advanced_rendering/10_camera_and_large_map/app/main.rb def tick args # you want to make sure all of your pngs are a maximum size of 1280x1280 # low-end android devices and machines with underpowered GPUs are unable to # load very large textures. # this sample app creates 640x640 tiles of a 6400x6400 pixel png and displays them # on the screen relative to the player's position # tile creation process create_tiles_if_needed args # if tiles are already present the show map display_tiles args end def display_tiles args # set the player's starting location args.state.player ||= { x: 0, y: 0, w: 40, h: 40, path: "sprites/square/blue.png" } # if all tiles have been created, then we are # in "displaying_tiles" mode if args.state.displaying_tiles # create a render target that can hold 9 640x640 tiles args.outputs[:scene].transient! args.outputs[:scene].background_color = [0, 0, 0, 0] args.outputs[:scene].w = 1920 args.outputs[:scene].h = 1920 # allow player to be moved with arrow keys args.state.player.x += args.inputs.left_right * 10 args.state.player.y += args.inputs.up_down * 10 # given the player's location, return a collection of primitives # to render that are within the 1920x1920 viewport args.outputs[:scene].primitives << tiles_in_viewport(args) # place the player in the center of the render_target args.outputs[:scene].primitives << { x: 960 - 20, y: 960 - 20, w: 40, h: 40, path: "sprites/square/blue.png" } # center the 1920x1920 render target within the 1280x720 window args.outputs.sprites << { x: -320, y: -600, w: 1920, h: 1920, path: :scene } end end def tiles_in_viewport args state = args.state # define the size of each tile tile_size = 640 # determine what tile the player is on tile_player_is_on = { x: state.player.x.idiv(tile_size), y: state.player.y.idiv(tile_size) } # calculate the x and y offset of the player so that tiles are positioned correctly offset_x = 960 - (state.player.x - (tile_player_is_on.x * tile_size)) offset_y = 960 - (state.player.y - (tile_player_is_on.y * tile_size)) primitives = [] # get 9 tiles in total (the tile the player is on and the 8 surrounding tiles) # center tile primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: 0, offset_col: 0, dy: offset_y, dx: offset_x) # tile to the right primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: 0, offset_col: 1, dy: offset_y, dx: offset_x) # tile to the left primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: 0, offset_col: -1, dy: offset_y, dx: offset_x) # tile directly above primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: 1, offset_col: 0, dy: offset_y, dx: offset_x) # tile directly below primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: -1, offset_col: 0, dy: offset_y, dx: offset_x) # tile up and to the left primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: 1, offset_col: -1, dy: offset_y, dx: offset_x) # tile up and to the right primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: 1, offset_col: 1, dy: offset_y, dx: offset_x) # tile down and to the left primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: -1, offset_col: -1, dy: offset_y, dx: offset_x) # tile down and to the right primitives << (tile_in_viewport size: tile_size, from_row: tile_player_is_on.y, from_col: tile_player_is_on.x, offset_row: -1, offset_col: 1, dy: offset_y, dx: offset_x) primitives end def tile_in_viewport size:, from_row:, from_col:, offset_row:, offset_col:, dy:, dx:; x = size * offset_col + dx y = size * offset_row + dy return nil if (from_row + offset_row) < 0 return nil if (from_row + offset_row) > 9 return nil if (from_col + offset_col) < 0 return nil if (from_col + offset_col) > 9 # return the tile sprite, a border demarcation, and label of which tile x and y [ { x: x, y: y, w: size, h: size, path: "sprites/tile-#{from_col + offset_col}-#{from_row + offset_row}.png", }, { x: x, y: y, w: size, h: size, r: 255, primitive_marker: :border, }, { x: x + size / 2 - 150, y: y + size / 2 - 25, w: 300, h: 50, primitive_marker: :solid, r: 0, g: 0, b: 0, a: 128 }, { x: x + size / 2, y: y + size / 2, text: "tile #{from_col + offset_col}, #{from_row + offset_row}", alignment_enum: 1, vertical_alignment_enum: 1, size_enum: 2, r: 255, g: 255, b: 255 }, ] end def create_tiles_if_needed args # We are going to use args.outputs.screenshots to generate tiles of a # png of size 6400x6400 called sprites/large.png. if !args.gtk.stat_file("sprites/tile-9-9.png") && !args.state.creating_tiles args.state.displaying_tiles = false args.outputs.labels << { x: 960, y: 360, text: "Press enter to generate tiles of sprites/large.png.", alignment_enum: 1, vertical_alignment_enum: 1 } elsif !args.state.creating_tiles args.state.displaying_tiles = true end # pressing enter will start the tile creation process if args.inputs.keyboard.key_down.enter && !args.state.creating_tiles args.state.displaying_tiles = false args.state.creating_tiles = true args.state.tile_clock = 0 end # the tile creation process renders an area of sprites/large.png # to the screen and takes a screenshot of it every half second # until all tiles are generated. # once all tiles are generated a map viewport will be rendered that # stitches tiles together. if args.state.creating_tiles args.state.tile_x ||= 0 args.state.tile_y ||= 0 # render a sub-square of the large png. args.outputs.sprites << { x: 0, y: 0, w: 640, h: 640, source_x: args.state.tile_x * 640, source_y: args.state.tile_y * 640, source_w: 640, source_h: 640, path: "sprites/large.png" } # determine tile file name tile_path = "sprites/tile-#{args.state.tile_x}-#{args.state.tile_y}.png" args.outputs.labels << { x: 960, y: 320, text: "Generating #{tile_path}", alignment_enum: 1, vertical_alignment_enum: 1 } # take a screenshot on frames divisible by 29 if args.state.tile_clock.zmod?(29) args.outputs.screenshots << { x: 0, y: 0, w: 640, h: 640, path: tile_path, a: 255 } end # increment tile to render on frames divisible by 30 (half a second) # (one frame is allotted to take screenshot) if args.state.tile_clock.zmod?(30) args.state.tile_x += 1 if args.state.tile_x >= 10 args.state.tile_x = 0 args.state.tile_y += 1 end # once all of tile tiles are created, begin displaying map if args.state.tile_y >= 10 args.state.creating_tiles = false args.state.displaying_tiles = true end end args.state.tile_clock += 1 end end $gtk.reset
Advanced Rendering - Blend Modes - main.rb link
# ./samples/07_advanced_rendering/11_blend_modes/app/main.rb $gtk.reset def draw_blendmode args, mode w = 160 h = w args.state.x += (1280-w) / (args.state.blendmodes.length + 1) x = args.state.x y = (720 - h) / 2 s = 'sprites/blue-feathered.png' args.outputs.sprites << { blendmode_enum: mode.value, x: x, y: y, w: w, h: h, path: s } args.outputs.labels << [x + (w/2), y, mode.name.to_s, 1, 1, 255, 255, 255] end def tick args # Different blend modes do different things, depending on what they # blend against (in this case, the pixels of the background color). args.state.bg_element ||= 1 args.state.bg_color ||= 255 args.state.bg_color_direction ||= 1 bg_r = (args.state.bg_element == 1) ? args.state.bg_color : 0 bg_g = (args.state.bg_element == 2) ? args.state.bg_color : 0 bg_b = (args.state.bg_element == 3) ? args.state.bg_color : 0 args.state.bg_color += args.state.bg_color_direction if (args.state.bg_color_direction > 0) && (args.state.bg_color >= 255) args.state.bg_color_direction = -1 args.state.bg_color = 255 elsif (args.state.bg_color_direction < 0) && (args.state.bg_color <= 0) args.state.bg_color_direction = 1 args.state.bg_color = 0 args.state.bg_element += 1 if args.state.bg_element >= 4 args.state.bg_element = 1 end end args.outputs.background_color = [ bg_r, bg_g, bg_b, 255 ] args.state.blendmodes ||= [ { name: :none, value: 0 }, { name: :blend, value: 1 }, { name: :add, value: 2 }, { name: :mod, value: 3 }, { name: :mul, value: 4 } ] args.state.x = 0 # reset this, draw_blendmode will increment it. args.state.blendmodes.each { |blendmode| draw_blendmode args, blendmode } end
Advanced Rendering - Render Target Noclear - main.rb link
# ./samples/07_advanced_rendering/12_render_target_noclear/app/main.rb def tick args args.state.x ||= 500 args.state.y ||= 350 args.state.xinc ||= 7 args.state.yinc ||= 7 args.state.bgcolor ||= 1 args.state.bginc ||= 1 # clear the render target on the first tick, and then never again. Draw # another box to it every tick, accumulating over time. clear_target = (args.state.tick_count == 0) || (args.inputs.keyboard.key_down.space) args.render_target(:accumulation).transient = true args.render_target(:accumulation).background_color = [ 0, 0, 0, 0 ]; args.render_target(:accumulation).clear_before_render = clear_target args.render_target(:accumulation).solids << [args.state.x, args.state.y, 25, 25, 255, 0, 0, 255]; args.state.x += args.state.xinc args.state.y += args.state.yinc args.state.bgcolor += args.state.bginc # animation upkeep...change where we draw the next box and what color the # window background will be. if args.state.xinc > 0 && args.state.x >= 1280 args.state.xinc = -7 elsif args.state.xinc < 0 && args.state.x < 0 args.state.xinc = 7 end if args.state.yinc > 0 && args.state.y >= 720 args.state.yinc = -7 elsif args.state.yinc < 0 && args.state.y < 0 args.state.yinc = 7 end if args.state.bginc > 0 && args.state.bgcolor >= 255 args.state.bginc = -1 elsif args.state.bginc < 0 && args.state.bgcolor <= 0 args.state.bginc = 1 end # clear the screen to a shade of blue and draw the render target, which # is not clearing every frame, on top of it. Note that you can NOT opt to # skip clearing the screen, only render targets. The screen clears every # frame; double-buffering would prevent correct updates between frames. args.outputs.background_color = [ 0, 0, args.state.bgcolor, 255 ] args.outputs.sprites << [ 0, 0, 1280, 720, :accumulation ] end $gtk.reset
Advanced Rendering - Lighting - main.rb link
# ./samples/07_advanced_rendering/13_lighting/app/main.rb def calc args args.state.swinging_light_sign ||= 1 args.state.swinging_light_start_at ||= 0 args.state.swinging_light_duration ||= 300 args.state.swinging_light_perc = args.state .swinging_light_start_at .ease_spline_extended args.state.tick_count, args.state.swinging_light_duration, [ [0.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 0.0] ] args.state.max_swing_angle ||= 45 if args.state.swinging_light_start_at.elapsed_time > args.state.swinging_light_duration args.state.swinging_light_start_at = args.state.tick_count args.state.swinging_light_sign *= -1 end args.state.swinging_light_angle = 360 + ((args.state.max_swing_angle * args.state.swinging_light_perc) * args.state.swinging_light_sign) end def render args args.outputs.background_color = [0, 0, 0] # render scene args.outputs[:scene].transient! args.outputs[:scene].sprites << { x: 0, y: 0, w: 1280, h: 720, path: :pixel } args.outputs[:scene].sprites << { x: 640 - 40, y: 100, w: 80, h: 80, path: 'sprites/square/blue.png' } args.outputs[:scene].sprites << { x: 640 - 40, y: 200, w: 80, h: 80, path: 'sprites/square/blue.png' } args.outputs[:scene].sprites << { x: 640 - 40, y: 300, w: 80, h: 80, path: 'sprites/square/blue.png' } args.outputs[:scene].sprites << { x: 640 - 40, y: 400, w: 80, h: 80, path: 'sprites/square/blue.png' } args.outputs[:scene].sprites << { x: 640 - 40, y: 500, w: 80, h: 80, path: 'sprites/square/blue.png' } # render light swinging_light_w = 1100 args.outputs[:lights].transient! args.outputs[:lights].background_color = [0, 0, 0, 0] args.outputs[:lights].sprites << { x: 640 - swinging_light_w.half, y: -1300, w: swinging_light_w, h: 3000, angle_anchor_x: 0.5, angle_anchor_y: 1.0, path: "sprites/lights/mask.png", angle: args.state.swinging_light_angle } args.outputs[:lights].sprites << { x: args.inputs.mouse.x - 400, y: args.inputs.mouse.y - 400, w: 800, h: 800, path: "sprites/lights/mask.png" } # merge unlighted scene with lights args.outputs[:lighted_scene].transient! args.outputs[:lighted_scene].sprites << { x: 0, y: 0, w: 1280, h: 720, path: :lights, blendmode_enum: 0 } args.outputs[:lighted_scene].sprites << { blendmode_enum: 2, x: 0, y: 0, w: 1280, h: 720, path: :scene } # output lighted scene to main canvas args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :lighted_scene } # render lights and scene render_targets as a mini map args.outputs.debug << { x: 16, y: (16 + 90).from_top, w: 160, h: 90, r: 255, g: 255, b: 255 }.solid! args.outputs.debug << { x: 16, y: (16 + 90).from_top, w: 160, h: 90, path: :lights } args.outputs.debug << { x: 16 + 80, y: (16 + 90 + 8).from_top, text: ":lights render_target", r: 255, g: 255, b: 255, size_enum: -3, alignment_enum: 1 } args.outputs.debug << { x: 16 + 160 + 16, y: (16 + 90).from_top, w: 160, h: 90, r: 255, g: 255, b: 255 }.solid! args.outputs.debug << { x: 16 + 160 + 16, y: (16 + 90).from_top, w: 160, h: 90, path: :scene } args.outputs.debug << { x: 16 + 160 + 16 + 80, y: (16 + 90 + 8).from_top, text: ":scene render_target", r: 255, g: 255, b: 255, size_enum: -3, alignment_enum: 1 } end def tick args render args calc args end $gtk.reset
Advanced Rendering - 14 Triangles - main.rb link
# ./samples/07_advanced_rendering/14_triangles/app/main.rb def tick args args.outputs.labels << { x: 640, y: 30.from_top, text: "Triangle rendering is available in Indie and Pro versions (ignored in Standard Edition).", alignment_enum: 1 } dragonruby_logo_width = 128 dragonruby_logo_height = 101 row_0 = 400 row_1 = 250 col_0 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 0 col_1 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 1 col_2 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 2 col_3 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 3 col_4 = 384 - dragonruby_logo_width.half + dragonruby_logo_width * 4 # row 0 args.outputs.solids << make_triangle( col_0, row_0, col_0 + dragonruby_logo_width.half, row_0 + dragonruby_logo_height, col_0 + dragonruby_logo_width.half + dragonruby_logo_width.half, row_0, 0, 128, 128, 128 ) args.outputs.solids << { x: col_1, y: row_0, x2: col_1 + dragonruby_logo_width.half, y2: row_0 + dragonruby_logo_height, x3: col_1 + dragonruby_logo_width, y3: row_0, } args.outputs.sprites << { x: col_2, y: row_0, w: dragonruby_logo_width, h: dragonruby_logo_height, path: 'dragonruby.png' } args.outputs.sprites << { x: col_3, y: row_0, x2: col_3 + dragonruby_logo_width.half, y2: row_0 + dragonruby_logo_height, x3: col_3 + dragonruby_logo_width, y3: row_0, path: 'dragonruby.png', source_x: 0, source_y: 0, source_x2: dragonruby_logo_width.half, source_y2: dragonruby_logo_height, source_x3: dragonruby_logo_width, source_y3: 0 } args.outputs.sprites << TriangleLogo.new(x: col_4, y: row_0, x2: col_4 + dragonruby_logo_width.half, y2: row_0 + dragonruby_logo_height, x3: col_4 + dragonruby_logo_width, y3: row_0, path: 'dragonruby.png', source_x: 0, source_y: 0, source_x2: dragonruby_logo_width.half, source_y2: dragonruby_logo_height, source_x3: dragonruby_logo_width, source_y3: 0) # row 1 args.outputs.primitives << make_triangle( col_0, row_1, col_0 + dragonruby_logo_width.half, row_1 + dragonruby_logo_height, col_0 + dragonruby_logo_width, row_1, 0, 128, 128, args.state.tick_count.to_radians.sin_r.abs * 255 ) args.outputs.primitives << { x: col_1, y: row_1, x2: col_1 + dragonruby_logo_width.half, y2: row_1 + dragonruby_logo_height, x3: col_1 + dragonruby_logo_width, y3: row_1, r: 0, g: 0, b: 0, a: args.state.tick_count.to_radians.sin_r.abs * 255 } args.outputs.sprites << { x: col_2, y: row_1, w: dragonruby_logo_width, h: dragonruby_logo_height, path: 'dragonruby.png', source_x: 0, source_y: 0, source_w: dragonruby_logo_width, source_h: dragonruby_logo_height.half + dragonruby_logo_height.half * Math.sin(args.state.tick_count.to_radians).abs, } args.outputs.primitives << { x: col_3, y: row_1, x2: col_3 + dragonruby_logo_width.half, y2: row_1 + dragonruby_logo_height, x3: col_3 + dragonruby_logo_width, y3: row_1, path: 'dragonruby.png', source_x: 0, source_y: 0, source_x2: dragonruby_logo_width.half, source_y2: dragonruby_logo_height.half + dragonruby_logo_height.half * Math.sin(args.state.tick_count.to_radians).abs, source_x3: dragonruby_logo_width, source_y3: 0 } args.outputs.primitives << TriangleLogo.new(x: col_4, y: row_1, x2: col_4 + dragonruby_logo_width.half, y2: row_1 + dragonruby_logo_height, x3: col_4 + dragonruby_logo_width, y3: row_1, path: 'dragonruby.png', source_x: 0, source_y: 0, source_x2: dragonruby_logo_width.half, source_y2: dragonruby_logo_height.half + dragonruby_logo_height.half * Math.sin(args.state.tick_count.to_radians).abs, source_x3: dragonruby_logo_width, source_y3: 0) end def make_triangle *opts x, y, x2, y2, x3, y3, r, g, b, a = opts { x: x, y: y, x2: x2, y2: y2, x3: x3, y3: y3, r: r || 0, g: g || 0, b: b || 0, a: a || 255 } end class TriangleLogo attr_sprite def initialize x:, y:, x2:, y2:, x3:, y3:, path:, source_x:, source_y:, source_x2:, source_y2:, source_x3:, source_y3:; @x = x @y = y @x2 = x2 @y2 = y2 @x3 = x3 @y3 = y3 @path = path @source_x = source_x @source_y = source_y @source_x2 = source_x2 @source_y2 = source_y2 @source_x3 = source_x3 @source_y3 = source_y3 end end
Advanced Rendering - 15 Triangles Trapezoid - main.rb link
# ./samples/07_advanced_rendering/15_triangles_trapezoid/app/main.rb def tick args args.outputs.labels << { x: 640, y: 30.from_top, text: "Triangle rendering is available in Indie and Pro versions (ignored in Standard Edition).", alignment_enum: 1 } transform_scale = ((args.state.tick_count / 3).sin.abs ** 5).half args.outputs.sprites << [ { x: 600, y: 320, x2: 600, y2: 400, x3: 640, y3: 360, path: "sprites/square/blue.png", source_x: 0, source_y: 0, source_x2: 0, source_y2: 80, source_x3: 40, source_y3: 40 }, { x: 600, y: 400, x2: 680, y2: (400 - 80 * transform_scale).round, x3: 640, y3: 360, path: "sprites/square/blue.png", source_x: 0, source_y: 80, source_x2: 80, source_y2: 80, source_x3: 40, source_y3: 40 }, { x: 640, y: 360, x2: 680, y2: (400 - 80 * transform_scale).round, x3: 680, y3: (320 + 80 * transform_scale).round, path: "sprites/square/blue.png", source_x: 40, source_y: 40, source_x2: 80, source_y2: 80, source_x3: 80, source_y3: 0 }, { x: 600, y: 320, x2: 640, y2: 360, x3: 680, y3: (320 + 80 * transform_scale).round, path: "sprites/square/blue.png", source_x: 0, source_y: 0, source_x2: 40, source_y2: 40, source_x3: 80, source_y3: 0 } ] end
Advanced Rendering - 16 Matrix And Triangles 2d - main.rb link
# ./samples/07_advanced_rendering/16_matrix_and_triangles_2d/app/main.rb include MatrixFunctions def tick args args.state.square_one_sprite = { x: 0, y: 0, w: 100, h: 100, path: "sprites/square/blue.png", source_x: 0, source_y: 0, source_w: 80, source_h: 80 } args.state.square_two_sprite = { x: 0, y: 0, w: 100, h: 100, path: "sprites/square/red.png", source_x: 0, source_y: 0, source_w: 80, source_h: 80 } args.state.square_one = sprite_to_triangles args.state.square_one_sprite args.state.square_two = sprite_to_triangles args.state.square_two_sprite args.state.camera.x ||= 0 args.state.camera.y ||= 0 args.state.camera.zoom ||= 1 args.state.camera.rotation ||= 0 zmod = 1 move_multiplier = 1 dzoom = 0.01 if args.state.tick_count.zmod? zmod args.state.camera.x += args.inputs.left_right * -1 * move_multiplier args.state.camera.y += args.inputs.up_down * -1 * move_multiplier end if args.inputs.keyboard.i args.state.camera.zoom += dzoom elsif args.inputs.keyboard.o args.state.camera.zoom -= dzoom end args.state.camera.zoom = args.state.camera.zoom.clamp(0.25, 10) args.outputs.sprites << triangles_mat3_mul(args.state.square_one, mat3_translate(-50, -50), mat3_rotate(args.state.tick_count), mat3_translate(0, 0), mat3_translate(args.state.camera.x, args.state.camera.y), mat3_scale(args.state.camera.zoom), mat3_translate(640, 360)) args.outputs.sprites << triangles_mat3_mul(args.state.square_two, mat3_translate(-50, -50), mat3_rotate(args.state.tick_count), mat3_translate(100, 100), mat3_translate(args.state.camera.x, args.state.camera.y), mat3_scale(args.state.camera.zoom), mat3_translate(640, 360)) mouse_coord = vec3 args.inputs.mouse.x, args.inputs.mouse.y, 1 mouse_coord = mul mouse_coord, mat3_translate(-640, -360), mat3_scale(args.state.camera.zoom), mat3_translate(-args.state.camera.x, -args.state.camera.y) args.outputs.lines << { x: 640, y: 0, h: 720 } args.outputs.lines << { x: 0, y: 360, w: 1280 } args.outputs.labels << { x: 30, y: 60.from_top, text: "x: #{args.state.camera.x.to_sf} y: #{args.state.camera.y.to_sf} z: #{args.state.camera.zoom.to_sf}" } args.outputs.labels << { x: 30, y: 90.from_top, text: "Mouse: #{mouse_coord.x.to_sf} #{mouse_coord.y.to_sf}" } args.outputs.labels << { x: 30, y: 30.from_top, text: "W,A,S,D to move. I, O to zoom. Triangles is a Indie/Pro Feature and will be ignored in Standard." } end def sprite_to_triangles sprite [ { x: sprite.x, y: sprite.y, x2: sprite.x, y2: sprite.y + sprite.h, x3: sprite.x + sprite.w, y3: sprite.y + sprite.h, source_x: sprite.source_x, source_y: sprite.source_y, source_x2: sprite.source_x, source_y2: sprite.source_y + sprite.source_h, source_x3: sprite.source_x + sprite.source_w, source_y3: sprite.source_y + sprite.source_h, path: sprite.path }, { x: sprite.x, y: sprite.y, x2: sprite.x + sprite.w, y2: sprite.y + sprite.h, x3: sprite.x + sprite.w, y3: sprite.y, source_x: sprite.source_x, source_y: sprite.source_y, source_x2: sprite.source_x + sprite.source_w, source_y2: sprite.source_y + sprite.source_h, source_x3: sprite.source_x + sprite.source_w, source_y3: sprite.source_y, path: sprite.path } ] end def mat3_translate dx, dy mat3 1, 0, dx, 0, 1, dy, 0, 0, 1 end def mat3_rotate angle_d angle_r = angle_d.to_radians mat3 Math.cos(angle_r), -Math.sin(angle_r), 0, Math.sin(angle_r), Math.cos(angle_r), 0, 0, 0, 1 end def mat3_scale scale mat3 scale, 0, 0, 0, scale, 0, 0, 0, 1 end def triangles_mat3_mul triangles, *matrices triangles.map { |triangle| triangle_mat3_mul triangle, *matrices } end def triangle_mat3_mul triangle, *matrices result = [ (vec3 triangle.x, triangle.y, 1), (vec3 triangle.x2, triangle.y2, 1), (vec3 triangle.x3, triangle.y3, 1) ].map do |coord| mul coord, *matrices end { **triangle, x: result[0].x, y: result[0].y, x2: result[1].x, y2: result[1].y, x3: result[2].x, y3: result[2].y, } rescue Exception => e pretty_print triangle pretty_print result pretty_print matrices puts "#{matrices}" raise e end
Advanced Rendering - 16 Matrix And Triangles 3d - main.rb link
# ./samples/07_advanced_rendering/16_matrix_and_triangles_3d/app/main.rb include MatrixFunctions def tick args args.outputs.labels << { x: 0, y: 30.from_top, text: "W,A,S,D to move. Q,E,U,O to turn, I,K for elevation. Triangles is a Indie/Pro Feature and will be ignored in Standard.", alignment_enum: 1 } args.grid.origin_center! args.state.cam_x ||= 0.00 if args.inputs.keyboard.left args.state.cam_x += 0.01 elsif args.inputs.keyboard.right args.state.cam_x -= 0.01 end args.state.cam_y ||= 0.00 if args.inputs.keyboard.i args.state.cam_y += 0.01 elsif args.inputs.keyboard.k args.state.cam_y -= 0.01 end args.state.cam_z ||= 6.5 if args.inputs.keyboard.s args.state.cam_z += 0.1 elsif args.inputs.keyboard.w args.state.cam_z -= 0.1 end args.state.cam_angle_y ||= 0 if args.inputs.keyboard.q args.state.cam_angle_y += 0.25 elsif args.inputs.keyboard.e args.state.cam_angle_y -= 0.25 end args.state.cam_angle_x ||= 0 if args.inputs.keyboard.u args.state.cam_angle_x += 0.1 elsif args.inputs.keyboard.o args.state.cam_angle_x -= 0.1 end # model A args.state.a = [ [vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)], [vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)] ] # model to world args.state.a_world = mul_world args, args.state.a, (translate -0.25, -0.25, 0), (translate 0, 0, 0.25), (rotate_x args.state.tick_count) args.state.a_camera = mul_cam args, args.state.a_world args.state.a_projected = mul_perspective args, args.state.a_camera render_projection args, args.state.a_projected # model B args.state.b = [ [vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)], [vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)] ] # model to world args.state.b_world = mul_world args, args.state.b, (translate -0.25, -0.25, 0), (translate 0, 0, -0.25), (rotate_x args.state.tick_count) args.state.b_camera = mul_cam args, args.state.b_world args.state.b_projected = mul_perspective args, args.state.b_camera render_projection args, args.state.b_projected # model C args.state.c = [ [vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)], [vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)] ] # model to world args.state.c_world = mul_world args, args.state.c, (translate -0.25, -0.25, 0), (rotate_y 90), (translate -0.25, 0, 0), (rotate_x args.state.tick_count) args.state.c_camera = mul_cam args, args.state.c_world args.state.c_projected = mul_perspective args, args.state.c_camera render_projection args, args.state.c_projected # model D args.state.d = [ [vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)], [vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)] ] # model to world args.state.d_world = mul_world args, args.state.d, (translate -0.25, -0.25, 0), (rotate_y 90), (translate 0.25, 0, 0), (rotate_x args.state.tick_count) args.state.d_camera = mul_cam args, args.state.d_world args.state.d_projected = mul_perspective args, args.state.d_camera render_projection args, args.state.d_projected # model E args.state.e = [ [vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)], [vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)] ] # model to world args.state.e_world = mul_world args, args.state.e, (translate -0.25, -0.25, 0), (rotate_x 90), (translate 0, 0.25, 0), (rotate_x args.state.tick_count) args.state.e_camera = mul_cam args, args.state.e_world args.state.e_projected = mul_perspective args, args.state.e_camera render_projection args, args.state.e_projected # model E args.state.f = [ [vec4(0, 0, 0, 1), vec4(0.5, 0, 0, 1), vec4(0, 0.5, 0, 1)], [vec4(0.5, 0, 0, 1), vec4(0.5, 0.5, 0, 1), vec4(0, 0.5, 0, 1)] ] # model to world args.state.f_world = mul_world args, args.state.f, (translate -0.25, -0.25, 0), (rotate_x 90), (translate 0, -0.25, 0), (rotate_x args.state.tick_count) args.state.f_camera = mul_cam args, args.state.f_world args.state.f_projected = mul_perspective args, args.state.f_camera render_projection args, args.state.f_projected # render_debug args, args.state.a, args.state.a_transform, args.state.a_projected # args.outputs.labels << { x: -630, y: 10.from_top, text: "x: #{args.state.cam_x.to_sf} -> #{( args.state.cam_x * 1000 ).to_sf}" } # args.outputs.labels << { x: -630, y: 30.from_top, text: "y: #{args.state.cam_y.to_sf} -> #{( args.state.cam_y * 1000 ).to_sf}" } # args.outputs.labels << { x: -630, y: 50.from_top, text: "z: #{args.state.cam_z.fdiv(10).to_sf} -> #{( args.state.cam_z * 100 ).to_sf}" } end def mul_world args, model, *mul_def model.map do |vecs| vecs.map do |vec| mul vec, *mul_def end end end def mul_cam args, world_vecs world_vecs.map do |vecs| vecs.map do |vec| mul vec, (translate -args.state.cam_x, args.state.cam_y, -args.state.cam_z), (rotate_y args.state.cam_angle_y), (rotate_x args.state.cam_angle_x) end end end def mul_perspective args, camera_vecs camera_vecs.map do |vecs| vecs.map do |vec| perspective vec end end end def render_debug args, model, transform, projected args.outputs.labels << { x: -630, y: 10.from_top, text: "model: #{vecs_to_s model[0]}" } args.outputs.labels << { x: -630, y: 30.from_top, text: " #{vecs_to_s model[1]}" } args.outputs.labels << { x: -630, y: 50.from_top, text: "transform: #{vecs_to_s transform[0]}" } args.outputs.labels << { x: -630, y: 70.from_top, text: " #{vecs_to_s transform[1]}" } args.outputs.labels << { x: -630, y: 90.from_top, text: "projected: #{vecs_to_s projected[0]}" } args.outputs.labels << { x: -630, y: 110.from_top, text: " #{vecs_to_s projected[1]}" } end def render_projection args, projection p0 = projection[0] args.outputs.sprites << { x: p0[0].x, y: p0[0].y, x2: p0[1].x, y2: p0[1].y, x3: p0[2].x, y3: p0[2].y, source_x: 0, source_y: 0, source_x2: 80, source_y2: 0, source_x3: 0, source_y3: 80, a: 40, # r: 128, g: 128, b: 128, path: 'sprites/square/blue.png' } p1 = projection[1] args.outputs.sprites << { x: p1[0].x, y: p1[0].y, x2: p1[1].x, y2: p1[1].y, x3: p1[2].x, y3: p1[2].y, source_x: 80, source_y: 0, source_x2: 80, source_y2: 80, source_x3: 0, source_y3: 80, a: 40, # r: 128, g: 128, b: 128, path: 'sprites/square/blue.png' } end def perspective vec left = -1.0 right = 1.0 bottom = -1.0 top = 1.0 near = 300.0 far = 1000.0 sx = 2 * near / (right - left) sy = 2 * near / (top - bottom) c2 = - (far + near) / (far - near) c1 = 2 * near * far / (near - far) tx = -near * (left + right) / (right - left) ty = -near * (bottom + top) / (top - bottom) p = mat4 sx, 0, 0, tx, 0, sy, 0, ty, 0, 0, c2, c1, 0, 0, -1, 0 r = mul vec, p r.x *= r.z / r.w / 100 r.y *= r.z / r.w / 100 r end def mat_scale scale mat4 scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, 1 end def rotate_y angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 cos_t, 0, sin_t, 0, 0, 1, 0, 0, -sin_t, 0, cos_t, 0, 0, 0, 0, 1) end def rotate_z angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 cos_t, -sin_t, 0, 0, sin_t, cos_t, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) end def translate dx, dy, dz mat4 1, 0, 0, dx, 0, 1, 0, dy, 0, 0, 1, dz, 0, 0, 0, 1 end def rotate_x angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 1, 0, 0, 0, 0, cos_t, -sin_t, 0, 0, sin_t, cos_t, 0, 0, 0, 0, 1) end def vecs_to_s vecs vecs.map do |vec| "[#{vec.x.to_sf} #{vec.y.to_sf} #{vec.z.to_sf}]" end.join " " end
Advanced Rendering - 16 Matrix Camera Space World Space - main.rb link
# ./samples/07_advanced_rendering/16_matrix_camera_space_world_space/app/main.rb # sample app shows how to translate between screen and world coordinates using matrix multiplication class Game attr_gtk def tick defaults input calc render end def defaults return if state.tick_count != 0 # define the size of the world state.world_size = 1280 # initialize the camera state.camera = { x: 0, y: 0, zoom: 1 } # initialize entities: place entities randomly in the world state.entities = 200.map do { x: (rand * state.world_size - 100).to_i * (rand > 0.5 ? 1 : -1), y: (rand * state.world_size - 100).to_i * (rand > 0.5 ? 1 : -1), w: 32, h: 32, angle: 0, path: "sprites/square/blue.png", rotation_speed: rand * 5 } end # backdrop for the world state.backdrop = { x: -state.world_size, y: -state.world_size, w: state.world_size * 2, h: state.world_size * 2, r: 200, g: 100, b: 0, a: 128, path: :pixel } # rect representing the screen state.screen_rect = { x: 0, y: 0, w: 1280, h: 720 } # update the camera matricies (initial state) update_matricies! end # if the camera is ever changed, recompute the matricies that are used # to translate between screen and world coordinates. we want to cache # the resolved matrix for speed def update_matricies! # camera space is defined with three matricies # every entity is: # - offset by the location of the camera # - scaled # - then centered on the screen state.to_camera_space_matrix = MatrixFunctions.mul(mat3_translate(state.camera.x, state.camera.y), mat3_scale(state.camera.zoom), mat3_translate(640, 360)) # world space is defined based off the camera matricies but inverted: # every entity is: # - uncentered from the screen # - unscaled # - offset by the location of the camera in the opposite direction state.to_world_space_matrix = MatrixFunctions.mul(mat3_translate(-640, -360), mat3_scale(1.0 / state.camera.zoom), mat3_translate(-state.camera.x, -state.camera.y)) # the viewport is computed by taking the screen rect and moving it into world space. # what entities get rendered is based off of the viewport state.viewport = rect_mul_matrix(state.screen_rect, state.to_world_space_matrix) end def input # if the camera is changed, invalidate/recompute the translation matricies should_update_matricies = false # + and - keys zoom in and out if inputs.keyboard.equal_sign || inputs.keyboard.plus || inputs.mouse.wheel && inputs.mouse.wheel.y > 0 state.camera.zoom += 0.01 * state.camera.zoom should_update_matricies = true elsif inputs.keyboard.minus || inputs.mouse.wheel && inputs.mouse.wheel.y < 0 state.camera.zoom -= 0.01 * state.camera.zoom should_update_matricies = true end # clamp the zoom to a minimum of 0.25 if state.camera.zoom < 0.25 state.camera.zoom = 0.25 should_update_matricies = true end # left and right keys move the camera left and right if inputs.left_right != 0 state.camera.x += -1 * (inputs.left_right * 10) * state.camera.zoom should_update_matricies = true end # up and down keys move the camera up and down if inputs.up_down != 0 state.camera.y += -1 * (inputs.up_down * 10) * state.camera.zoom should_update_matricies = true end # reset the camera to the default position if inputs.keyboard.key_down.zero state.camera.x = 0 state.camera.y = 0 state.camera.zoom = 1 should_update_matricies = true end # if the update matricies flag is set, recompute the matricies update_matricies! if should_update_matricies end def calc # rotate all the entities by their rotation speed # and reset their hovered state state.entities.each do |entity| entity.hovered = false entity.angle += entity.rotation_speed end # find all the entities that are hovered by the mouse and update their state back to hovered mouse_in_world = rect_to_world_coordinates inputs.mouse.rect hovered_entities = geometry.find_all_intersect_rect mouse_in_world, state.entities hovered_entities.each { |entity| entity.hovered = true } end def render # create a render target to represent the camera's viewport outputs[:scene].transient! outputs[:scene].w = state.world_size outputs[:scene].h = state.world_size # render the backdrop outputs[:scene].primitives << rect_to_screen_coordinates(state.backdrop) # get all entities that are within the camera's viewport entities_to_render = geometry.find_all_intersect_rect state.viewport, state.entities # render all the entities within the viewport outputs[:scene].primitives << entities_to_render.map do |entity| r = rect_to_screen_coordinates entity # change the color of the entity if it's hovered r.merge!(path: "sprites/square/red.png") if entity.hovered r end # render the camera's viewport outputs.sprites << { x: 0, y: 0, w: state.world_size, h: state.world_size, path: :scene } # show a label that shows the mouse's screen and world coordinates outputs.labels << { x: 30, y: 30.from_top, text: "#{gtk.current_framerate.to_sf}" } mouse_in_world = rect_to_world_coordinates inputs.mouse.rect outputs.labels << { x: 30, y: 55.from_top, text: "Screen Coordinates: #{inputs.mouse.x}, #{inputs.mouse.y}", } outputs.labels << { x: 30, y: 80.from_top, text: "World Coordinates: #{mouse_in_world.x.to_sf}, #{mouse_in_world.y.to_sf}", } end def rect_to_screen_coordinates rect rect_mul_matrix rect, state.to_camera_space_matrix end def rect_to_world_coordinates rect rect_mul_matrix rect, state.to_world_space_matrix end def rect_mul_matrix rect, matrix # the bottom left and top right corners of the rect # are multiplied by the matrix to get the new coordinates bottom_left = MatrixFunctions.mul (MatrixFunctions.vec3 rect.x, rect.y, 1), matrix top_right = MatrixFunctions.mul (MatrixFunctions.vec3 rect.x + rect.w, rect.y + rect.h, 1), matrix # with the points of the rect recomputed, reconstruct the rect rect.merge x: bottom_left.x, y: bottom_left.y, w: top_right.x - bottom_left.x, h: top_right.y - bottom_left.y end # this is the definition of how to move a point in 2d space using a matrix def mat3_translate x, y MatrixFunctions.mat3 1, 0, x, 0, 1, y, 0, 0, 1 end # this is the definition of how to scale a point in 2d space using a matrix def mat3_scale scale MatrixFunctions.mat3 scale, 0, 0, 0, scale, 0, 0, 0, 1 end end $game = Game.new def tick args $game.args = args $game.tick end $gtk.reset
Advanced Rendering - 16 Matrix Cubeworld - main.rb link
# ./samples/07_advanced_rendering/16_matrix_cubeworld/app/main.rb require 'app/modeling-api.rb' include MatrixFunctions def tick args args.outputs.labels << { x: 0, y: 30.from_top, text: "W,A,S,D to move. Mouse to look. Triangles is a Indie/Pro Feature and will be ignored in Standard.", alignment_enum: 1 } args.grid.origin_center! args.state.cam_y ||= 0.00 if args.inputs.keyboard.i args.state.cam_y += 0.01 elsif args.inputs.keyboard.k args.state.cam_y -= 0.01 end args.state.cam_angle_y ||= 0 if args.inputs.keyboard.q args.state.cam_angle_y += 0.25 elsif args.inputs.keyboard.e args.state.cam_angle_y -= 0.25 end args.state.cam_angle_x ||= 0 if args.inputs.keyboard.u args.state.cam_angle_x += 0.1 elsif args.inputs.keyboard.o args.state.cam_angle_x -= 0.1 end if args.inputs.mouse.has_focus y_change_rate = (args.inputs.mouse.x / 640) ** 2 if args.inputs.mouse.x < 0 args.state.cam_angle_y -= 0.8 * y_change_rate else args.state.cam_angle_y += 0.8 * y_change_rate end x_change_rate = (args.inputs.mouse.y / 360) ** 2 if args.inputs.mouse.y < 0 args.state.cam_angle_x += 0.8 * x_change_rate else args.state.cam_angle_x -= 0.8 * x_change_rate end end args.state.cam_z ||= 6.4 if args.inputs.keyboard.up point_1 = { x: 0, y: 0.02 } point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y args.state.cam_x -= point_r.x args.state.cam_z -= point_r.y elsif args.inputs.keyboard.down point_1 = { x: 0, y: -0.02 } point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y args.state.cam_x -= point_r.x args.state.cam_z -= point_r.y end args.state.cam_x ||= 0.00 if args.inputs.keyboard.right point_1 = { x: -0.02, y: 0 } point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y args.state.cam_x -= point_r.x args.state.cam_z -= point_r.y elsif args.inputs.keyboard.left point_1 = { x: 0.02, y: 0 } point_r = args.geometry.rotate_point point_1, args.state.cam_angle_y args.state.cam_x -= point_r.x args.state.cam_z -= point_r.y end if args.inputs.keyboard.key_down.r || args.inputs.keyboard.key_down.zero args.state.cam_x = 0.00 args.state.cam_y = 0.00 args.state.cam_z = 1.00 args.state.cam_angle_y = 0 args.state.cam_angle_x = 0 end if !args.state.models args.state.models = [] 25.times do args.state.models.concat new_random_cube end end args.state.models.each do |m| render_triangles args, m end args.outputs.lines << { x: 0, y: -50, h: 100, a: 80 } args.outputs.lines << { x: -50, y: 0, w: 100, a: 80 } end def mul_triangles model, *mul_def combined = mul mul_def model.map do |vecs| vecs.map do |vec| mul vec, *combined end end end def mul_cam args, world_vecs mul_triangles world_vecs, (translate -args.state.cam_x, -args.state.cam_y, -args.state.cam_z), (rotate_y args.state.cam_angle_y), (rotate_x args.state.cam_angle_x) end def mul_perspective camera_vecs camera_vecs.map do |vecs| r = vecs.map do |vec| perspective vec end r if r[0] && r[1] && r[2] end.reject_nil end def render_debug args, model, transform, projected args.outputs.labels << { x: -630, y: 10.from_top, text: "model: #{vecs_to_s model[0]}" } args.outputs.labels << { x: -630, y: 30.from_top, text: " #{vecs_to_s model[1]}" } args.outputs.labels << { x: -630, y: 50.from_top, text: "transform: #{vecs_to_s transform[0]}" } args.outputs.labels << { x: -630, y: 70.from_top, text: " #{vecs_to_s transform[1]}" } args.outputs.labels << { x: -630, y: 90.from_top, text: "projected: #{vecs_to_s projected[0]}" } args.outputs.labels << { x: -630, y: 110.from_top, text: " #{vecs_to_s projected[1]}" } end def render_triangles args, triangles camera_space = mul_cam args, triangles projection = mul_perspective camera_space args.outputs.sprites << projection.map_with_index do |i, index| if i { x: i[0].x, y: i[0].y, x2: i[1].x, y2: i[1].y, x3: i[2].x, y3: i[2].y, source_x: 0, source_y: 0, source_x2: 80, source_y2: 0, source_x3: 0, source_y3: 80, r: 128, g: 128, b: 128, a: 80 + 128 * 1 / (index + 1), path: :pixel } end end end def perspective vec left = 100.0 right = -100.0 bottom = 100.0 top = -100.0 near = 3000.0 far = 8000.0 sx = 2 * near / (right - left) sy = 2 * near / (top - bottom) c2 = - (far + near) / (far - near) c1 = 2 * near * far / (near - far) tx = -near * (left + right) / (right - left) ty = -near * (bottom + top) / (top - bottom) p = mat4 sx, 0, 0, tx, 0, sy, 0, ty, 0, 0, c2, c1, 0, 0, -1, 0 r = mul vec, p return nil if r.w < 0 r.x *= r.z / r.w / 100 r.y *= r.z / r.w / 100 r end def mat_scale scale mat4 scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, 1 end def rotate_y angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 cos_t, 0, sin_t, 0, 0, 1, 0, 0, -sin_t, 0, cos_t, 0, 0, 0, 0, 1) end def rotate_z angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 cos_t, -sin_t, 0, 0, sin_t, cos_t, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) end def translate dx, dy, dz mat4 1, 0, 0, dx, 0, 1, 0, dy, 0, 0, 1, dz, 0, 0, 0, 1 end def rotate_x angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 1, 0, 0, 0, 0, cos_t, -sin_t, 0, 0, sin_t, cos_t, 0, 0, 0, 0, 1) end def vecs_to_s vecs vecs.map do |vec| "[#{vec.x.to_sf} #{vec.y.to_sf} #{vec.z.to_sf}]" end.join " " end def new_random_cube cube_w = rand * 0.2 + 0.1 cube_h = rand * 0.2 + 0.1 randx = rand * 2.0 * [1, -1].sample randy = rand * 2.0 randz = rand * 5 * [1, -1].sample cube = [ square do scale x: cube_w, y: cube_h translate x: -cube_w / 2, y: -cube_h / 2 rotate_x 90 translate y: -cube_h / 2 translate x: randx, y: randy, z: randz end, square do scale x: cube_w, y: cube_h translate x: -cube_w / 2, y: -cube_h / 2 rotate_x 90 translate y: cube_h / 2 translate x: randx, y: randy, z: randz end, square do scale x: cube_h, y: cube_h translate x: -cube_h / 2, y: -cube_h / 2 rotate_y 90 translate x: -cube_w / 2 translate x: randx, y: randy, z: randz end, square do scale x: cube_h, y: cube_h translate x: -cube_h / 2, y: -cube_h / 2 rotate_y 90 translate x: cube_w / 2 translate x: randx, y: randy, z: randz end, square do scale x: cube_w, y: cube_h translate x: -cube_w / 2, y: -cube_h / 2 translate z: -cube_h / 2 translate x: randx, y: randy, z: randz end, square do scale x: cube_w, y: cube_h translate x: -cube_w / 2, y: -cube_h / 2 translate z: cube_h / 2 translate x: randx, y: randy, z: randz end ] cube end $gtk.reset
Advanced Rendering - 16 Matrix Cubeworld - modeling-api.rb link
# ./samples/07_advanced_rendering/16_matrix_cubeworld/app/modeling-api.rb class ModelingApi attr :matricies def initialize @matricies = [] end def scale x: 1, y: 1, z: 1 @matricies << scale_matrix(x: x, y: y, z: z) if block_given? yield @matricies << scale_matrix(x: -x, y: -y, z: -z) end end def translate x: 0, y: 0, z: 0 @matricies << translate_matrix(x: x, y: y, z: z) if block_given? yield @matricies << translate_matrix(x: -x, y: -y, z: -z) end end def rotate_x x @matricies << rotate_x_matrix(x) if block_given? yield @matricies << rotate_x_matrix(-x) end end def rotate_y y @matricies << rotate_y_matrix(y) if block_given? yield @matricies << rotate_y_matrix(-y) end end def rotate_z z @matricies << rotate_z_matrix(z) if block_given? yield @matricies << rotate_z_matrix(-z) end end def scale_matrix x:, y:, z:; mat4 x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 end def translate_matrix x:, y:, z:; mat4 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 end def rotate_y_matrix angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 cos_t, 0, sin_t, 0, 0, 1, 0, 0, -sin_t, 0, cos_t, 0, 0, 0, 0, 1) end def rotate_z_matrix angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 cos_t, -sin_t, 0, 0, sin_t, cos_t, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) end def rotate_x_matrix angle_d cos_t = Math.cos angle_d.to_radians sin_t = Math.sin angle_d.to_radians (mat4 1, 0, 0, 0, 0, cos_t, -sin_t, 0, 0, sin_t, cos_t, 0, 0, 0, 0, 1) end def __mul_triangles__ model, *mul_def model.map do |vecs| vecs.map do |vec| mul vec, *mul_def end end end end def square &block square_verticies = [ [vec4(0, 0, 0, 1), vec4(1.0, 0, 0, 1), vec4(0, 1.0, 0, 1)], [vec4(1.0, 0, 0, 1), vec4(1.0, 1.0, 0, 1), vec4(0, 1.0, 0, 1)] ] m = ModelingApi.new m.instance_eval &block if block m.__mul_triangles__ square_verticies, *m.matricies end
Advanced Rendering - 17 Override Core Rendering - main.rb link
# ./samples/07_advanced_rendering/17_override_core_rendering/app/main.rb class GTK::Runtime # You can completely override how DR renders by defining this method # It is strongly recommend that you do not do this unless you know what you're doing. def primitives pass # fn.each_send pass.solids, self, :draw_solid # fn.each_send pass.static_solids, self, :draw_solid # fn.each_send pass.sprites, self, :draw_sprite # fn.each_send pass.static_sprites, self, :draw_sprite # fn.each_send pass.primitives, self, :draw_primitive # fn.each_send pass.static_primitives, self, :draw_primitive fn.each_send pass.labels, self, :draw_label fn.each_send pass.static_labels, self, :draw_label # fn.each_send pass.lines, self, :draw_line # fn.each_send pass.static_lines, self, :draw_line # fn.each_send pass.borders, self, :draw_border # fn.each_send pass.static_borders, self, :draw_border # if !self.production # fn.each_send pass.debug, self, :draw_primitive # fn.each_send pass.static_debug, self, :draw_primitive # end # fn.each_send pass.reserved, self, :draw_primitive # fn.each_send pass.static_reserved, self, :draw_primitive end end def tick args args.outputs.labels << { x: 30, y: 30, text: "primitives function defined, only labels rendered" } args.outputs.sprites << { x: 100, y: 100, w: 100, h: 100, path: "dragonruby.png" } end
Advanced Rendering - 18 Layouts - main.rb link
# ./samples/07_advanced_rendering/18_layouts/app/main.rb def tick args args.outputs.solids << args.layout.rect(row: 0, col: 0, w: 24, h: 12, include_row_gutter: true, include_col_gutter: true).merge(b: 255, a: 80) render_row_examples args render_column_examples args render_max_width_max_height_examples args render_points_with_anchored_label_examples args render_centered_rect_examples args render_rect_group_examples args end def render_row_examples args # rows (light blue) args.outputs.labels << args.layout.rect(row: 1, col: 6 + 3).merge(text: "row examples", anchor_x: 0.5, anchor_y: 0.5) 4.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row, col: 6, w: 1, h: 1).merge(**light_blue) end 2.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row * 2, col: 6 + 1, w: 1, h: 2).merge(**light_blue) end 4.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row, col: 6 + 2, w: 2, h: 1).merge(**light_blue) end 2.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row * 2, col: 6 + 4, w: 2, h: 2).merge(**light_blue) end end def render_column_examples args # columns (yellow) yellow = { r: 255, g: 255, b: 128 } args.outputs.labels << args.layout.rect(row: 1, col: 12 + 3).merge(text: "column examples", anchor_x: 0.5, anchor_y: 0.5) 6.times do |col| args.outputs.solids << args.layout.rect(row: 0, col: 12 + col, w: 1, h: 1).merge(**yellow) end 3.times do |col| args.outputs.solids << args.layout.rect(row: 1, col: 12 + col * 2, w: 2, h: 1).merge(**yellow) end 6.times do |col| args.outputs.solids << args.layout.rect(row: 2, col: 12 + col, w: 1, h: 2).merge(**yellow) end end def render_max_width_max_height_examples args # max width/height baseline (transparent green) args.outputs.labels << args.layout.rect(row: 4, col: 12).merge(text: "max width/height examples", anchor_x: 0.5, anchor_y: 0.5) args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 24, h: 2).merge(a: 64, **green) # max height args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 24, h: 2, max_height: 1).merge(a: 64, **green) # max width args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 24, h: 2, max_width: 12).merge(a: 64, **green) end def render_points_with_anchored_label_examples args # labels relative to rects label_color = { r: 0, g: 0, b: 0 } # labels realtive to point, achored at 0.0, 0.0 args.outputs.borders << args.layout.rect(row: 6, col: 3, w: 6, h: 5) args.outputs.labels << args.layout.rect(row: 6, col: 3, w: 6, h: 1).center.merge(text: "layout.point anchored to 0.0, 0.0", anchor_x: 0.5, anchor_y: 0.5, size_px: 15) grey = { r: 128, g: 128, b: 128 } args.outputs.solids << args.layout.rect(row: 7, col: 4.5).merge(**grey) args.outputs.labels << args.layout.point(row: 7, col: 4.5, row_anchor: 1.0, col_anchor: 0.0).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 7, col: 5.5).merge(**grey) args.outputs.labels << args.layout.point(row: 7, col: 5.5, row_anchor: 1.0, col_anchor: 0.5).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 7, col: 6.5).merge(**grey) args.outputs.labels << args.layout.point(row: 7, col: 6.5, row_anchor: 1.0, col_anchor: 1.0).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 8, col: 4.5).merge(**grey) args.outputs.labels << args.layout.point(row: 8, col: 4.5, row_anchor: 0.5, col_anchor: 0.0).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 8, col: 5.5).merge(**grey) args.outputs.labels << args.layout.point(row: 8, col: 5.5, row_anchor: 0.5, col_anchor: 0.5).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 8, col: 6.5).merge(**grey) args.outputs.labels << args.layout.point(row: 8, col: 6.5, row_anchor: 0.5, col_anchor: 1.0).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 9, col: 4.5).merge(**grey) args.outputs.labels << args.layout.point(row: 9, col: 4.5, row_anchor: 0.0, col_anchor: 0.0).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 9, col: 5.5).merge(**grey) args.outputs.labels << args.layout.point(row: 9, col: 5.5, row_anchor: 0.0, col_anchor: 0.5).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) args.outputs.solids << args.layout.rect(row: 9, col: 6.5).merge(**grey) args.outputs.labels << args.layout.point(row: 9, col: 6.5, row_anchor: 0.0, col_anchor: 1.0).merge(text: "[x]", anchor_x: 0.5, anchor_y: 0.5, **label_color) end def render_centered_rect_examples args # centering rects args.outputs.borders << args.layout.rect(row: 6, col: 9, w: 6, h: 5) args.outputs.labels << args.layout.rect(row: 6, col: 9, w: 6, h: 1).center.merge(text: "layout.rect centered inside another rect", anchor_x: 0.5, anchor_y: 0.5, size_px: 15) outer_rect = args.layout.rect(row: 7, col: 10.5, w: 3, h: 3) # render outer rect args.outputs.solids << outer_rect.merge(**light_blue) # # center a yellow rect with w and h of two args.outputs.solids << args.layout.rect_center( args.layout.rect(w: 1, h: 5), # inner rect outer_rect, # outer rect ).merge(**yellow) # # center a black rect with w three h of one args.outputs.solids << args.layout.rect_center( args.layout.rect(w: 5, h: 1), # inner rect outer_rect, # outer rect ) end def render_rect_group_examples args args.outputs.labels << args.layout.rect(row: 6, col: 15, w: 6, h: 1).center.merge(text: "layout.rect_group usage", anchor_x: 0.5, anchor_y: 0.5, size_px: 15) args.outputs.borders << args.layout.rect(row: 6, col: 15, w: 6, h: 5) horizontal_markers = [ { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, ] args.outputs.solids << args.layout.rect_group(row: 7, col: 15, dcol: 1, w: 1, h: 1, group: horizontal_markers) vertical_markers = [ { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 } ] args.outputs.solids << args.layout.rect_group(row: 7, col: 15, drow: 1, w: 1, h: 1, group: vertical_markers) colors = [ { r: 0, g: 0, b: 0 }, { r: 50, g: 50, b: 50 }, { r: 100, g: 100, b: 100 }, { r: 150, g: 150, b: 150 }, { r: 200, g: 200, b: 200 }, { r: 250, g: 250, b: 250 }, ] args.outputs.solids << args.layout.rect_group(row: 8, col: 15, dcol: 1, w: 1, h: 1, group: colors) end def light_blue { r: 128, g: 255, b: 255 } end def yellow { r: 255, g: 255, b: 128 } end def green { r: 0, g: 128, b: 80 } end def white { r: 255, g: 255, b: 255 } end def label_color { r: 0, g: 0, b: 0 } end $gtk.reset
Advanced Rendering Hd - Hd Labels - main.rb link
# ./samples/07_advanced_rendering_hd/01_hd_labels/app/main.rb def tick args args.state.output_cycle ||= :top_level args.outputs.background_color = [0, 0, 0] args.outputs.solids << [0, 0, 1280, 720, 255, 255, 255] if args.state.output_cycle == :top_level render_main args else render_scene args end # cycle between labels in top level args.outputs # and labels inside of render target if args.state.tick_count.zmod? 300 if args.state.output_cycle == :top_level args.state.output_cycle = :render_target else args.state.output_cycle = :top_level end end end def render_main args # center line args.outputs.lines << { x: 0, y: 360, x2: 1280, y2: 360 } args.outputs.lines << { x: 640, y: 0, x2: 640, y2: 720 } # horizontal ruler args.outputs.lines << { x: 0, y: 370, x2: 1280, y2: 370 } args.outputs.lines << { x: 0, y: 351, x2: 1280, y2: 351 } # vertical ruler args.outputs.lines << { x: 575, y: 0, x2: 575, y2: 720 } args.outputs.lines << { x: 701, y: 0, x2: 701, y2: 720 } args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square/blue.png", a: 128 } args.outputs.labels << { x: 640, y: 0, text: "(bottom)", alignment_enum: 1, vertical_alignment_enum: 0 } args.outputs.labels << { x: 640, y: 425, text: "top_level", alignment_enum: 1, vertical_alignment_enum: 1 } args.outputs.labels << { x: 640, y: 720, text: "(top)", alignment_enum: 1, vertical_alignment_enum: 2 } args.outputs.labels << { x: 0, y: 360, text: "(left)", alignment_enum: 0, vertical_alignment_enum: 1 } args.outputs.labels << { x: 1280, y: 360, text: "(right)", alignment_enum: 2, vertical_alignment_enum: 1 } end def render_scene args args.outputs[:scene].transient! args.outputs[:scene].background_color = [255, 255, 255, 0] # center line args.outputs[:scene].lines << { x: 0, y: 360, x2: 1280, y2: 360 } args.outputs[:scene].lines << { x: 640, y: 0, x2: 640, y2: 720 } # horizontal ruler args.outputs[:scene].lines << { x: 0, y: 370, x2: 1280, y2: 370 } args.outputs[:scene].lines << { x: 0, y: 351, x2: 1280, y2: 351 } # vertical ruler args.outputs[:scene].lines << { x: 575, y: 0, x2: 575, y2: 720 } args.outputs[:scene].lines << { x: 701, y: 0, x2: 701, y2: 720 } args.outputs[:scene].sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square/blue.png", a: 128, blendmode_enum: 0 } args.outputs[:scene].labels << { x: 640, y: 0, text: "(bottom)", alignment_enum: 1, vertical_alignment_enum: 0, blendmode_enum: 0 } args.outputs[:scene].labels << { x: 640, y: 425, text: "render target", alignment_enum: 1, vertical_alignment_enum: 1, blendmode_enum: 0 } args.outputs[:scene].labels << { x: 640, y: 720, text: "(top)", alignment_enum: 1, vertical_alignment_enum: 2, blendmode_enum: 0 } args.outputs[:scene].labels << { x: 0, y: 360, text: "(left)", alignment_enum: 0, vertical_alignment_enum: 1, blendmode_enum: 0 } args.outputs[:scene].labels << { x: 1280, y: 360, text: "(right)", alignment_enum: 2, vertical_alignment_enum: 1, blendmode_enum: 0 } args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :scene } end
Advanced Rendering Hd - Texture Atlases - main.rb link
# ./samples/07_advanced_rendering_hd/02_texture_atlases/app/main.rb # With HD mode enabled. DragonRuby will automatically use HD sprites given the following # naming convention (assume we are using a sprite called =player.png=): # # | Name | Resolution | File Naming Convention | # |-------+------------+-------------------------------| # | 720p | 1280x720 | =player.png= | # | HD+ | 1600x900 | =player@125.png= | # | 1080p | 1920x1080 | =player@125.png= | # | 1440p | 2560x1440 | =player@200.png= | # | 1800p | 3200x1800 | =player@250.png= | # | 4k | 3200x2160 | =player@300.png= | # | 5k | 6400x2880 | =player@400.png= | # Note: Review the sample app's game_metadata.txt file for what configurations are enabled. def tick args args.outputs.background_color = [0, 0, 0] args.outputs.borders << { x: 0, y: 0, w: 1280, h: 720, r: 255, g: 255, b: 255 } args.outputs.labels << { x: 30, y: 30.from_top, text: "render scale: #{args.grid.native_scale}", r: 255, g: 255, b: 255 } args.outputs.labels << { x: 30, y: 60.from_top, text: "render scale: #{args.grid.native_scale_enum}", r: 255, g: 255, b: 255 } args.outputs.sprites << { x: -640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: -320 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 0 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 320 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 960 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 1280 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 1600 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 1920 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 640 - 50, y: 720, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 640 - 50, y: 100.from_top, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 640 - 50, y: 0, w: 100, h: 100, path: "sprites/square.png" } args.outputs.sprites << { x: 640 - 50, y: -100, w: 100, h: 100, path: "sprites/square.png" } end
Advanced Rendering Hd - Allscreen Properties - main.rb link
# ./samples/07_advanced_rendering_hd/03_allscreen_properties/app/main.rb def tick args label_style = { r: 255, g: 255, b: 255, size_enum: 4 } args.outputs.background_color = [0, 0, 0] args.outputs.borders << { x: 0, y: 0, w: 1280, h: 720, r: 255, g: 255, b: 255 } args.outputs.labels << { x: 10, y: 10.from_top, text: "native_scale: #{args.grid.native_scale}", **label_style } args.outputs.labels << { x: 10, y: 40.from_top, text: "native_scale_enum: #{args.grid.native_scale_enum}", **label_style } args.outputs.labels << { x: 10, y: 70.from_top, text: "allscreen_offset_x: #{args.grid.allscreen_offset_x}", **label_style } args.outputs.labels << { x: 10, y: 100.from_top, text: "allscreen_offset_y: #{args.grid.allscreen_offset_y}", **label_style } if (args.state.tick_count % 500) < 250 args.outputs.labels << { x: 10, y: 130.from_top, text: "cropped to: grid", **label_style } args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, source_x: 2000 - 640, source_y: 2000 - 320, source_w: 1280, source_h: 720, path: "sprites/world.png" } else args.outputs.labels << { x: 10, y: 130.from_top, text: "cropped to: allscreen", **label_style } args.outputs.sprites << { x: 0 - args.grid.allscreen_offset_x, y: 0 - args.grid.allscreen_offset_y, w: 1280 + args.grid.allscreen_offset_x * 2, h: 720 + args.grid.allscreen_offset_y * 2, source_x: 2000 - 640 - args.grid.allscreen_offset_x, source_y: 2000 - 320 - args.grid.allscreen_offset_y, source_w: 1280 + args.grid.allscreen_offset_x * 2, source_h: 720 + args.grid.allscreen_offset_y * 2, path: "sprites/world.png" } args.outputs.sprites << { x: 0 - args.grid.allscreen_offset_x, y: 0 - args.grid.allscreen_offset_y, w: 1280 + args.grid.allscreen_offset_x * 2, h: 720 + args.grid.allscreen_offset_y * 2, source_x: 2000 - 640 - args.grid.allscreen_offset_x, source_y: 2000 - 320 - args.grid.allscreen_offset_y, source_w: 1280 + args.grid.allscreen_offset_x * 2, source_h: 720 + args.grid.allscreen_offset_y * 2, path: "sprites/world.png" } end args.outputs.sprites << { x: 0, y: 0.from_top - 165, w: 410, h: 165, r: 0, g: 0, b: 0, a: 200, path: :pixel } end
Advanced Rendering Hd - Layouts And Portrait Mode - main.rb link
# ./samples/07_advanced_rendering_hd/04_layouts_and_portrait_mode/app/main.rb def tick args if !args.gtk.version_pro? args.outputs.labels << { x: args.grid.w / 2, y: args.grid.h / 2, alignment_enum: 1, vertical_alignment_enum: 1, text: "Portrait mode is a Pro feature." } return elsif args.gtk.version_pro? && args.grid.orientation == :landscape args.outputs.labels << { x: args.grid.w / 2, y: args.grid.h / 2, alignment_enum: 1, vertical_alignment_enum: 1, text: "Landscape orientation detected. Make sure your metadata/game_metadata.txt has the value orientation=portrait." } return end args.outputs.solids << args.layout.rect(row: 0, col: 0, w: 12, h: 24, include_row_gutter: true, include_col_gutter: true).merge(b: 255, a: 80) # rows (light blue) light_blue = { r: 128, g: 255, b: 255 } args.outputs.labels << args.layout.rect(row: 1, col: 3).merge(text: "row examples", vertical_alignment_enum: 1, alignment_enum: 1) 4.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row, col: 0, w: 1, h: 1).merge(**light_blue) end 2.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row * 2, col: 1, w: 1, h: 2).merge(**light_blue) end 4.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row, col: 2, w: 2, h: 1).merge(**light_blue) end 2.map_with_index do |row| args.outputs.solids << args.layout.rect(row: row * 2, col: 4, w: 2, h: 2).merge(**light_blue) end # columns (yellow) yellow = { r: 255, g: 255, b: 128 } args.outputs.labels << args.layout.rect(row: 1, col: 9).merge(text: "column examples", vertical_alignment_enum: 1, alignment_enum: 1) 6.times do |col| args.outputs.solids << args.layout.rect(row: 0, col: 6 + col, w: 1, h: 1).merge(**yellow) end 3.times do |col| args.outputs.solids << args.layout.rect(row: 1, col: 6 + col * 2, w: 2, h: 1).merge(**yellow) end 6.times do |col| args.outputs.solids << args.layout.rect(row: 2, col: 6 + col, w: 1, h: 2).merge(**yellow) end # max width/height baseline (transparent green) green = { r: 0, g: 128, b: 80 } args.outputs.labels << args.layout.rect(row: 4, col: 6).merge(text: "max width/height examples", vertical_alignment_enum: 1, alignment_enum: 1) args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 12, h: 2).merge(a: 64, **green) # max height args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 12, h: 2, max_height: 1).merge(a: 64, **green) # max width args.outputs.solids << args.layout.rect(row: 4, col: 0, w: 12, h: 2, max_width: 6).merge(a: 64, **green) # labels relative to rects label_color = { r: 0, g: 0, b: 0 } white = { r: 232, g: 232, b: 232 } # labels realtive to point, achored at 0.0, 0.0 args.outputs.labels << args.layout.rect(row: 5.5, col: 6).merge(text: "labels using args.layout.point anchored to 0.0, 0.0", vertical_alignment_enum: 1, alignment_enum: 1) grey = { r: 128, g: 128, b: 128 } args.outputs.solids << args.layout.rect(row: 7, col: 4).merge(**grey) args.outputs.labels << args.layout.point(row: 7, col: 4, row_anchor: 1.0, col_anchor: 0.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 7, col: 5).merge(**grey) args.outputs.labels << args.layout.point(row: 7, col: 5, row_anchor: 1.0, col_anchor: 0.5).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 7, col: 6).merge(**grey) args.outputs.labels << args.layout.point(row: 7, col: 6, row_anchor: 1.0, col_anchor: 1.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 8, col: 4).merge(**grey) args.outputs.labels << args.layout.point(row: 8, col: 4, row_anchor: 0.5, col_anchor: 0.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 8, col: 5).merge(**grey) args.outputs.labels << args.layout.point(row: 8, col: 5, row_anchor: 0.5, col_anchor: 0.5).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 8, col: 6).merge(**grey) args.outputs.labels << args.layout.point(row: 8, col: 6, row_anchor: 0.5, col_anchor: 1.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 9, col: 4).merge(**grey) args.outputs.labels << args.layout.point(row: 9, col: 4, row_anchor: 0.0, col_anchor: 0.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 9, col: 5).merge(**grey) args.outputs.labels << args.layout.point(row: 9, col: 5, row_anchor: 0.0, col_anchor: 0.5).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) args.outputs.solids << args.layout.rect(row: 9, col: 6).merge(**grey) args.outputs.labels << args.layout.point(row: 9, col: 6, row_anchor: 0.0, col_anchor: 1.0).merge(text: "[x]", alignment_enum: 1, vertical_alignment_enum: 1, **label_color) # centering rects args.outputs.labels << args.layout.rect(row: 10.5, col: 6).merge(text: "layout.rect centered inside another layout.rect", vertical_alignment_enum: 1, alignment_enum: 1) outer_rect = args.layout.rect(row: 12, col: 4, w: 3, h: 3) # render outer rect args.outputs.solids << outer_rect.merge(**light_blue) # center a yellow rect with w and h of two args.outputs.solids << args.layout.rect_center( args.layout.rect(w: 1, h: 5), # inner rect outer_rect, # outer rect ).merge(**yellow) # center a black rect with w three h of one args.outputs.solids << args.layout.rect_center( args.layout.rect(w: 5, h: 1), # inner rect outer_rect, # outer rect ) args.outputs.labels << args.layout.rect(row: 16.5, col: 6).merge(text: "layout.rect_group usage", vertical_alignment_enum: 1, alignment_enum: 1) horizontal_markers = [ { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 } ] args.outputs.solids << args.layout.rect_group(row: 18, dcol: 1, w: 1, h: 1, group: horizontal_markers) vertical_markers = [ { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 }, { r: 0, g: 0, b: 0 } ] args.outputs.solids << args.layout.rect_group(row: 18, drow: 1, w: 1, h: 1, group: vertical_markers) colors = [ { r: 0, g: 0, b: 0 }, { r: 50, g: 50, b: 50 }, { r: 100, g: 100, b: 100 }, { r: 150, g: 150, b: 150 }, { r: 200, g: 200, b: 200 }, ] args.outputs.solids << args.layout.rect_group(row: 19, col: 1, dcol: 2, w: 2, h: 1, group: colors) args.outputs.solids << args.layout.rect_group(row: 19, col: 1, drow: 1, w: 2, h: 1, group: colors) end $gtk.reset
Tweening Lerping Easing Functions - Easing Functions - main.rb link
# ./samples/08_tweening_lerping_easing_functions/01_easing_functions/app/main.rb def tick args # STOP! Watch the following presentation first!!!! # Math for Game Programmers: Fast and Funky 1D Nonlinear Transformations # https://www.youtube.com/watch?v=mr5xkf6zSzk # You've watched the talk, yes? YES??? # define starting and ending points of properties to animate args.state.target_x = 1180 args.state.target_y = 620 args.state.target_w = 100 args.state.target_h = 100 args.state.starting_x = 0 args.state.starting_y = 0 args.state.starting_w = 300 args.state.starting_h = 300 # define start time and duration of animation args.state.start_animate_at = 3.seconds # this is the same as writing 60 * 5 (or 300) args.state.duration = 2.seconds # this is the same as writing 60 * 2 (or 120) # define type of animations # Here are all the options you have for values you can put in the array: # :identity, :quad, :cube, :quart, :quint, :flip # Linear is defined as: # [:identity] # # Smooth start variations are: # [:quad] # [:cube] # [:quart] # [:quint] # Linear reversed, and smooth stop are the same as the animations defined above, but reversed: # [:flip, :identity] # [:flip, :quad, :flip] # [:flip, :cube, :flip] # [:flip, :quart, :flip] # [:flip, :quint, :flip] # You can also do custom definitions. See the bottom of the file details # on how to do that. I've defined a couple for you: # [:smoothest_start] # [:smoothest_stop] # CHANGE THIS LINE TO ONE OF THE LINES ABOVE TO SEE VARIATIONS args.state.animation_type = [:identity] # args.state.animation_type = [:quad] # args.state.animation_type = [:cube] # args.state.animation_type = [:quart] # args.state.animation_type = [:quint] # args.state.animation_type = [:flip, :identity] # args.state.animation_type = [:flip, :quad, :flip] # args.state.animation_type = [:flip, :cube, :flip] # args.state.animation_type = [:flip, :quart, :flip] # args.state.animation_type = [:flip, :quint, :flip] # args.state.animation_type = [:smoothest_start] # args.state.animation_type = [:smoothest_stop] # THIS IS WHERE THE MAGIC HAPPENS! # Numeric#ease progress = args.state.start_animate_at.ease(args.state.duration, args.state.animation_type) # Numeric#ease needs to called: # 1. On the number that represents the point in time you want to start, and takes two parameters: # a. The first parameter is how long the animation should take. # b. The second parameter represents the functions that need to be called. # # For example, if I wanted an animate to start 3 seconds in, and last for 10 seconds, # and I want to animation to start fast and end slow, I would do: # (60 * 3).ease(60 * 10, :flip, :quint, :flip) # initial value delta to the final value calc_x = args.state.starting_x + (args.state.target_x - args.state.starting_x) * progress calc_y = args.state.starting_y + (args.state.target_y - args.state.starting_y) * progress calc_w = args.state.starting_w + (args.state.target_w - args.state.starting_w) * progress calc_h = args.state.starting_h + (args.state.target_h - args.state.starting_h) * progress args.outputs.solids << [calc_x, calc_y, calc_w, calc_h, 0, 0, 0] # count down count_down = args.state.start_animate_at - args.state.tick_count if count_down > 0 args.outputs.labels << [640, 375, "Running: #{args.state.animation_type} in...", 3, 1] args.outputs.labels << [640, 345, "%.2f" % count_down.fdiv(60), 3, 1] elsif progress >= 1 args.outputs.labels << [640, 360, "Click screen to reset.", 3, 1] if args.inputs.click $gtk.reset end end end # $gtk.reset # you can make own variations of animations using this module Easing # you have access to all the built in functions: identity, flip, quad, cube, quart, quint def self.smoothest_start x quad(quint(x)) end def self.smoothest_stop x flip(quad(quint(flip(x)))) end # this is the source for the existing easing functions def self.identity x x end def self.flip x 1 - x end def self.quad x x * x end def self.cube x x * x * x end def self.quart x x * x * x * x * x end def self.quint x x * x * x * x * x * x end end
Tweening Lerping Easing Functions - Cubic Bezier - main.rb link
# ./samples/08_tweening_lerping_easing_functions/02_cubic_bezier/app/main.rb def tick args args.outputs.background_color = [33, 33, 33] args.outputs.lines << bezier(100, 100, 100, 620, 1180, 620, 1180, 100, 0) args.outputs.lines << bezier(100, 100, 100, 620, 1180, 620, 1180, 100, 20) end def bezier x1, y1, x2, y2, x3, y3, x4, y4, step step ||= 0 color = [200, 200, 200] points = points_for_bezier [x1, y1], [x2, y2], [x3, y3], [x4, y4], step points.each_cons(2).map do |p1, p2| [p1, p2, color] end end def points_for_bezier p1, p2, p3, p4, step points = [] if step == 0 [p1, p2, p3, p4] else t_step = 1.fdiv(step + 1) t = 0 t += t_step points = [] while t < 1 points << [ b_for_t(p1.x, p2.x, p3.x, p4.x, t), b_for_t(p1.y, p2.y, p3.y, p4.y, t), ] t += t_step end [ p1, *points, p4 ] end end def b_for_t v0, v1, v2, v3, t pow(1 - t, 3) * v0 + 3 * pow(1 - t, 2) * t * v1 + 3 * (1 - t) * pow(t, 2) * v2 + pow(t, 3) * v3 end def pow n, to n ** to end
Tweening Lerping Easing Functions - Easing Using Spline - main.rb link
# ./samples/08_tweening_lerping_easing_functions/03_easing_using_spline/app/main.rb def tick args args.state.duration = 10.seconds args.state.spline = [ [0.0, 0.33, 0.66, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 0.66, 0.33, 0.0], ] args.state.simulation_tick = args.state.tick_count % args.state.duration progress = 0.ease_spline_extended args.state.simulation_tick, args.state.duration, args.state.spline args.outputs.borders << args.grid.rect args.outputs.solids << [20 + 1240 * progress, 20 + 680 * progress, 20, 20].anchor_rect(0.5, 0.5) args.outputs.labels << [10, 710, "perc: #{"%.2f" % (args.state.simulation_tick / args.state.duration)} t: #{args.state.simulation_tick}"] end
Tweening Lerping Easing Functions - Pulsing Button - main.rb link
# ./samples/08_tweening_lerping_easing_functions/04_pulsing_button/app/main.rb # game concept from: https://youtu.be/Tz-AinJGDIM # This class encapsulates the logic of a button that pulses when clicked. # It is used in the StartScene and GameOverScene classes. class PulseButton # a block is passed into the constructor and is called when the button is clicked, # and after the pulse animation is complete def initialize rect, text, &on_click @rect = rect @text = text @on_click = on_click @pulse_animation_spline = [[0.0, 0.90, 1.0, 1.0], [1.0, 0.10, 0.0, 0.0]] @duration = 10 end # the button is ticked every frame and check to see if the mouse # intersects the button's bounding box. # if it does, then pertinent information is stored in the @clicked_at variable # which is used to calculate the pulse animation def tick tick_count, mouse @tick_count = tick_count if @clicked_at && @clicked_at.elapsed_time > @duration @clicked_at = nil @on_click.call end return if !mouse.click return if !mouse.inside_rect? @rect @clicked_at = tick_count end # this function returns an array of primitives that can be rendered def prefab easing # calculate the percentage of the pulse animation that has completed # and use the percentage to compute the size and position of the button perc = if @clicked_at easing.ease_spline @clicked_at, @tick_count, @duration, @pulse_animation_spline else 0 end rect = { x: @rect.x - 50 * perc / 2, y: @rect.y - 50 * perc / 2, w: @rect.w + 50 * perc, h: @rect.h + 50 * perc } point = { x: @rect.x + @rect.w / 2, y: @rect.y + @rect.h / 2 } [ { **rect, path: :pixel }, { **point, text: @text, size_px: 32, anchor_x: 0.5, anchor_y: 0.5 } ] end end class Game attr_gtk def initialize args self.args = args @pulse_button ||= PulseButton.new({ x: 640 - 100, y: 360 - 50, w: 200, h: 100 }, 'Click Me!') do $gtk.notify! "Animation complete and block invoked!" end end def tick @pulse_button.tick state.tick_count, inputs.mouse outputs.primitives << @pulse_button.prefab(easing) end end def tick args $game ||= Game.new args $game.args = args $game.tick end
Tweening Lerping Easing Functions - Scene Transitions - main.rb link
# ./samples/08_tweening_lerping_easing_functions/05_scene_transitions/app/main.rb # This sample app shows a more advanced implementation of scenes: # 1. "Scene 1" has a label on it that says "I am scene ONE. Press enter to go to scene TWO." # 2. "Scene 2" has a label on it that says "I am scene TWO. Press enter to go to scene ONE." # 3. When the game starts, Scene 1 is presented. # 4. When the player presses enter, the scene transitions to Scene 2 (fades out Scene 1 over half a second, then fades in Scene 2 over half a second). # 5. When the player presses enter again, the scene transitions to Scene 1 (fades out Scene 2 over half a second, then fades in Scene 1 over half a second). # 6. During the fade transitions, spamming the enter key is ignored (scenes don't accept a transition/respond to the enter key until the current transition is completed). class SceneOne attr_gtk def tick outputs[:scene].transient! outputs[:scene].labels << { x: 640, y: 360, text: "I am scene ONE. Press enter to go to scene TWO.", alignment_enum: 1, vertical_alignment_enum: 1 } state.next_scene = :scene_two if inputs.keyboard.key_down.enter end end class SceneTwo attr_gtk def tick outputs[:scene].transient! outputs[:scene].labels << { x: 640, y: 360, text: "I am scene TWO. Press enter to go to scene ONE.", alignment_enum: 1, vertical_alignment_enum: 1 } state.next_scene = :scene_one if inputs.keyboard.key_down.enter end end class RootScene attr_gtk def initialize @scene_one = SceneOne.new @scene_two = SceneTwo.new end def tick defaults render tick_scene end def defaults set_current_scene! :scene_one if state.tick_count == 0 state.scene_transition_duration ||= 30 end def render a = if state.transition_scene_at 255 * state.transition_scene_at.ease(state.scene_transition_duration, :flip) elsif state.current_scene_at 255 * state.current_scene_at.ease(state.scene_transition_duration) else 255 end outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :scene, a: a } end def tick_scene current_scene = state.current_scene @current_scene.args = args @current_scene.tick if current_scene != state.current_scene raise "state.current_scene changed mid tick from #{current_scene} to #{state.current_scene}. To change scenes, set state.next_scene." end if state.next_scene && state.next_scene != state.transition_scene && state.next_scene != state.current_scene state.transition_scene_at = state.tick_count state.transition_scene = state.next_scene end if state.transition_scene_at && state.transition_scene_at.elapsed_time >= state.scene_transition_duration set_current_scene! state.transition_scene end state.next_scene = nil end def set_current_scene! id return if state.current_scene == id state.current_scene = id state.current_scene_at = state.tick_count state.transition_scene = nil state.transition_scene_at = nil if state.current_scene == :scene_one @current_scene = @scene_one elsif state.current_scene == :scene_two @current_scene = @scene_two end end end def tick args $game ||= RootScene.new $game.args = args $game.tick end
Tweening Lerping Easing Functions - Animation Queues - main.rb link
# ./samples/08_tweening_lerping_easing_functions/06_animation_queues/app/main.rb # here's how to create a "fire and forget" sprite animation queue def tick args args.outputs.labels << { x: 640, y: 360, text: "Click anywhere on the screen.", alignment_enum: 1, vertical_alignment_enum: 1 } # initialize the queue to an empty array args.state.fade_out_queue ||=[] # if the mouse is click, add a sprite to the fire and forget # queue to be processed if args.inputs.mouse.click args.state.fade_out_queue << { x: args.inputs.mouse.x - 20, y: args.inputs.mouse.y - 20, w: 40, h: 40, path: "sprites/square/blue.png" } end # process the queue args.state.fade_out_queue.each do |item| # default the alpha value if it isn't specified item.a ||= 255 # decrement the alpha by 5 each frame item.a -= 5 end # remove the item if it's completely faded out args.state.fade_out_queue.reject! { |item| item.a <= 0 } # render the sprites in the queue args.outputs.sprites << args.state.fade_out_queue end
Tweening Lerping Easing Functions - Animation Queues Advanced - main.rb link
# ./samples/08_tweening_lerping_easing_functions/07_animation_queues_advanced/app/main.rb # sample app shows how to perform a fire and forget animation when a collision occurs def tick args defaults args spawn_bullets args calc_bullets args render args end def defaults args # place a player on the far left with sprite and hp information args.state.player ||= { x: 100, y: 360 - 50, w: 100, h: 100, path: "sprites/square/blue.png", hp: 30 } # create an array of bullets args.state.bullets ||= [] # create a queue for handling bullet explosions args.state.explosion_queue ||= [] end def spawn_bullets args # span a bullet in a random location on the far right every half second return if !args.state.tick_count.zmod? 30 args.state.bullets << { x: 1280 - 100, y: rand(720 - 100), w: 100, h: 100, path: "sprites/square/red.png" } end def calc_bullets args # for each bullet args.state.bullets.each do |b| # move it to the left by 20 pixels b.x -= 20 # determine if the bullet collides with the player if b.intersect_rect? args.state.player # decrement the player's health if it does args.state.player.hp -= 1 # mark the bullet as exploded b.exploded = true # queue the explosion by adding it to the explosion queue args.state.explosion_queue << b.merge(exploded_at: args.state.tick_count) end end # remove bullets that have exploded so they wont be rendered args.state.bullets.reject! { |b| b.exploded } # remove animations from the animation queue that have completed # frame index will return nil once the animation has completed args.state.explosion_queue.reject! { |e| !e.exploded_at.frame_index(7, 4, false) } end def render args # render the player's hp above the sprite args.outputs.labels << { x: args.state.player.x + 50, y: args.state.player.y + 110, text: "#{args.state.player.hp}", alignment_enum: 1, vertical_alignment_enum: 0 } # render the player args.outputs.sprites << args.state.player # render the bullets args.outputs.sprites << args.state.bullets # process the animation queue args.outputs.sprites << args.state.explosion_queue.map do |e| number_of_frames = 7 hold_each_frame_for = 4 repeat_animation = false # use the exploded_at property and the frame_index function to determine when the animation should start frame_index = e.exploded_at.frame_index(number_of_frames, hold_each_frame_for, repeat_animation) # take the explosion primitive and set the path variariable e.merge path: "sprites/misc/explosion-#{frame_index}.png" end end
Tweening Lerping Easing Functions - Cutscenes - main.rb link
# ./samples/08_tweening_lerping_easing_functions/08_cutscenes/app/main.rb # sample app shows how you can user a queue/callback mechanism to create cutscenes class Game attr_gtk def initialize # this class controls the cutscene orchestration @tick_queue = TickQueue.new end def tick @tick_queue.args = args state.player ||= { x: 0, y: 0, w: 100, h: 100, path: :pixel, r: 0, g: 255, b: 0 } state.fade_to_black ||= 0 state.back_and_forth_count ||= 0 # if the mouse is clicked, start the cutscene if inputs.mouse.click && !state.cutscene_started start_cutscene end outputs.primitives << state.player outputs.primitives << { x: 0, y: 0, w: 1280, h: 720, path: :pixel, r: 0, g: 0, b: 0, a: state.fade_to_black } @tick_queue.tick end def start_cutscene # don't start the cutscene if it's already started return if state.cutscene_started state.cutscene_started = true # start the cutscene by moving right queue_move_to_right_side end def queue_move_to_right_side # use the tick queue mechanism to kick off the player moving right @tick_queue.queue_tick state.tick_count do |args, entry| state.player.x += 30 # once the player is done moving right, stage the next step of the cutscene (moving left) if state.player.x + state.player.w > 1280 state.player.x = 1280 - state.player.w queue_move_to_left_side # marke the queued tick entry as complete so it doesn't get run again entry.complete! end end end def queue_move_to_left_side # use the tick queue mechanism to kick off the player moving right @tick_queue.queue_tick state.tick_count do |args, entry| args.state.player.x -= 30 # once the player id done moving left, decide on whether they should move right again or fade to black # the decision point is based on the number of times the player has moved left and right if args.state.player.x < 0 state.player.x = 0 args.state.back_and_forth_count += 1 if args.state.back_and_forth_count < 3 # if they haven't moved left and right 3 times, move them right again queue_move_to_right_side else # if they have moved left and right 3 times, fade to black queue_fade_to_black end # marke the queued tick entry as complete so it doesn't get run again entry.complete! end end end def queue_fade_to_black # we know the cutscene will end in 255 tickes, so we can queue a notification that will kick off in the future notifying that the cutscene is done @tick_queue.queue_one_time_tick state.tick_count + 255 do |args, entry| $gtk.notify "Cutscene complete!" end # start the fade to black @tick_queue.queue_tick state.tick_count do |args, entry| args.state.fade_to_black += 1 entry.complete! if state.fade_to_black > 255 end end end # this construct handles the execution of animations/cutscenes # the key methods that are used are queue_tick and queue_one_time_tick class TickQueue attr_gtk attr :queued_ticks attr :queued_ticks_currently_running def initialize @queued_ticks ||= {} @queued_ticks_currently_running ||= [] end # adds a callback that will be processed def queue_tick at, &block @queued_ticks[at] ||= [] @queued_ticks[at] << QueuedTick.new(at, &block) end # adds a callback that will be processed and immediately marked as complete def queue_one_time_tick at, **metadata, &block @queued_ticks ||= {} @queued_ticks[at] ||= [] @queued_ticks[at] << QueuedOneTimeTick.new(at, &block) end def tick # get all queued callbacs that need to start running on the current frame entries_this_tick = @queued_ticks.delete args.state.tick_count # if there are values, then add them to the list of currently running callbacks if entries_this_tick @queued_ticks_currently_running.concat entries_this_tick end # run tick on each entry @queued_ticks_currently_running.each do |queued_tick| queued_tick.tick args end # remove all entries that are complete @queued_ticks_currently_running.reject!(&:complete?) # there is a chance that a queued tick will queue another tick, so we need to check # if there are any queued ticks for the current frame. if so, then recursively call tick again if @queued_ticks[args.state.tick_count] && @queued_ticks[args.state.tick_count].length > 0 tick end end end # small data structure that holds the callback and status # queue_tick constructs an instance of this class to faciltate # the execution of the block and it's completion class QueuedTick attr :queued_at, :block def initialize queued_at, &block @queued_at = queued_at @is_complete = false @block = block end def complete! @is_complete = true end def complete? @is_complete end def tick args @block.call args, self end end # small data structure that holds the callback and status # queue_one_time_tick constructs an instance of this class to faciltate # the execution of the block and it's completion class QueuedOneTimeTick < QueuedTick def tick args @block.call args, self @is_complete = true end end $game = Game.new def tick args $game.args = args $game.tick end $gtk.reset
Performance - Sprites As Hash - main.rb link
# ./samples/09_performance/01_sprites_as_hash/app/main.rb # Sprites represented as Hashes using the queue ~args.outputs.sprites~ # code up, but are the "slowest" to render. # The reason for this is the access of the key in the Hash and also # because the data args.outputs.sprites is cleared every tick. def random_x args (args.grid.w.randomize :ratio) * -1 end def random_y args (args.grid.h.randomize :ratio) * -1 end def random_speed 1 + (4.randomize :ratio) end def new_star args { x: (random_x args), y: (random_y args), w: 4, h: 4, path: 'sprites/tiny-star.png', s: random_speed } end def move_star args, star star.x += star[:s] star.y += star[:s] if star.x > args.grid.w || star.y > args.grid.h star.x = (random_x args) star.y = (random_y args) star[:s] = random_speed end end def tick args args.state.star_count ||= 0 # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "" puts "" puts "=========================================================" puts "* INFO: Sprites, Hashes" puts "* INFO: Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| new_star args } end # update args.state.stars.each { |s| move_star args, s } # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count end
Performance - Sprites As Entities - main.rb link
# ./samples/09_performance/02_sprites_as_entities/app/main.rb # Sprites represented as Entities using the queue ~args.outputs.sprites~ # yields nicer access apis over Hashes, but require a bit more code upfront. # The hash sample has to use star[:s] to get the speed of the star, but # an entity can use .s instead. def random_x args (args.grid.w.randomize :ratio) * -1 end def random_y args (args.grid.h.randomize :ratio) * -1 end def random_speed 1 + (4.randomize :ratio) end def new_star args args.state.new_entity :star, { x: (random_x args), y: (random_y args), w: 4, h: 4, path: 'sprites/tiny-star.png', s: random_speed } end def move_star args, star star.x += star.s star.y += star.s if star.x > args.grid.w || star.y > args.grid.h star.x = (random_x args) star.y = (random_y args) star.s = random_speed end end def tick args args.state.star_count ||= 0 # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "" puts "" puts "=========================================================" puts "* INFO: Sprites, Open Entities" puts "* INFO: Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| new_star args } end # update args.state.stars.each { |s| move_star args, s } # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count end
Performance - Sprites As Strict Entities - main.rb link
# ./samples/09_performance/04_sprites_as_strict_entities/app/main.rb # Sprites represented as StrictEntities using the queue ~args.outputs.sprites~ # yields apis access similar to Entities, but all properties that can be set on the # entity must be predefined with a default value. Strict entities do not support the # addition of new properties after the fact. They are more performant than OpenEntities # because of this constraint. def random_x args (args.grid.w.randomize :ratio) * -1 end def random_y args (args.grid.h.randomize :ratio) * -1 end def random_speed 1 + (4.randomize :ratio) end def new_star args args.state.new_entity_strict(:star, x: (random_x args), y: (random_y args), w: 4, h: 4, path: 'sprites/tiny-star.png', s: random_speed) do |entity| # invoke attr_sprite so that it responds to # all properties that are required to render a sprite entity.attr_sprite end end def move_star args, star star.x += star.s star.y += star.s if star.x > args.grid.w || star.y > args.grid.h star.x = (random_x args) star.y = (random_y args) star.s = random_speed end end def tick args args.state.star_count ||= 0 # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "" puts "" puts "=========================================================" puts "* INFO: Sprites, Strict Entities" puts "* INFO: Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| new_star args } end # update args.state.stars.each { |s| move_star args, s } # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count end
Performance - Sprites As Classes - main.rb link
# ./samples/09_performance/05_sprites_as_classes/app/main.rb # Sprites represented as Classes using the queue ~args.outputs.sprites~. # gives you full control of property declaration and method invocation. # They are more performant than OpenEntities and StrictEntities, but more code upfront. class Star attr_sprite def initialize grid @grid = grid @x = (rand @grid.w) * -1 @y = (rand @grid.h) * -1 @w = 4 @h = 4 @s = 1 + (4.randomize :ratio) @path = 'sprites/tiny-star.png' end def move @x += @s @y += @s @x = (rand @grid.w) * -1 if @x > @grid.right @y = (rand @grid.h) * -1 if @y > @grid.top end end # calls methods needed for game to run properly def tick args # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "" puts "" puts "=========================================================" puts "* INFO: Sprites, Classes" puts "* INFO: Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end args.state.star_count ||= 0 # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| Star.new args.grid } end # update args.state.stars.each(&:move) # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count end
Performance - Static Sprites As Classes - main.rb link
# ./samples/09_performance/06_static_sprites_as_classes/app/main.rb # Sprites represented as Classes using the queue ~args.outputs.static_sprites~. # bypasses the queue behavior of ~args.outputs.sprites~. All instances are held # by reference. You get better performance, but you are mutating state of held objects # which is less functional/data oriented. class Star attr_sprite def initialize grid @grid = grid @x = (rand @grid.w) * -1 @y = (rand @grid.h) * -1 @w = 4 @h = 4 @s = 1 + (4.randomize :ratio) @path = 'sprites/tiny-star.png' end def move @x += @s @y += @s @x = (rand @grid.w) * -1 if @x > @grid.right @y = (rand @grid.h) * -1 if @y > @grid.top end end # calls methods needed for game to run properly def tick args # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "" puts "" puts "=========================================================" puts "* INFO: Static Sprites, Classes" puts "* INFO: Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end args.state.star_count ||= 0 # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| Star.new args.grid } args.outputs.static_sprites << args.state.stars end # update args.state.stars.each(&:move) # render args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count end
Performance - Static Sprites As Classes With Custom Drawing - main.rb link
# ./samples/09_performance/07_static_sprites_as_classes_with_custom_drawing/app/main.rb # Sprites represented as Classes, with a draw_override method, and using the queue ~args.outputs.static_sprites~. # is the fastest approach. This is comparable to what other game engines set as the default behavior. # There are tradeoffs for all this speed if the creation of a full blown class, and bypassing # functional/data-oriented practices. class Star def initialize grid @grid = grid @x = (rand @grid.w) * -1 @y = (rand @grid.h) * -1 @w = 4 @h = 4 @s = 1 + (4.randomize :ratio) @path = 'sprites/tiny-star.png' end def move @x += @s @y += @s @x = (rand @grid.w) * -1 if @x > @grid.right @y = (rand @grid.h) * -1 if @y > @grid.top end # if the object that is in args.outputs.sprites (or static_sprites) # respond_to? :draw_override, then the method is invoked giving you # access to the class used to draw to the canvas. def draw_override ffi_draw # first move then draw move # The argument order for ffi.draw_sprite is: # x, y, w, h, path ffi_draw.draw_sprite @x, @y, @w, @h, @path # The argument order for ffi_draw.draw_sprite_2 is (pass in nil for default value): # x, y, w, h, path, # angle, alpha # The argument order for ffi_draw.draw_sprite_3 is: # x, y, w, h, # path, # angle, # alpha, red_saturation, green_saturation, blue_saturation # tile_x, tile_y, tile_w, tile_h, # flip_horizontally, flip_vertically, # angle_anchor_x, angle_anchor_y, # source_x, source_y, source_w, source_h # The argument order for ffi_draw.draw_sprite_4 is: # x, y, w, h, # path, # angle, # alpha, red_saturation, green_saturation, blue_saturation # tile_x, tile_y, tile_w, tile_h, # flip_horizontally, flip_vertically, # angle_anchor_x, angle_anchor_y, # source_x, source_y, source_w, source_h, # blendmode_enum # The argument order for ffi_draw.draw_sprite_5 is: # x, y, w, h, # path, # angle, # alpha, red_saturation, green_saturation, blue_saturation # tile_x, tile_y, tile_w, tile_h, # flip_horizontally, flip_vertically, # angle_anchor_x, angle_anchor_y, # source_x, source_y, source_w, source_h, # blendmode_enum # anchor_x # anchor_y end end # calls methods needed for game to run properly def tick args # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "" puts "" puts "=========================================================" puts "* INFO: Static Sprites, Classes, Draw Override" puts "* INFO: Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end args.state.star_count ||= 0 # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| Star.new args.grid } args.outputs.static_sprites << args.state.stars end # render framerate args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count end
Performance - Collision Limits - main.rb link
# ./samples/09_performance/08_collision_limits/app/main.rb =begin Reminders: - find_all: Finds all elements of a collection that meet certain requirements. In this sample app, we're finding all bodies that intersect with the center body. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - ARRAY#intersect_rect?: Returns true or false depending on if two rectangles intersect. =end # This code demonstrates moving objects that loop around once they exceed the scope of the screen, # which has dimensions of 1280 by 720, and also detects collisions between objects called "bodies". def body_count num $gtk.args.state.other_bodies = num.map { [1280 * rand, 720 * rand, 10, 10] } # other_bodies set using num collection end def tick args # Center body's values are set using an array # Map is used to set values of 5000 other bodies # All bodies that intersect with center body are stored in collisions collection args.state.center_body ||= { x: 640 - 100, y: 360 - 100, w: 200, h: 200 } # calculations done to place body in center args.state.other_bodies ||= 5000.map do { x: 1280 * rand, y: 720 * rand, w: 2, h: 2, path: :pixel, r: 0, g: 0, b: 0 } end # 2000 bodies given random position on screen # finds all bodies that intersect with center body, stores them in collisions collisions = args.state.other_bodies.find_all { |b| b.intersect_rect? args.state.center_body } args.borders << args.state.center_body # outputs center body as a black border # transparency changes based on number of collisions; the more collisions, the redder (more transparent) the box becomes args.sprites << { x: args.state.center_body.x, y: args.state.center_body.y, w: args.state.center_body.w, h: args.state.center_body.h, path: :pixel, a: collisions.length.idiv(2), # alpha value represents the number of collisions that occured r: 255, g: 0, b: 0 } # center body is red solid args.sprites << args.state.other_bodies # other bodies are output as (black) solids, as well args.labels << [10, 30, args.gtk.current_framerate.to_sf] # outputs frame rate in bottom left corner # Bodies are returned to bottom left corner if positions exceed scope of screen args.state.other_bodies.each do |b| # for each body in the other_bodies collection b.x += 5 # x and y are both incremented by 5 b.y += 5 b.x = 0 if b.x > 1280 # x becomes 0 if star exceeds scope of screen (goes too far right) b.y = 0 if b.y > 720 # y becomes 0 if star exceeds scope of screen (goes too far up) end end # Resets the game. $gtk.reset
Performance - Collision Limits Aabb - main.rb link
# ./samples/09_performance/09_collision_limits_aabb/app/main.rb def tick args args.state.id_seed ||= 1 args.state.bullets ||= [] args.state.terrain ||= [ { x: 40, y: 0, w: 1200, h: 40, path: :pixel, r: 0, g: 0, b: 0 }, { x: 1240, y: 0, w: 40, h: 720, path: :pixel, r: 0, g: 0, b: 0 }, { x: 0, y: 0, w: 40, h: 720, path: :pixel, r: 0, g: 0, b: 0 }, { x: 40, y: 680, w: 1200, h: 40, path: :pixel, r: 0, g: 0, b: 0 }, { x: 760, y: 420, w: 180, h: 40, path: :pixel, r: 0, g: 0, b: 0 }, { x: 720, y: 420, w: 40, h: 100, path: :pixel, r: 0, g: 0, b: 0 }, { x: 940, y: 420, w: 40, h: 100, path: :pixel, r: 0, g: 0, b: 0 }, { x: 660, y: 220, w: 280, h: 40, path: :pixel, r: 0, g: 0, b: 0 }, { x: 620, y: 220, w: 40, h: 100, path: :pixel, r: 0, g: 0, b: 0 }, { x: 940, y: 220, w: 40, h: 100, path: :pixel, r: 0, g: 0, b: 0 }, { x: 460, y: 40, w: 280, h: 40, path: :pixel, r: 0, g: 0, b: 0 }, { x: 420, y: 40, w: 40, h: 100, path: :pixel, r: 0, g: 0, b: 0 }, { x: 740, y: 40, w: 40, h: 100, path: :pixel, r: 0, g: 0, b: 0 }, ] if args.inputs.keyboard.space b = { id: args.state.id_seed, x: 60, y: 60, w: 10, h: 10, dy: rand(20) + 10, dx: rand(20) + 10, path: 'sprites/square/blue.png' } args.state.bullets << b # if b.id == 122 args.state.id_seed += 1 end terrain = args.state.terrain args.state.bullets.each do |b| next if b.still # if b.still # x_dir = if rand > 0.5 # -1 # else # 1 # end # y_dir = if rand > 0.5 # -1 # else # 1 # end # b.dy = rand(20) + 10 * x_dir # b.dx = rand(20) + 10 * y_dir # b.still = false # b.on_floor = false # end if b.on_floor b.dx *= 0.9 end b.x += b.dx collision_x = args.geometry.find_intersect_rect(b, terrain) if collision_x if b.dx > 0 b.x = collision_x.x - b.w elsif b.dx < 0 b.x = collision_x.x + collision_x.w end b.dx *= -0.8 end b.dy -= 0.25 b.y += b.dy collision_y = args.geometry.find_intersect_rect(b, terrain) if collision_y if b.dy > 0 b.y = collision_y.y - b.h elsif b.dy < 0 b.y = collision_y.y + collision_y.h end if b.dy < 0 && b.dy.abs < 1 b.on_floor = true end b.dy *= -0.8 end if b.on_floor && (b.dy.abs + b.dx.abs) < 0.1 b.still = true end end args.outputs.labels << { x: 60, y: 60.from_top, text: "Hold space bar to add squares." } args.outputs.labels << { x: 60, y: 90.from_top, text: "FPS: #{args.gtk.current_framerate.to_sf}" } args.outputs.labels << { x: 60, y: 120.from_top, text: "Count: #{args.state.bullets.length}" } args.outputs.borders << args.state.terrain args.outputs.sprites << args.state.bullets end # $gtk.reset
Performance - Collision Limits Find Single - main.rb link
# ./samples/09_performance/09_collision_limits_find_single/app/main.rb def tick args if args.state.should_reset_framerate_calculation args.gtk.reset_framerate_calculation args.state.should_reset_framerate_calculation = nil end if !args.state.rects args.state.rects = [] add_10_000_random_rects args end args.state.player_rect ||= { x: 640 - 20, y: 360 - 20, w: 40, h: 40 } args.state.collision_type ||= :using_lambda if args.state.tick_count == 0 generate_scene args, args.state.quad_tree end # inputs # have a rectangle that can be moved around using arrow keys args.state.player_rect.x += args.inputs.left_right * 4 args.state.player_rect.y += args.inputs.up_down * 4 if args.inputs.mouse.click add_10_000_random_rects args args.state.should_reset_framerate_calculation = true end if args.inputs.keyboard.key_down.tab if args.state.collision_type == :using_lambda args.state.collision_type = :using_while_loop elsif args.state.collision_type == :using_while_loop args.state.collision_type = :using_find_intersect_rect elsif args.state.collision_type == :using_find_intersect_rect args.state.collision_type = :using_lambda end args.state.should_reset_framerate_calculation = true end # calc if args.state.collision_type == :using_lambda args.state.current_collision = args.state.rects.find { |r| r.intersect_rect? args.state.player_rect } elsif args.state.collision_type == :using_while_loop args.state.current_collision = nil idx = 0 l = args.state.rects.length rects = args.state.rects player = args.state.player_rect while idx < l if rects[idx].intersect_rect? player args.state.current_collision = rects[idx] break end idx += 1 end else args.state.current_collision = args.geometry.find_intersect_rect args.state.player_rect, args.state.rects end # render render_instructions args args.outputs.sprites << { x: 0, y: 0, w: 1280, h: 720, path: :scene } if args.state.current_collision args.outputs.sprites << args.state.current_collision.merge(path: :pixel, r: 255, g: 0, b: 0) end args.outputs.sprites << args.state.player_rect.merge(path: :pixel, a: 80, r: 0, g: 255, b: 0) args.outputs.labels << { x: args.state.player_rect.x + args.state.player_rect.w / 2, y: args.state.player_rect.y + args.state.player_rect.h / 2, text: "player", alignment_enum: 1, vertical_alignment_enum: 1, size_enum: -4 } end def add_10_000_random_rects args add_rects args, 10_000.map { { x: rand(1080) + 100, y: rand(520) + 100 } } end def add_rects args, points args.state.rects.concat(points.map { |point| { x: point.x, y: point.y, w: 5, h: 5 } }) # args.state.quad_tree = args.geometry.quad_tree_create args.state.rects generate_scene args, args.state.quad_tree end def add_rect args, x, y args.state.rects << { x: x, y: y, w: 5, h: 5 } # args.state.quad_tree = args.geometry.quad_tree_create args.state.rects generate_scene args, args.state.quad_tree end def generate_scene args, quad_tree args.outputs[:scene].transient! args.outputs[:scene].w = 1280 args.outputs[:scene].h = 720 args.outputs[:scene].solids << { x: 0, y: 0, w: 1280, h: 720, r: 255, g: 255, b: 255 } args.outputs[:scene].sprites << args.state.rects.map { |r| r.merge(path: :pixel, r: 0, g: 0, b: 255) } end def render_instructions args args.outputs.primitives << { x: 0, y: 90.from_top, w: 1280, h: 100, r: 0, g: 0, b: 0, a: 200 }.solid! args.outputs.labels << { x: 10, y: 10.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "Click to add 10,000 random rects. Tab to change collision algorithm." } args.outputs.labels << { x: 10, y: 40.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "Algorithm: #{args.state.collision_type}" } args.outputs.labels << { x: 10, y: 55.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "Rect Count: #{args.state.rects.length}" } args.outputs.labels << { x: 10, y: 70.from_top, r: 255, g: 255, b: 255, size_enum: -2, text: "FPS: #{args.gtk.current_framerate.to_sf}" } end
Performance - Collision Limits Many To Many - main.rb link
# ./samples/09_performance/09_collision_limits_many_to_many/app/main.rb class Square attr_sprite def initialize @x = rand 1280 @y = rand 720 @w = 15 @h = 15 @path = 'sprites/square/blue.png' @dir = 1 end def mark_collisions all @path = if all[self] 'sprites/square/red.png' else 'sprites/square/blue.png' end end def move @dir = -1 if (@x + @w >= 1280) && @dir == 1 @dir = 1 if (@x <= 0) && @dir == -1 @x += @dir end end def reset_if_needed args if args.state.tick_count == 0 || args.inputs.mouse.click args.state.star_count = 1500 args.state.stars = args.state.star_count.map { |i| Square.new }.to_a args.outputs.static_sprites.clear args.outputs.static_sprites << args.state.stars end end def tick args reset_if_needed args Fn.each args.state.stars do |s| s.move end all = GTK::Geometry.find_collisions args.state.stars Fn.each args.state.stars do |s| s.mark_collisions all end args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end
Ui Controls - Checkboxes - main.rb link
# ./samples/09_ui_controls/01_checkboxes/app/main.rb def tick args # use layout apis to position check boxes args.state.checkboxes ||= [ args.layout.rect(row: 0, col: 0, w: 1, h: 1).merge(id: :option1, text: "Option 1", checked: false, changed_at: -120), args.layout.rect(row: 1, col: 0, w: 1, h: 1).merge(id: :option1, text: "Option 2", checked: false, changed_at: -120), args.layout.rect(row: 2, col: 0, w: 1, h: 1).merge(id: :option1, text: "Option 3", checked: false, changed_at: -120), args.layout.rect(row: 3, col: 0, w: 1, h: 1).merge(id: :option1, text: "Option 4", checked: false, changed_at: -120), ] # check for click of checkboxes if args.inputs.mouse.click args.state.checkboxes.find_all do |checkbox| args.inputs.mouse.inside_rect? checkbox end.each do |checkbox| # mark checkbox value checkbox.checked = !checkbox.checked # set the time the checkbox was changed checkbox.changed_at = args.state.tick_count end end # render checkboxes args.outputs.primitives << args.state.checkboxes.map do |checkbox| # baseline prefab for checkbox prefab = { x: checkbox.x, y: checkbox.y, w: checkbox.w, h: checkbox.h } # label for checkbox centered vertically label = { x: checkbox.x + checkbox.w + 10, y: checkbox.y + checkbox.h / 2, text: checkbox.text, alignment_enum: 0, vertical_alignment_enum: 1 } # rendering if checked or not if checkbox.checked # fade in a = 255 * args.easing.ease(checkbox.changed_at, args.state.tick_count, 30, :smooth_stop_quint) [ label, prefab.merge(primitive_marker: :solid, a: a), prefab.merge(primitive_marker: :border) ] else # fade out a = 255 * args.easing.ease(checkbox.changed_at, args.state.tick_count, 30, :smooth_stop_quint, :flip) [ label, prefab.merge(primitive_marker: :solid, a: a), prefab.merge(primitive_marker: :border) ] end end end
Advanced Debugging - Logging - main.rb link
# ./samples/10_advanced_debugging/00_logging/app/main.rb def tick args args.outputs.background_color = [255, 255, 255, 0] if args.state.tick_count == 0 args.gtk.log_spam "log level spam" args.gtk.log_debug "log level debug" args.gtk.log_info "log level info" args.gtk.log_warn "log level warn" args.gtk.log_error "log level error" args.gtk.log_unfiltered "log level unfiltered" puts "This is a puts call" args.gtk.console.show end if args.state.tick_count == 60 puts "This is a puts call on tick 60" elsif args.state.tick_count == 120 puts "This is a puts call on tick 120" end end
Advanced Debugging - Unit Tests - benchmark_api_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/benchmark_api_tests.rb def test_benchmark_api args, assert result = args.gtk.benchmark iterations: 100, only_one: -> () { r = 0 (1..100).each do |i| r += 1 end } assert.equal! result.first_place.name, :only_one result = args.gtk.benchmark iterations: 100, iterations_100: -> () { r = 0 (1..100).each do |i| r += 1 end }, iterations_50: -> () { r = 0 (1..50).each do |i| r += 1 end } assert.equal! result.first_place.name, :iterations_50 result = args.gtk.benchmark iterations: 1, iterations_100: -> () { r = 0 (1..100).each do |i| r += 1 end }, iterations_50: -> () { r = 0 (1..50).each do |i| r += 1 end } assert.equal! result.too_small_to_measure, true end
Advanced Debugging - Unit Tests - exception_raising_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/exception_raising_tests.rb begin :shared class ExceptionalClass def initialize exception_to_throw = nil raise exception_to_throw if exception_to_throw end end end def test_exception_in_newing_object args, assert begin ExceptionalClass.new TypeError raise "Exception wasn't thrown!" rescue Exception => e assert.equal! e.class, TypeError, "Exceptions within constructor should be retained." end end $gtk.reset 100 $gtk.log_level = :off
Advanced Debugging - Unit Tests - fn_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/fn_tests.rb def infinity 1 / 0 end def neg_infinity -1 / 0 end def nan 0.0 / 0 end def test_add args, assert assert.equal! (args.fn.add), 0 assert.equal! (args.fn.+), 0 assert.equal! (args.fn.+ 1, 2, 3), 6 assert.equal! (args.fn.+ 0), 0 assert.equal! (args.fn.+ 0, nil), 0 assert.equal! (args.fn.+ 0, nan), nil assert.equal! (args.fn.+ 0, nil, infinity), nil assert.equal! (args.fn.+ [1, 2, 3, [4, 5, 6]]), 21 assert.equal! (args.fn.+ [nil, [4, 5, 6]]), 15 end def test_sub args, assert neg_infinity = infinity * -1 assert.equal! (args.fn.+), 0 assert.equal! (args.fn.- 1, 2, 3), -4 assert.equal! (args.fn.- 4), -4 assert.equal! (args.fn.- 4, nan), nil assert.equal! (args.fn.- 0, nil), 0 assert.equal! (args.fn.- 0, nil, infinity), nil assert.equal! (args.fn.- [0, 1, 2, 3, [4, 5, 6]]), -21 assert.equal! (args.fn.- [nil, 0, [4, 5, 6]]), -15 end def test_div args, assert assert.equal! (args.fn.div), 1 assert.equal! (args.fn./), 1 assert.equal! (args.fn./ 6, 3), 2 assert.equal! (args.fn./ 6, infinity), nil assert.equal! (args.fn./ 6, nan), nil assert.equal! (args.fn./ infinity), nil assert.equal! (args.fn./ 0), nil assert.equal! (args.fn./ 6, [3]), 2 end def test_idiv args, assert assert.equal! (args.fn.idiv), 1 assert.equal! (args.fn.idiv 7, 3), 2 assert.equal! (args.fn.idiv 6, infinity), nil assert.equal! (args.fn.idiv 6, nan), nil assert.equal! (args.fn.idiv infinity), nil assert.equal! (args.fn.idiv 0), nil assert.equal! (args.fn.idiv 7, [3]), 2 end def test_mul args, assert assert.equal! (args.fn.mul), 1 assert.equal! (args.fn.*), 1 assert.equal! (args.fn.* 7, 3), 21 assert.equal! (args.fn.* 6, nan), nil assert.equal! (args.fn.* 6, infinity), nil assert.equal! (args.fn.* infinity), nil assert.equal! (args.fn.* 0), 0 assert.equal! (args.fn.* 7, [3]), 21 end def test_lt args, assert assert.equal! (args.fn.lt 1), 1 assert.equal! (args.fn.lt), nil assert.equal! (args.fn.lt infinity), nil assert.equal! (args.fn.lt nan), nil assert.equal! (args.fn.lt 10, 9, 8), 8 assert.equal! (args.fn.< 10, 9, 8), 8 assert.equal! (args.fn.< [10, 9, [8]]), 8 assert.equal! (args.fn.< 10, 10), nil end def test_lte args, assert assert.equal! (args.fn.lte 1), 1 assert.equal! (args.fn.lte), nil assert.equal! (args.fn.lte infinity), nil assert.equal! (args.fn.lte nan), nil assert.equal! (args.fn.lte 10, 9, 8), 8 assert.equal! (args.fn.lte 10, 10), 10 assert.equal! (args.fn.lte 10, 9, [8]), 8 assert.equal! (args.fn.<= 10, 9, 8), 8 end def test_gt args, assert assert.equal! (args.fn.gt 1), 1 assert.equal! (args.fn.gt), nil assert.equal! (args.fn.gt infinity), nil assert.equal! (args.fn.gt nan), nil assert.equal! (args.fn.gt 8, 9, 10), 10 assert.equal! (args.fn.gt [8, 9, [10]]), 10 assert.equal! (args.fn.gt 10, 10), nil assert.equal! (args.fn.gt 10, 10), nil assert.equal! (args.fn.gt 10, 9), nil assert.equal! (args.fn.> 8, 9, 10), 10 end def test_gte args, assert assert.equal! (args.fn.gte 1), 1 assert.equal! (args.fn.gte), nil assert.equal! (args.fn.gte infinity), nil assert.equal! (args.fn.gte nan), nil assert.equal! (args.fn.gte 8, 9, 10), 10 assert.equal! (args.fn.gte 10, 10), 10 assert.equal! (args.fn.gte 8, 9, [10]), 10 assert.equal! (args.fn.gte 10, 9), nil assert.equal! (args.fn.>= 8, 9, 10), 10 end def test_acopy args, assert orig = [1, 2, 3] clone = args.fn.acopy orig assert.equal! clone, [1, 2, 3] assert.equal! clone, orig assert.not_equal! clone.object_id, orig.object_id end def test_aget args, assert assert.equal! (args.fn.aget [:a, :b, :c], 1), :b assert.equal! (args.fn.aget [:a, :b, :c], nil), nil assert.equal! (args.fn.aget nil, 1), nil end def test_alength args, assert assert.equal! (args.fn.alength [:a, :b, :c]), 3 assert.equal! (args.fn.alength nil), nil end def test_amap args, assert inc = lambda { |i| i + 1 } ary = [1, 2, 3] assert.equal! (args.fn.amap ary, inc), [2, 3, 4] assert.equal! (args.fn.amap nil, inc), nil assert.equal! (args.fn.amap ary, nil), nil assert.equal! (args.fn.amap ary, inc).class, Array end def test_and args, assert assert.equal! (args.fn.and 1, 2, 3, 4), 4 assert.equal! (args.fn.and 1, 2, nil, 4), nil assert.equal! (args.fn.and), true end def test_or args, assert assert.equal! (args.fn.or 1, 2, 3, 4), 1 assert.equal! (args.fn.or 1, 2, nil, 4), 1 assert.equal! (args.fn.or), nil assert.equal! (args.fn.or nil, nil, false, 5, 10), 5 end def test_eq_eq args, assert assert.equal! (args.fn.eq?), true assert.equal! (args.fn.eq? 1, 0), false assert.equal! (args.fn.eq? 1, 1, 1), true assert.equal! (args.fn.== 1, 1, 1), true assert.equal! (args.fn.== nil, nil), true end def test_apply args, assert assert.equal! (args.fn.and [nil, nil, nil]), [nil, nil, nil] assert.equal! (args.fn.apply [nil, nil, nil], args.fn.method(:and)), nil and_lambda = lambda {|*xs| args.fn.and(*xs)} assert.equal! (args.fn.apply [nil, nil, nil], and_lambda), nil end def test_areduce args, assert assert.equal! (args.fn.areduce [1, 2, 3], 0, lambda { |i, a| i + a }), 6 end def test_array_hash args, assert assert.equal! (args.fn.array_hash :a, 1, :b, 2), { a: 1, b: 2 } assert.equal! (args.fn.array_hash), { } end
Advanced Debugging - Unit Tests - gen_docs.rb link
# ./samples/10_advanced_debugging/03_unit_tests/gen_docs.rb # ./dragonruby mygame --eval samples/99_zz_gtk_unit_tests/gen_docs.rb --no-tick Kernel.export_docs!
Advanced Debugging - Unit Tests - geometry_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/geometry_tests.rb begin :shared def primitive_representations x, y, w, h [ [x, y, w, h], { x: x, y: y, w: w, h: h }, RectForTest.new(x, y, w, h) ] end class RectForTest attr_sprite def initialize x, y, w, h @x = x @y = y @w = w @h = h end def to_s "RectForTest: #{[x, y, w, h]}" end end end begin :intersect_rect? def test_intersect_rect_point args, assert assert.true! [16, 13].intersect_rect?([13, 12, 4, 4]), "point intersects with rect." end def test_intersect_rect args, assert intersecting = primitive_representations(0, 0, 100, 100) + primitive_representations(20, 20, 20, 20) intersecting.product(intersecting).each do |rect_one, rect_two| assert.true! rect_one.intersect_rect?(rect_two), "intersect_rect? assertion failed for #{rect_one}, #{rect_two} (expected true)." end not_intersecting = [ [ 0, 0, 5, 5], { x: 10, y: 10, w: 5, h: 5 }, RectForTest.new(20, 20, 5, 5) ] not_intersecting.product(not_intersecting) .reject { |rect_one, rect_two| rect_one == rect_two } .each do |rect_one, rect_two| assert.false! rect_one.intersect_rect?(rect_two), "intersect_rect? assertion failed for #{rect_one}, #{rect_two} (expected false)." end end end begin :inside_rect? def assert_inside_rect outer: nil, inner: nil, expected: nil, assert: nil assert.true! inner.inside_rect?(outer) == expected, "inside_rect? assertion failed for outer: #{outer} inner: #{inner} (expected #{expected})." end def test_inside_rect args, assert outer_rects = primitive_representations(0, 0, 10, 10) inner_rects = primitive_representations(1, 1, 5, 5) primitive_representations(0, 0, 10, 10).product(primitive_representations(1, 1, 5, 5)) .each do |outer, inner| assert_inside_rect outer: outer, inner: inner, expected: true, assert: assert end end end begin :angle_to def test_angle_to args, assert origins = primitive_representations(0, 0, 0, 0) rights = primitive_representations(1, 0, 0, 0) aboves = primitive_representations(0, 1, 0, 0) origins.product(aboves).each do |origin, above| assert.equal! origin.angle_to(above), 90, "A point directly above should be 90 degrees." assert.equal! above.angle_from(origin), 90, "A point coming from above should be 90 degrees." end origins.product(rights).each do |origin, right| assert.equal! origin.angle_to(right) % 360, 0, "A point directly to the right should be 0 degrees." assert.equal! right.angle_from(origin) % 360, 0, "A point coming from the right should be 0 degrees." end end end begin :scale_rect def test_scale_rect args, assert assert.equal! [0, 0, 100, 100].scale_rect(0.5, 0.5), [25.0, 25.0, 50.0, 50.0] assert.equal! [0, 0, 100, 100].scale_rect(0.5), [0.0, 0.0, 50.0, 50.0] assert.equal! [0, 0, 100, 100].scale_rect_extended(percentage_x: 0.5, percentage_y: 0.5, anchor_x: 0.5, anchor_y: 0.5), [25.0, 25.0, 50.0, 50.0] assert.equal! [0, 0, 100, 100].scale_rect_extended(percentage_x: 0.5, percentage_y: 0.5, anchor_x: 0, anchor_y: 0), [0.0, 0.0, 50.0, 50.0] end end $gtk.reset 100 $gtk.log_level = :off
Advanced Debugging - Unit Tests - http_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/http_tests.rb def try_assert_or_schedule args, assert if $result[:complete] log_info "Request completed! Verifying." if $result[:http_response_code] != 200 log_info "The request yielded a result of #{$result[:http_response_code]} instead of 200." exit end log_info ":try_assert_or_schedule succeeded!" else args.gtk.schedule_callback Kernel.tick_count + 10 do try_assert_or_schedule args, assert end end end def test_http args, assert $result = $gtk.http_get 'http://dragonruby.org' try_assert_or_schedule args, assert end $gtk.reset 100 $gtk.log_level = :off
Advanced Debugging - Unit Tests - input_emulation_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/input_emulation_tests.rb def test_keyboard args, assert args.inputs.keyboard.key_down.i = true assert.true! args.inputs.keyboard.truthy_keys.include?(:i) end
Advanced Debugging - Unit Tests - nil_coercion_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/nil_coercion_tests.rb # numbers def test_open_entity_add_number args, assert assert.nil! args.state.i_value args.state.i_value += 5 assert.equal! args.state.i_value, 5 assert.nil! args.state.f_value args.state.f_value += 5.5 assert.equal! args.state.f_value, 5.5 end def test_open_entity_subtract_number args, assert assert.nil! args.state.i_value args.state.i_value -= 5 assert.equal! args.state.i_value, -5 assert.nil! args.state.f_value args.state.f_value -= 5.5 assert.equal! args.state.f_value, -5.5 end def test_open_entity_multiply_number args, assert assert.nil! args.state.i_value args.state.i_value *= 5 assert.equal! args.state.i_value, 0 assert.nil! args.state.f_value args.state.f_value *= 5.5 assert.equal! args.state.f_value, 0 end def test_open_entity_divide_number args, assert assert.nil! args.state.i_value args.state.i_value /= 5 assert.equal! args.state.i_value, 0 assert.nil! args.state.f_value args.state.f_value /= 5.5 assert.equal! args.state.f_value, 0 end # array def test_open_entity_add_array args, assert assert.nil! args.state.values args.state.values += [:a, :b, :c] assert.equal! args.state.values, [:a, :b, :c] end def test_open_entity_subtract_array args, assert assert.nil! args.state.values args.state.values -= [:a, :b, :c] assert.equal! args.state.values, [] end def test_open_entity_shovel_array args, assert assert.nil! args.state.values args.state.values << :a assert.equal! args.state.values, [:a] end def test_open_entity_enumerate args, assert assert.nil! args.state.values args.state.values = args.state.values.map_with_index { |i| i } assert.equal! args.state.values, [] assert.nil! args.state.values_2 args.state.values_2 = args.state.values_2.map { |i| i } assert.equal! args.state.values_2, [] assert.nil! args.state.values_3 args.state.values_3 = args.state.values_3.flat_map { |i| i } assert.equal! args.state.values_3, [] end # hashes def test_open_entity_indexer args, assert GTK::Entity.__reset_id__! assert.nil! args.state.values args.state.values[:test] = :value assert.equal! args.state.values.to_s, { entity_id: 1, entity_name: :values, entity_keys_by_ref: {}, test: :value }.to_s end # bug def test_open_entity_nil_bug args, assert GTK::Entity.__reset_id__! args.state.foo.a args.state.foo.b @hello[:foobar] assert.nil! args.state.foo.a, "a was not nil." # the line below fails # assert.nil! args.state.foo.b, "b was not nil." end
Advanced Debugging - Unit Tests - object_to_primitive_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/object_to_primitive_tests.rb class PlayerSpriteForTest end def test_array_to_sprite args, assert array = [[0, 0, 100, 100, "test.png"]].sprites puts "No exception was thrown. Sweet!" end def test_class_to_sprite args, assert array = [PlayerSprite.new].sprites assert.true! array.first.is_a?(PlayerSprite) puts "No exception was thrown. Sweet!" end $gtk.reset 100 $gtk.log_level = :off
Advanced Debugging - Unit Tests - parsing_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/parsing_tests.rb def test_parse_json args, assert result = args.gtk.parse_json '{ "name": "John Doe", "aliases": ["JD"] }' assert.equal! result, { "name"=>"John Doe", "aliases"=>["JD"] }, "Parsing JSON failed." end def test_parse_xml args, assert result = args.gtk.parse_xml <<-S <Person id="100"> <Name>John Doe</Name> </Person> S expected = {:type=>:element, :name=>nil, :children=>[{:type=>:element, :name=>"Person", :children=>[{:type=>:element, :name=>"Name", :children=>[{:type=>:content, :data=>"John Doe"}]}], :attributes=>{"id"=>"100"}}]} assert.equal! result, expected, "Parsing xml failed." end $gtk.reset 100 $gtk.log_level = :off
Advanced Debugging - Unit Tests - pretty_format_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/pretty_format_tests.rb def H opts opts end def A *opts opts end def assert_format args, assert, hash, expected actual = args.fn.pretty_format hash assert.are_equal! actual, expected end def test_pretty_print args, assert # ============================= # hash with single value # ============================= input = (H first_name: "John") expected = <<-S {:first_name "John"} S (assert_format args, assert, input, expected) # ============================= # hash with two values # ============================= input = (H first_name: "John", last_name: "Smith") expected = <<-S {:first_name "John" :last_name "Smith"} S (assert_format args, assert, input, expected) # ============================= # hash with inner hash # ============================= input = (H first_name: "John", last_name: "Smith", middle_initial: "I", so: (H first_name: "Pocahontas", last_name: "Tsenacommacah"), friends: (A (H first_name: "Side", last_name: "Kick"), (H first_name: "Tim", last_name: "Wizard"))) expected = <<-S {:first_name "John" :last_name "Smith" :middle_initial "I" :so {:first_name "Pocahontas" :last_name "Tsenacommacah"} :friends [{:first_name "Side" :last_name "Kick"} {:first_name "Tim" :last_name "Wizard"}]} S (assert_format args, assert, input, expected) # ============================= # array with one value # ============================= input = (A 1) expected = <<-S [1] S (assert_format args, assert, input, expected) # ============================= # array with multiple values # ============================= input = (A 1, 2, 3) expected = <<-S [1 2 3] S (assert_format args, assert, input, expected) # ============================= # array with multiple values hashes # ============================= input = (A (H first_name: "Side", last_name: "Kick"), (H first_name: "Tim", last_name: "Wizard")) expected = <<-S [{:first_name "Side" :last_name "Kick"} {:first_name "Tim" :last_name "Wizard"}] S (assert_format args, assert, input, expected) end def test_nested_nested args, assert # ============================= # nested array in nested hash # ============================= input = (H type: :root, text: "Root", children: (A (H level: 1, text: "Level 1", children: (A (H level: 2, text: "Level 2", children: []))))) expected = <<-S {:type :root :text "Root" :children [{:level 1 :text "Level 1" :children [{:level 2 :text "Level 2" :children []}]}]} S (assert_format args, assert, input, expected) end def test_scene args, assert script = <<-S * Scene 1 ** Narrator They say happy endings don't exist. ** Narrator They say true love is a lie. S input = parse_org args, script puts (args.fn.pretty_format input) end
Advanced Debugging - Unit Tests - require_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/require_tests.rb def write_src path, src $gtk.write_file path, src end write_src 'app/unit_testing_game.rb', <<-S module UnitTesting class Game end end S write_src 'lib/unit_testing_lib.rb', <<-S module UnitTesting class Lib end end S write_src 'app/nested/unit_testing_nested.rb', <<-S module UnitTesting class Nested end end S require 'app/unit_testing_game.rb' require 'app/nested/unit_testing_nested.rb' require 'lib/unit_testing_lib.rb' def test_require args, assert UnitTesting::Game.new UnitTesting::Lib.new UnitTesting::Nested.new $gtk.exec 'rm ./mygame/app/unit_testing_game.rb' $gtk.exec 'rm ./mygame/app/nested/unit_testing_nested.rb' $gtk.exec 'rm ./mygame/lib/unit_testing_lib.rb' assert.ok! end
Advanced Debugging - Unit Tests - serialize_deserialize_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/serialize_deserialize_tests.rb def assert_hash_strings! assert, string_1, string_2 Kernel.eval("$assert_hash_string_1 = #{string_1}") Kernel.eval("$assert_hash_string_2 = #{string_2}") assert.equal! $assert_hash_string_1, $assert_hash_string_2 end def test_serialize args, assert args.state.player_one = "test" result = args.gtk.serialize_state args.state assert_hash_strings! assert, result, "{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>\"test\"}" args.gtk.write_file 'state.txt', '' result = args.gtk.serialize_state 'state.txt', args.state assert_hash_strings! assert, result, "{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>\"test\"}" end def test_deserialize args, assert result = args.gtk.deserialize_state '{:entity_id=>3, :tick_count=>-1, :player_one=>"test"}' assert.equal! result.player_one, "test" args.gtk.write_file 'state.txt', '{:entity_id=>3, :tick_count=>-1, :player_one=>"test"}' result = args.gtk.deserialize_state 'state.txt' assert.equal! result.player_one, "test" end def test_very_large_serialization args, assert args.gtk.write_file("logs/log.txt", "") size = 3000 size.map_with_index do |i| args.state.send("k#{i}=".to_sym, i) end result = args.gtk.serialize_state args.state assert.true! $serialize_state_serialization_too_large end def test_strict_entity_serialization args, assert args.state.player_one = args.state.new_entity(:player, name: "Ryu") args.state.player_two = args.state.new_entity_strict(:player_strict, name: "Ken") serialized_state = args.gtk.serialize_state args.state assert_hash_strings! assert, serialized_state, '{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>{:entity_id=>3, :entity_name=>:player, :entity_keys_by_ref=>{}, :entity_type=>:player, :created_at=>-1, :global_created_at=>-1, :name=>"Ryu"}, :player_two=>{:entity_id=>5, :entity_name=>:player_strict, :entity_type=>:player_strict, :created_at=>-1, :global_created_at_elapsed=>-1, :entity_strict=>true, :entity_keys_by_ref=>{}, :name=>"Ken"}}' deserialize_state = args.gtk.deserialize_state serialized_state assert.equal! args.state.player_one.name, deserialize_state.player_one.name assert.true! args.state.player_one.is_a? GTK::OpenEntity assert.equal! args.state.player_two.name, deserialize_state.player_two.name assert.true! args.state.player_two.is_a? GTK::StrictEntity end def test_strict_entity_serialization_with_nil args, assert args.state.player_one = args.state.new_entity(:player, name: "Ryu") args.state.player_two = args.state.new_entity_strict(:player_strict, name: "Ken", blood_type: nil) serialized_state = args.gtk.serialize_state args.state assert_hash_strings! assert, serialized_state, '{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>{:entity_id=>3, :entity_name=>:player, :entity_keys_by_ref=>{}, :entity_type=>:player, :created_at=>-1, :global_created_at=>-1, :name=>"Ryu"}, :player_two=>{:entity_name=>:player_strict, :global_created_at_elapsed=>-1, :created_at=>-1, :blood_type=>nil, :name=>"Ken", :entity_type=>:player_strict, :entity_strict=>true, :entity_keys_by_ref=>{}, :entity_id=>4}}' deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! args.state.player_one.name, deserialized_state.player_one.name assert.true! args.state.player_one.is_a? GTK::OpenEntity assert.equal! args.state.player_two.name, deserialized_state.player_two.name assert.equal! args.state.player_two.blood_type, deserialized_state.player_two.blood_type assert.equal! deserialized_state.player_two.blood_type, nil assert.true! args.state.player_two.is_a? GTK::StrictEntity deserialized_state.player_two.blood_type = :O assert.equal! deserialized_state.player_two.blood_type, :O end def test_multiple_strict_entities args, assert args.state.player = args.state.new_entity_strict(:player_one, name: "Ryu") args.state.enemy = args.state.new_entity_strict(:enemy, name: "Bison", other_property: 'extra mean') serialized_state = args.gtk.serialize_state args.state deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! deserialized_state.player.name, "Ryu" assert.equal! deserialized_state.enemy.other_property, "extra mean" end def test_by_reference_state args, assert args.state.a = args.state.new_entity(:person, name: "Jane Doe") args.state.b = args.state.a assert.equal! args.state.a.object_id, args.state.b.object_id serialized_state = args.gtk.serialize_state args.state deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! deserialized_state.a.object_id, deserialized_state.b.object_id end def test_by_reference_state_strict_entities args, assert args.state.strict_entity = args.state.new_entity_strict(:couple) do |e| e.one = args.state.new_entity_strict(:person, name: "Jane") e.two = e.one end assert.equal! args.state.strict_entity.one, args.state.strict_entity.two serialized_state = args.gtk.serialize_state args.state deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! deserialized_state.strict_entity.one, deserialized_state.strict_entity.two end def test_serialization_excludes_thrash_count args, assert args.state.player.name = "Ryu" # force a nil pun if args.state.player.age > 30 end assert.equal! args.state.player.as_hash[:__thrash_count__][:>], 1 result = args.gtk.serialize_state args.state assert.false! (result.include? "__thrash_count__"), "The __thrash_count__ key exists in state when it shouldn't have." end def test_serialization_does_not_mix_up_zero_and_true args, assert args.state.enemy.evil = true args.state.enemy.hp = 0 serialized = args.gtk.serialize_state args.state.enemy deserialized = args.gtk.deserialize_state serialized assert.equal! deserialized.hp, 0, "Value should have been deserialized as 0, but was #{deserialized.hp}" assert.equal! deserialized.evil, true, "Value should have been deserialized as true, but was #{deserialized.evil}" end
Advanced Debugging - Unit Tests - state_serialization_experimental_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/state_serialization_experimental_tests.rb MAX_CODE_GEN_LENGTH = 50 # NOTE: This is experimental/advanced stuff. def needs_partitioning? target target[:value].to_s.length > MAX_CODE_GEN_LENGTH end def partition target return [] unless needs_partitioning? target if target[:value].is_a? GTK::OpenEntity target[:value] = target[:value].hash end results = [] idx = 0 left, right = target[:value].partition do idx += 1 idx.even? end left, right = Hash[left], Hash[right] left = { value: left } right = { value: right} [left, right] end def add_partition target, path, aggregate, final_result partitions = partition target partitions.each do |part| if needs_partitioning? part if part[:value].keys.length == 1 first_key = part[:value].keys[0] new_part = { value: part[:value][first_key] } path.push first_key add_partition new_part, path, aggregate, final_result path.pop else add_partition part, path, aggregate, final_result end else final_result << { value: { __path__: [*path] } } final_result << { value: part[:value] } end end end def state_to_string state parts_queue = [] final_queue = [] add_partition({ value: state.hash }, [], parts_queue, final_queue) final_queue.reject {|i| i[:value].keys.length == 0}.map do |i| i[:value].to_s end.join("\n#==================================================#\n") end def state_from_string string Kernel.eval("$load_data = {}") lines = string.split("\n#==================================================#\n") lines.each do |l| puts "todo: #{l}" end GTK::OpenEntity.parse_from_hash $load_data end def test_save_and_load args, assert args.state.item_1.name = "Jane" string = state_to_string args.state state = state_from_string string assert.equal! args.state.item_1.name, state.item_1.name end def test_save_and_load_big args, assert size = 1000 size.map_with_index do |i| args.state.send("k#{i}=".to_sym, i) end string = state_to_string args.state state = state_from_string string size.map_with_index do |i| assert.equal! args.state.send("k#{i}".to_sym), state.send("k#{i}".to_sym) assert.equal! args.state.send("k#{i}".to_sym), i assert.equal! state.send("k#{i}".to_sym), i end end def test_save_and_load_big_nested args, assert args.state.player_one.friend.nested_hash.k0 = 0 args.state.player_one.friend.nested_hash.k1 = 1 args.state.player_one.friend.nested_hash.k2 = 2 args.state.player_one.friend.nested_hash.k3 = 3 args.state.player_one.friend.nested_hash.k4 = 4 args.state.player_one.friend.nested_hash.k5 = 5 args.state.player_one.friend.nested_hash.k6 = 6 args.state.player_one.friend.nested_hash.k7 = 7 args.state.player_one.friend.nested_hash.k8 = 8 args.state.player_one.friend.nested_hash.k9 = 9 string = state_to_string args.state state = state_from_string string end $gtk.reset 100 $gtk.log_level = :off
Advanced Debugging - Unit Tests - suggest_autocompletion_tests.rb link
# ./samples/10_advanced_debugging/03_unit_tests/suggest_autocompletion_tests.rb def default_suggest_autocompletion args { index: 4, text: "args.", __meta__: { other_options: [ { index: Fixnum, file: "app/main.rb" } ] } } end def assert_completion source, *expected results = suggest_autocompletion text: (source.strip.gsub ":cursor", ""), index: (source.strip.index ":cursor") puts results end def test_args_completion args, assert $gtk.write_file_root "autocomplete.txt", ($gtk.suggest_autocompletion text: <<-S, index: 128).join("\n") require 'app/game.rb' def tick args args.gtk.suppress_mailbox = false $game ||= Game.new $game.args = args $game.args. $game.tick end S puts "contents:" puts ($gtk.read_file "autocomplete.txt") end
Http - Retrieve Images - main.rb link
# ./samples/11_http/01_retrieve_images/app/main.rb $gtk.register_cvar 'app.warn_seconds', "seconds to wait before starting", :uint, 11 def tick args args.outputs.background_color = [0, 0, 0] # Show a warning at the start. args.state.warning_debounce ||= args.cvars['app.warn_seconds'].value * 60 if args.state.warning_debounce > 0 args.state.warning_debounce -= 1 args.outputs.labels << [640, 600, "This app shows random images from the Internet.", 10, 1, 255, 255, 255] args.outputs.labels << [640, 500, "Quit in the next few seconds if this is a problem.", 10, 1, 255, 255, 255] args.outputs.labels << [640, 350, "#{(args.state.warning_debounce / 60.0).to_i}", 10, 1, 255, 255, 255] return end args.state.download_debounce ||= 0 # start immediately, reset to non zero later. args.state.photos ||= [] # Put a little pause between each download. if args.state.download.nil? if args.state.download_debounce > 0 args.state.download_debounce -= 1 else args.state.download = $gtk.http_get 'https://picsum.photos/200/300.jpg' end end if !args.state.download.nil? if args.state.download[:complete] if args.state.download[:http_response_code] == 200 fname = "sprites/#{args.state.photos.length}.jpg" $gtk.write_file fname, args.state.download[:response_data] args.state.photos << [ 100 + rand(1080), 500 - rand(480), fname, rand(80) - 40 ] end args.state.download = nil args.state.download_debounce = (rand(3) + 2) * 60 end end # draw any downloaded photos... args.state.photos.each { |i| args.outputs.primitives << [i[0], i[1], 200, 300, i[2], i[3]].sprite } # Draw a download progress bar... args.outputs.primitives << [0, 0, 1280, 30, 0, 0, 0, 255].solid if !args.state.download.nil? br = args.state.download[:response_read] total = args.state.download[:response_total] if total != 0 pct = br.to_f / total.to_f args.outputs.primitives << [0, 0, 1280 * pct, 30, 0, 0, 255, 255].solid end end end
Http - In Game Web Server Http Get - main.rb link
# ./samples/11_http/02_in_game_web_server_http_get/app/main.rb def tick args args.state.port ||= 3000 args.state.reqnum ||= 0 # by default the embedded webserver runs on port 9001 (the port number is over 9000) and is disabled in a production build # to enable the http server in a production build, you need to manually start # the server up: args.gtk.start_server! port: args.state.port, enable_in_prod: true args.outputs.background_color = [0, 0, 0] args.outputs.labels << [640, 600, "Point your web browser at http://localhost:#{args.state.port}/", 10, 1, 255, 255, 255] args.inputs.http_requests.each { |req| puts("METHOD: #{req.method}"); puts("URI: #{req.uri}"); puts("HEADERS:"); req.headers.each { |k,v| puts(" #{k}: #{v}") } if (req.uri == '/') # headers and body can be nil if you don't care about them. # If you don't set the Content-Type, it will default to # "text/html; charset=utf-8". # Don't set Content-Length; we'll ignore it and calculate it for you args.state.reqnum += 1 req.respond 200, "<html><head><title>hello</title></head><body><h1>This #{req.method} was request number #{args.state.reqnum}!</h1></body></html>\n", { 'X-DRGTK-header' => 'Powered by DragonRuby!' } else req.reject end } end
Http - In Game Web Server Http Post - main.rb link
# ./samples/11_http/03_in_game_web_server_http_post/app/main.rb def tick args # defaults args.state.post_button = args.layout.rect(row: 0, col: 0, w: 5, h: 1).merge(text: "execute http_post") args.state.post_body_button = args.layout.rect(row: 1, col: 0, w: 5, h: 1).merge(text: "execute http_post_body") args.state.request_to_s ||= "" args.state.request_body ||= "" # render args.state.post_button.yield_self do |b| args.outputs.borders << b args.outputs.labels << b.merge(text: b.text, y: b.y + 30, x: b.x + 10) end args.state.post_body_button.yield_self do |b| args.outputs.borders << b args.outputs.labels << b.merge(text: b.text, y: b.y + 30, x: b.x + 10) end draw_label args, 0, 6, "Request:", args.state.request_to_s draw_label args, 0, 14, "Request Body Unaltered:", args.state.request_body # input if args.inputs.mouse.click # ============= HTTP_POST ============= if (args.inputs.mouse.inside_rect? args.state.post_button) # ========= DATA TO SEND =========== form_fields = { "userId" => "#{Time.now.to_i}" } # ================================== args.gtk.http_post "http://localhost:9001/testing", form_fields, ["Content-Type: application/x-www-form-urlencoded"] args.gtk.notify! "http_post" end # ============= HTTP_POST_BODY ============= if (args.inputs.mouse.inside_rect? args.state.post_body_button) # =========== DATA TO SEND ============== json = "{ \"userId\": \"#{Time.now.to_i}\"}" # ================================== args.gtk.http_post_body "http://localhost:9001/testing", json, ["Content-Type: application/json", "Content-Length: #{json.length}"] args.gtk.notify! "http_post_body" end end # calc args.inputs.http_requests.each do |r| puts "#{r}" if r.uri == "/testing" puts r args.state.request_to_s = "#{r}" args.state.request_body = r.raw_body r.respond 200, "ok" end end end def draw_label args, row, col, header, text label_pos = args.layout.rect(row: row, col: col, w: 0, h: 0) args.outputs.labels << "#{header}\n\n#{text}".wrapped_lines(80).map_with_index do |l, i| { x: label_pos.x, y: label_pos.y - (i * 15), text: l, size_enum: -2 } end end
C Extensions - Basics - main.rb link
# ./samples/12_c_extensions/01_basics/app/main.rb $gtk.ffi_misc.gtk_dlopen("ext") include FFI::CExt def tick args args.outputs.labels << [640, 500, "mouse.x = #{args.mouse.x.to_i}", 5, 1] args.outputs.labels << [640, 460, "square(mouse.x) = #{square(args.mouse.x.to_i)}", 5, 1] args.outputs.labels << [640, 420, "mouse.y = #{args.mouse.y.to_i}", 5, 1] args.outputs.labels << [640, 380, "square(mouse.y) = #{square(args.mouse.y.to_i)}", 5, 1] end
C Extensions - Intermediate - main.rb link
# ./samples/12_c_extensions/02_intermediate/app/main.rb $gtk.ffi_misc.gtk_dlopen("ext") include FFI::RE def split_words(input) words = [] last = IntPointer.new re = re_compile("\\w+") first = re_matchp(re, input, last) while first != -1 words << input.slice(first, last.value) input = input.slice(last.value + first, input.length) first = re_matchp(re, input, last) end words end def tick args args.outputs.labels << [640, 500, split_words("hello, dragonriders!").join(' '), 5, 1] end
C Extensions - Native Pixel Arrays - main.rb link
# ./samples/12_c_extensions/03_native_pixel_arrays/app/main.rb $gtk.ffi_misc.gtk_dlopen("ext") include FFI::CExt def tick args args.state.rotation ||= 0 update_scanner_texture # this calls into a C extension! # New/changed pixel arrays get uploaded to the GPU before we render # anything. At that point, they can be scaled, rotated, and otherwise # used like any other sprite. w = 100 h = 100 x = (1280 - w) / 2 y = (720 - h) / 2 args.outputs.background_color = [64, 0, 128] args.outputs.primitives << [x, y, w, h, :scanner, args.state.rotation].sprite args.state.rotation += 1 args.outputs.primitives << args.gtk.current_framerate_primitives end
C Extensions - Handcrafted Extension - main.rb link
# ./samples/12_c_extensions/04_handcrafted_extension/app/main.rb $gtk.ffi_misc.gtk_dlopen("ext") include FFI::CExt puts Adder.new.add_all(1, 2, 3, [4, 5, 6.0]) def tick args end
C Extensions - Handcrafted Extension - license.txt link
# ./samples/12_c_extensions/04_handcrafted_extension/license.txt Copyright 2022 DragonRuby LLC MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
C Extensions - Ios C Extensions - main.rb link
# ./samples/12_c_extensions/05_ios_c_extensions/app/main.rb # NOTE: This is assumed to be executed with mygame as the root directory # you'll need to copy this code over there to try it out. # Steps: # 1. Create ext.h and ext.m # 2. Create Info.plist file # 3. Add before_create_payload to IOSWizard (which does the following): # a. run ./dragonruby-bind against C Extension and update implementation file # b. create output location for iOS Framework # c. compile C extension into Framework # d. copy framework to Payload directory and Sign # 4. Run $wizards.ios.start env: (:prod|:dev|:hotload) to create ipa # 5. Invoke args.gtk.dlopen giving the name of the C Extensions (~1s to load). # 6. Invoke methods as needed. # =================================================== # before_create_payload iOS Wizard # =================================================== class IOSWizard < Wizard def before_create_payload puts "* INFO - before_create_payload" # invoke ./dragonruby-bind sh "./dragonruby-bind --output=mygame/ext-bind.m mygame/ext.h" # update generated implementation file contents = $gtk.read_file "ext-bind.m" contents = contents.gsub("#include \"mygame/ext.h\"", "#include \"mygame/ext.h\"\n#include \"mygame/ext.m\"") puts contents $gtk.write_file "ext-bind.m", contents # create output location sh "rm -rf ./mygame/native/ios-device/ext.framework" sh "mkdir -p ./mygame/native/ios-device/ext.framework" # compile C extension into framework sh <<-S clang -I. -I./mruby/include -I./include -o "./mygame/native/ios-device/ext.framework/ext" \\ -arch arm64 -dynamiclib -isysroot "/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk" \\ -install_name @rpath/ext.framework/ext \\ -fembed-bitcode -Xlinker -rpath -Xlinker @loader_path/Frameworks -dead_strip -Xlinker -rpath -fobjc-arc -fobjc-link-runtime \\ -F/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS.sdk/System/Library/Frameworks \\ -miphoneos-version-min=10.3 -Wl,-no_pie -licucore -stdlib=libc++ \\ -framework CFNetwork -framework UIKit -framework Foundation \\ ./mygame/ext-bind.m S # stage extension sh "cp ./mygame/native/ios-device/Info.plist ./mygame/native/ios-device/ext.framework/Info.plist" sh "mkdir -p \"#{app_path}/Frameworks/ext.framework/\"" sh "cp -r \"#{root_folder}/native/ios-device/ext.framework/\" \"#{app_path}/Frameworks/ext.framework/\"" # sign sh <<-S CODESIGN_ALLOCATE=#{codesign_allocate_path} #{codesign_path} \\ -f -s \"#{certificate_name}\" \\ \"#{app_path}/Frameworks/ext.framework/ext\" S end end def tick args if args.state.tick_count == 60 && args.gtk.platform?(:ios) args.gtk.dlopen 'ext' include FFI::CExt puts "the results of hello world are:" puts hello_world() $gtk.console.show end end
C Extensions - Ios C Extensions - Metadata - cvars.txt link
# ./samples/12_c_extensions/05_ios_c_extensions/metadata/cvars.txt
C Extensions - Ios C Extensions - Metadata - ios_metadata.txt link
# ./samples/12_c_extensions/05_ios_c_extensions/metadata/ios_metadata.txt teamid=TEAMID appid=APPID appname=ICON NAME version=1.0 devcert=NAME OF DEV CERT prodcert=NAME OF PROD CERT
Path Finding Algorithms - Breadth First Search - main.rb link
# ./samples/13_path_finding_algorithms/01_breadth_first_search/app/main.rb # Contributors outside of DragonRuby who also hold Copyright: # - Sujay Vadlakonda: https://github.com/sujayvadlakonda # A visual demonstration of a breadth first search # Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # An animation that can respond to user input in real time # A breadth first search expands in all directions one step at a time # The frontier is a queue of cells to be expanded from # The visited hash allows quick lookups of cells that have been expanded from # The walls hash allows quick lookup of whether a cell is a wall # The breadth first search starts by adding the red star to the frontier array # and marking it as visited # Each step a cell is removed from the front of the frontier array (queue) # Unless the neighbor is a wall or visited, it is added to the frontier array # The neighbor is then marked as visited # The frontier is blue # Visited cells are light brown # Walls are camo green # Even when walls are visited, they will maintain their wall color # The star can be moved by clicking and dragging # Walls can be added and removed by clicking and dragging class BreadthFirstSearch attr_gtk def initialize(args) # Variables to edit the size and appearance of the grid # Freely customizable to user's liking args.state.grid.width = 30 args.state.grid.height = 15 args.state.grid.cell_size = 40 # Stores which step of the animation is being rendered # When the user moves the star or messes with the walls, # the breadth first search is recalculated up to this step args.state.anim_steps = 0 # At some step the animation will end, # and further steps won't change anything (the whole grid will be explored) # This step is roughly the grid's width * height # When anim_steps equals max_steps no more calculations will occur # and the slider will be at the end args.state.max_steps = args.state.grid.width * args.state.grid.height # Whether the animation should play or not # If true, every tick moves anim_steps forward one # Pressing the stepwise animation buttons will pause the animation args.state.play = true # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search args.state.star = [0, 0] args.state.walls = { [3, 3] => true, [3, 4] => true, [3, 5] => true, [3, 6] => true, [3, 7] => true, [3, 8] => true, [3, 9] => true, [3, 10] => true, [3, 11] => true, [4, 3] => true, [4, 4] => true, [4, 5] => true, [4, 6] => true, [4, 7] => true, [4, 8] => true, [4, 9] => true, [4, 10] => true, [4, 11] => true, [13, 0] => true, [13, 1] => true, [13, 2] => true, [13, 3] => true, [13, 4] => true, [13, 5] => true, [13, 6] => true, [13, 7] => true, [13, 8] => true, [13, 9] => true, [13, 10] => true, [14, 0] => true, [14, 1] => true, [14, 2] => true, [14, 3] => true, [14, 4] => true, [14, 5] => true, [14, 6] => true, [14, 7] => true, [14, 8] => true, [14, 9] => true, [14, 10] => true, [21, 8] => true, [21, 9] => true, [21, 10] => true, [21, 11] => true, [21, 12] => true, [21, 13] => true, [21, 14] => true, [22, 8] => true, [22, 9] => true, [22, 10] => true, [22, 11] => true, [22, 12] => true, [22, 13] => true, [22, 14] => true, [23, 8] => true, [23, 9] => true, [24, 8] => true, [24, 9] => true, [25, 8] => true, [25, 9] => true, } # Variables that are used by the breadth first search # Storing cells that the search has visited, prevents unnecessary steps # Expanding the frontier of the search in order makes the search expand # from the center outward args.state.visited = {} args.state.frontier = [] # What the user is currently editing on the grid # Possible values are: :none, :slider, :star, :remove_wall, :add_wall # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. args.state.click_and_drag = :none # Store the rects of the buttons that control the animation # They are here for user customization # Editing these might require recentering the text inside them # Those values can be found in the render_button methods args.state.buttons.left = { x: 450, y: 600, w: 50, h: 50 } args.state.buttons.center = { x: 500, y: 600, w: 200, h: 50 } args.state.buttons.right = { x: 700, y: 600, w: 50, h: 50 } # The variables below are related to the slider # They allow the user to customize them # They also give a central location for the render and input methods to get # information from # x & y are the coordinates of the leftmost part of the slider line args.state.slider.x = 400 args.state.slider.y = 675 # This is the width of the line args.state.slider.w = 360 # This is the offset for the circle # Allows the center of the circle to be on the line, # as opposed to the upper right corner args.state.slider.offset = 20 # This is the spacing between each of the notches on the slider # Notches are places where the circle can rest on the slider line # There needs to be a notch for each step before the maximum number of steps args.state.slider.spacing = args.state.slider.w.to_f / args.state.max_steps.to_f end # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and # The next step in the search is calculated def tick render input # If animation is playing, and max steps have not been reached # Move the search a step forward if state.play && state.anim_steps < state.max_steps # Variable that tells the program what step to recalculate up to state.anim_steps += 1 calc end end # Draws everything onto the screen def render render_buttons render_slider render_background render_visited render_frontier render_walls render_star end # The methods below subdivide the task of drawing everything to the screen # Draws the buttons that control the animation step and state def render_buttons render_left_button render_center_button render_right_button end # Draws the button which steps the search backward # Shows the user where to click to move the search backward def render_left_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << buttons.left.merge(gray) outputs.borders << buttons.left # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.left[:x] + 20 label_y = buttons.left[:y] + 35 outputs.labels << { x: label_x, y: label_y, text: '<' } end def render_center_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << buttons.center.merge(gray) outputs.borders << buttons.center # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.center[:x] + 37 label_y = buttons.center[:y] + 35 label_text = state.play ? "Pause Animation" : "Play Animation" outputs.labels << { x: label_x, y: label_y, text: label_text } end def render_right_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << buttons.right.merge(gray) outputs.borders << buttons.right # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.right[:x] + 20 label_y = buttons.right[:y] + 35 outputs.labels << { x: label_x, y: label_y, text: ">" } end # Draws the slider so the user can move it and see the progress of the search def render_slider # Using a solid instead of a line, hides the line under the circle of the slider # Draws the line outputs.solids << { x: slider.x, y: slider.y, w: slider.w, h: 2 } # The circle needs to be offset so that the center of the circle # overlaps the line instead of the upper right corner of the circle # The circle's x value is also moved based on the current seach step circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) outputs.sprites << { x: circle_x, y: circle_y, w: 37, h: 37, path: 'circle-white.png' } end # Draws what the grid looks like with nothing on it def render_background render_unvisited render_grid_lines end # Draws a rectangle the size of the entire grid to represent unvisited cells def render_unvisited rect = { x: 0, y: 0, w: grid.width, h: grid.height } rect = rect.transform_values { |v| v * grid.cell_size } outputs.solids << rect.merge(unvisited_color) end # Draws grid lines to show the division of the grid into cells def render_grid_lines outputs.lines << (0..grid.width).map { |x| vertical_line(x) } outputs.lines << (0..grid.height).map { |y| horizontal_line(y) } end # Easy way to draw vertical lines given an index def vertical_line x line = { x: x, y: 0, w: 0, h: grid.height } line.transform_values { |v| v * grid.cell_size } end # Easy way to draw horizontal lines given an index def horizontal_line y line = { x: 0, y: y, w: grid.width, h: 0 } line.transform_values { |v| v * grid.cell_size } end # Draws the area that is going to be searched from # The frontier is the most outward parts of the search def render_frontier outputs.solids << state.frontier.map do |cell| render_cell cell, frontier_color end end # Draws the walls def render_walls outputs.solids << state.walls.map do |wall| render_cell wall, wall_color end end # Renders cells that have been searched in the appropriate color def render_visited outputs.solids << state.visited.map do |cell| render_cell cell, visited_color end end # Renders the star def render_star outputs.sprites << render_cell(state.star, { path: 'star.png' }) end def render_cell cell, attrs { x: cell.x * grid.cell_size, y: cell.y * grid.cell_size, w: grid.cell_size, h: grid.cell_size }.merge attrs end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid def scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # This method processes user input every tick # This method allows the user to use the buttons, slider, and edit the grid # There are 2 types of input: # Button Input # Click and Drag Input # # Button Input is used for the backward step and forward step buttons # Input is detected by mouse up within the bounds of the rect # # Click and Drag Input is used for moving the star, adding walls, # removing walls, and the slider # # When the mouse is down on the star, the click_and_drag variable is set to :star # While click_and_drag equals :star, the cursor's position is used to calculate the # appropriate drag behavior # # When the mouse goes up click_and_drag is set to :none # # A variable has to be used because the star has to continue being edited even # when the cursor is no longer over the star # # Similar things occur for the other Click and Drag inputs def input # Checks whether any of the buttons are being clicked input_buttons # The detection and processing of click and drag inputs are separate # The program has to remember that the user is dragging an object # even when the mouse is no longer over that object detect_click_and_drag process_click_and_drag end # Detects and Process input for each button def input_buttons input_left_button input_center_button input_next_step_button end # Checks if the previous step button is clicked # If it is, it pauses the animation and moves the search one step backward def input_left_button if left_button_clicked? state.play = false state.anim_steps -= 1 recalculate end end # Controls the play/pause button # Inverses whether the animation is playing or not when clicked def input_center_button if center_button_clicked? or inputs.keyboard.key_down.space state.play = !state.play end end # Checks if the next step button is clicked # If it is, it pauses the animation and moves the search one step forward def input_next_step_button if right_button_clicked? state.play = false state.anim_steps += 1 calc end end # Determines what the user is editing and stores the value # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def detect_click_and_drag if inputs.mouse.up state.click_and_drag = :none elsif star_clicked? state.click_and_drag = :star elsif wall_clicked? state.click_and_drag = :remove_wall elsif grid_clicked? state.click_and_drag = :add_wall elsif slider_clicked? state.click_and_drag = :slider end end # Processes click and drag based on what the user is currently dragging def process_click_and_drag if state.click_and_drag == :star input_star elsif state.click_and_drag == :remove_wall input_remove_wall elsif state.click_and_drag == :add_wall input_add_wall elsif state.click_and_drag == :slider input_slider end end # Moves the star to the grid closest to the mouse # Only recalculates the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def input_star old_star = state.star.clone state.star = cell_closest_to_mouse unless old_star == state.star recalculate end end # Removes walls that are under the cursor def input_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_inside_grid? if state.walls.key?(cell_closest_to_mouse) state.walls.delete(cell_closest_to_mouse) recalculate end end end # Adds walls at cells under the cursor def input_add_wall if mouse_inside_grid? unless state.walls.key?(cell_closest_to_mouse) state.walls[cell_closest_to_mouse] = true recalculate end end end # This method is called when the user is editing the slider # It pauses the animation and moves the white circle to the closest integer point # on the slider # Changes the step of the search to be animated def input_slider state.play = false mouse_x = inputs.mouse.point.x # Bounds the mouse_x to the closest x value on the slider line mouse_x = slider.x if mouse_x < slider.x mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w # Sets the current search step to the one represented by the mouse x value # The slider's circle moves due to the render_slider method using anim_steps state.anim_steps = ((mouse_x - slider.x) / slider.spacing).to_i recalculate end # Whenever the user edits the grid, # The search has to be recalculated upto the current step # with the current grid as the initial state of the grid def recalculate # Resets the search state.frontier = [] state.visited = {} # Moves the animation forward one step at a time state.anim_steps.times { calc } end # This method moves the search forward one step # When the animation is playing it is called every tick # And called whenever the current step of the animation needs to be recalculated # Moves the search forward one step # Parameter called_from_tick is true if it is called from the tick method # It is false when the search is being recalculated after user editing the grid def calc # The setup to the search # Runs once when the there is no frontier or visited cells if state.frontier.empty? && state.visited.empty? state.frontier << state.star state.visited[state.star] = true end # A step in the search unless state.frontier.empty? # Takes the next frontier cell new_frontier = state.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless state.visited.key?(neighbor) || state.walls.key?(neighbor) # Add them to the frontier and mark them as visited state.frontier << neighbor state.visited[neighbor] = true end end end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1 neighbors << [cell.x, cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y] unless cell.x == 0 neighbors end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def cell_closest_to_mouse # Closest cell to the mouse x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # These methods detect when the buttons are clicked def left_button_clicked? inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.left) end def center_button_clicked? inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.center) end def right_button_clicked? inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.right) end # Signal that the user is going to be moving the slider # Is the mouse down on the circle of the slider? def slider_clicked? circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] inputs.mouse.down && inputs.mouse.point.inside_rect?(circle_rect) end # Signal that the user is going to be moving the star def star_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star)) end # Signal that the user is going to be removing walls def wall_clicked? inputs.mouse.down && mouse_inside_a_wall? end # Signal that the user is going to be adding walls def grid_clicked? inputs.mouse.down && mouse_inside_grid? end # Returns whether the mouse is inside of a wall # Part of the condition that checks whether the user is removing a wall def mouse_inside_a_wall? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(scale_up([wall.x, wall.y])) end false end # Returns whether the mouse is inside of a grid # Part of the condition that checks whether the user is adding a wall def mouse_inside_grid? inputs.mouse.point.inside_rect?(scale_up([0, 0, grid.width, grid.height])) end # Light brown def unvisited_color { r: 221, g: 212, b: 213 } end # Dark Brown def visited_color { r: 204, g: 191, b: 179 } end # Blue def frontier_color { r: 103, g: 136, b: 204 } end # Camo Green def wall_color { r: 134, g: 134, b: 120 } end # Button Background def gray { r: 190, g: 190, b: 190 } end # These methods make the code more concise def grid state.grid end def buttons state.buttons end def slider state.slider end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Breadth First Search tick is called $breadth_first_search ||= BreadthFirstSearch.new(args) $breadth_first_search.args = args $breadth_first_search.tick end def reset $breadth_first_search = nil end
Path Finding Algorithms - Detailed Breadth First Search - main.rb link
# ./samples/13_path_finding_algorithms/02_detailed_breadth_first_search/app/main.rb # Contributors outside of DragonRuby who also hold Copyright: # - Sujay Vadlakonda: https://github.com/sujayvadlakonda # A visual demonstration of a breadth first search # Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # An animation that can respond to user input in real time # A breadth first search expands in all directions one step at a time # The frontier is a queue of cells to be expanded from # The visited hash allows quick lookups of cells that have been expanded from # The walls hash allows quick lookup of whether a cell is a wall # The breadth first search starts by adding the red star to the frontier array # and marking it as visited # Each step a cell is removed from the front of the frontier array (queue) # Unless the neighbor is a wall or visited, it is added to the frontier array # The neighbor is then marked as visited # The frontier is blue # Visited cells are light brown # Walls are camo green # Even when walls are visited, they will maintain their wall color # This search numbers the order in which new cells are explored # The next cell from where the search will continue is highlighted yellow # And the cells that will be considered for expansion are in semi-transparent green # The star can be moved by clicking and dragging # Walls can be added and removed by clicking and dragging class DetailedBreadthFirstSearch attr_gtk def initialize(args) # Variables to edit the size and appearance of the grid # Freely customizable to user's liking args.state.grid.width = 9 args.state.grid.height = 4 args.state.grid.cell_size = 90 # Stores which step of the animation is being rendered # When the user moves the star or messes with the walls, # the breadth first search is recalculated up to this step args.state.anim_steps = 0 # At some step the animation will end, # and further steps won't change anything (the whole grid will be explored) # This step is roughly the grid's width * height # When anim_steps equals max_steps no more calculations will occur # and the slider will be at the end args.state.max_steps = args.state.grid.width * args.state.grid.height # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search args.state.star = [3, 2] args.state.walls = {} # Variables that are used by the breadth first search # Storing cells that the search has visited, prevents unnecessary steps # Expanding the frontier of the search in order makes the search expand # from the center outward args.state.visited = {} args.state.frontier = [] args.state.cell_numbers = [] # What the user is currently editing on the grid # Possible values are: :none, :slider, :star, :remove_wall, :add_wall # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. args.state.click_and_drag = :none # The x, y, w, h values for the buttons # Allow easy movement of the buttons location # A centralized location to get values to detect input and draw the buttons # Editing these values might mean needing to edit the label offsets # which can be found in the appropriate render button methods args.state.buttons.left = [450, 600, 160, 50] args.state.buttons.right = [610, 600, 160, 50] # The variables below are related to the slider # They allow the user to customize them # They also give a central location for the render and input methods to get # information from # x & y are the coordinates of the leftmost part of the slider line args.state.slider.x = 400 args.state.slider.y = 675 # This is the width of the line args.state.slider.w = 360 # This is the offset for the circle # Allows the center of the circle to be on the line, # as opposed to the upper right corner args.state.slider.offset = 20 # This is the spacing between each of the notches on the slider # Notches are places where the circle can rest on the slider line # There needs to be a notch for each step before the maximum number of steps args.state.slider.spacing = args.state.slider.w.to_f / args.state.max_steps.to_f end # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and def tick render input end # This method is called from tick and renders everything every tick def render render_buttons render_slider render_background render_visited render_frontier render_walls render_star render_highlights render_cell_numbers end # The methods below subdivide the task of drawing everything to the screen # Draws the buttons that move the search backward or forward # These buttons are rendered so the user knows where to click to move the search def render_buttons render_left_button render_right_button end # Renders the button which steps the search backward # Shows the user where to click to move the search backward def render_left_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << [buttons.left, gray] outputs.borders << [buttons.left] # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.left.x + 05 label_y = buttons.left.y + 35 outputs.labels << [label_x, label_y, "< Step backward"] end # Renders the button which steps the search forward # Shows the user where to click to move the search forward def render_right_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << [buttons.right, gray] outputs.borders << [buttons.right] # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.right.x + 10 label_y = buttons.right.y + 35 outputs.labels << [label_x, label_y, "Step forward >"] end # Draws the slider so the user can move it and see the progress of the search def render_slider # Using primitives hides the line under the white circle of the slider # Draws the line outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line # The circle needs to be offset so that the center of the circle # overlaps the line instead of the upper right corner of the circle # The circle's x value is also moved based on the current seach step circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] outputs.primitives << [circle_rect, 'circle-white.png'].sprite end # Draws what the grid looks like with nothing on it # Which is a bunch of unvisited cells # Drawn first so other things can draw on top of it def render_background render_unvisited # The grid lines make the cells appear separate render_grid_lines end # Draws a rectangle the size of the entire grid to represent unvisited cells # Unvisited cells are the default cell def render_unvisited background = [0, 0, grid.width, grid.height] outputs.solids << scale_up(background).merge(unvisited_color) end # Draws grid lines to show the division of the grid into cells def render_grid_lines outputs.lines << (0..grid.width).map do |x| scale_up(vertical_line(x)).merge(grid_line_color) end outputs.lines << (0..grid.height).map do |y| scale_up(horizontal_line(y)).merge(grid_line_color) end end # Easy way to get a vertical line given an index def vertical_line column [column, 0, 0, grid.height] end # Easy way to get a horizontal line given an index def horizontal_line row [0, row, grid.width, 0] end # Draws the area that is going to be searched from # The frontier is the most outward parts of the search def render_frontier state.frontier.each do |cell| outputs.solids << scale_up(cell).merge(frontier_color) end end # Draws the walls def render_walls state.walls.each_key do |wall| outputs.solids << scale_up(wall).merge(wall_color) end end # Renders cells that have been searched in the appropriate color def render_visited state.visited.each_key do |cell| outputs.solids << scale_up(cell).merge(visited_color) end end # Renders the star def render_star outputs.sprites << scale_up(state.star).merge({ path: 'star.png' }) end # Cells have a number rendered in them based on when they were explored # This is based off of their index in the cell_numbers array # Cells are added to this array the same time they are added to the frontier array def render_cell_numbers state.cell_numbers.each_with_index do |cell, index| # Math that approx centers the number in the cell label_x = (cell.x * grid.cell_size) + grid.cell_size / 2 - 5 label_y = (cell.y * grid.cell_size) + (grid.cell_size / 2) + 5 outputs.labels << [label_x, label_y, (index + 1).to_s] end end # The next frontier to be expanded is highlighted yellow # Its adjacent non-wall neighbors have their border highlighted green # This is to show the user how the search expands def render_highlights return if state.frontier.empty? # Highlight the next frontier to be expanded yellow next_frontier = state.frontier[0] outputs.solids << scale_up(next_frontier).merge(highlighter_yellow) # Neighbors have a semi-transparent green layer over them # Unless the neighbor is a wall adjacent_neighbors(next_frontier).each do |neighbor| unless state.walls.key?(neighbor) outputs.solids << scale_up(neighbor).merge(highlighter_green) end end end # Cell Size is used when rendering to allow the grid to be scaled up or down # Cells in the frontier array and visited hash and walls hash are stored as x & y # Scaling up cells and lines when rendering allows omitting of width and height def scale_up(cell) if cell.size == 2 return { x: cell.x * grid.cell_size, y: cell.y * grid.cell_size, w: grid.cell_size, h: grid.cell_size } else return { x: cell.x * grid.cell_size, y: cell.y * grid.cell_size, w: cell.w * grid.cell_size, h: cell.h * grid.cell_size } end end # This method processes user input every tick # This method allows the user to use the buttons, slider, and edit the grid # There are 2 types of input: # Button Input # Click and Drag Input # # Button Input is used for the backward step and forward step buttons # Input is detected by mouse up within the bounds of the rect # # Click and Drag Input is used for moving the star, adding walls, # removing walls, and the slider # # When the mouse is down on the star, the click_and_drag variable is set to :star # While click_and_drag equals :star, the cursor's position is used to calculate the # appropriate drag behavior # # When the mouse goes up click_and_drag is set to :none # # A variable has to be used because the star has to continue being edited even # when the cursor is no longer over the star # # Similar things occur for the other Click and Drag inputs def input # Processes inputs for the buttons input_buttons # Detects which if any click and drag input is occurring detect_click_and_drag # Does the appropriate click and drag input based on the click_and_drag variable process_click_and_drag end # Detects and Process input for each button def input_buttons input_left_button input_right_button end # Checks if the previous step button is clicked # If it is, it pauses the animation and moves the search one step backward def input_left_button if left_button_clicked? unless state.anim_steps == 0 state.anim_steps -= 1 recalculate end end end # Checks if the next step button is clicked # If it is, it pauses the animation and moves the search one step forward def input_right_button if right_button_clicked? unless state.anim_steps == state.max_steps state.anim_steps += 1 # Although normally recalculate would be called here # because the right button only moves the search forward # We can just do that calc end end end # Whenever the user edits the grid, # The search has to be recalculated upto the current step def recalculate # Resets the search state.frontier = [] state.visited = {} state.cell_numbers = [] # Moves the animation forward one step at a time state.anim_steps.times { calc } end # Determines what the user is clicking and planning on dragging # Click and drag input is initiated by a click on the appropriate item # and ended by mouse up # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def detect_click_and_drag if inputs.mouse.up state.click_and_drag = :none elsif star_clicked? state.click_and_drag = :star elsif wall_clicked? state.click_and_drag = :remove_wall elsif grid_clicked? state.click_and_drag = :add_wall elsif slider_clicked? state.click_and_drag = :slider end end # Processes input based on what the user is currently dragging def process_click_and_drag if state.click_and_drag == :slider input_slider elsif state.click_and_drag == :star input_star elsif state.click_and_drag == :remove_wall input_remove_wall elsif state.click_and_drag == :add_wall input_add_wall end end # This method is called when the user is dragging the slider # It moves the current animation step to the point represented by the slider def input_slider mouse_x = inputs.mouse.point.x # Bounds the mouse_x to the closest x value on the slider line mouse_x = slider.x if mouse_x < slider.x mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w # Sets the current search step to the one represented by the mouse x value # The slider's circle moves due to the render_slider method using anim_steps state.anim_steps = ((mouse_x - slider.x) / slider.spacing).to_i recalculate end # Moves the star to the grid closest to the mouse # Only recalculates the search if the star changes position # Called whenever the user is dragging the star def input_star old_star = state.star.clone state.star = cell_closest_to_mouse unless old_star == state.star recalculate end end # Removes walls that are under the cursor def input_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_inside_grid? if state.walls.key?(cell_closest_to_mouse) state.walls.delete(cell_closest_to_mouse) recalculate end end end # Adds walls at cells under the cursor def input_add_wall # Adds a wall to the hash # We can use the grid closest to mouse, because the cursor is inside the grid if mouse_inside_grid? unless state.walls.key?(cell_closest_to_mouse) state.walls[cell_closest_to_mouse] = true recalculate end end end # This method moves the search forward one step # When the animation is playing it is called every tick # And called whenever the current step of the animation needs to be recalculated # Moves the search forward one step # Parameter called_from_tick is true if it is called from the tick method # It is false when the search is being recalculated after user editing the grid def calc # The setup to the search # Runs once when the there is no frontier or visited cells if state.frontier.empty? && state.visited.empty? state.frontier << state.star state.visited[state.star] = true end # A step in the search unless state.frontier.empty? # Takes the next frontier cell new_frontier = state.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless state.visited.key?(neighbor) || state.walls.key?(neighbor) # Add them to the frontier and mark them as visited state.frontier << neighbor state.visited[neighbor] = true # Also assign them a frontier number state.cell_numbers << neighbor end end end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors cell neighbors = [] neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1 neighbors << [cell.x, cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y] unless cell.x == 0 neighbors end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the grid closest to the mouse helps with this def cell_closest_to_mouse x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 [x, y] end # These methods detect when the buttons are clicked def left_button_clicked? (inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.left)) || inputs.keyboard.key_up.left end def right_button_clicked? (inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.right)) || inputs.keyboard.key_up.right end # Signal that the user is going to be moving the slider def slider_clicked? circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] inputs.mouse.down && inputs.mouse.point.inside_rect?(circle_rect) end # Signal that the user is going to be moving the star def star_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star)) end # Signal that the user is going to be removing walls def wall_clicked? inputs.mouse.down && mouse_inside_a_wall? end # Signal that the user is going to be adding walls def grid_clicked? inputs.mouse.down && mouse_inside_grid? end # Returns whether the mouse is inside of a wall # Part of the condition that checks whether the user is removing a wall def mouse_inside_a_wall? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(scale_up(wall)) end false end # Returns whether the mouse is inside of a grid # Part of the condition that checks whether the user is adding a wall def mouse_inside_grid? inputs.mouse.point.inside_rect?(scale_up([0, 0, grid.width, grid.height])) end # These methods provide handy aliases to colors # Light brown def unvisited_color { r: 221, g: 212, b: 213 } end # Black def grid_line_color { r: 255, g: 255, b: 255 } end # Dark Brown def visited_color { r: 204, g: 191, b: 179 } end # Blue def frontier_color { r: 103, g: 136, b: 204 } end # Camo Green def wall_color { r: 134, g: 134, b: 120 } end # Next frontier to be expanded def highlighter_yellow { r: 214, g: 231, b: 125 } end # The neighbors of the next frontier to be expanded def highlighter_green { r: 65, g: 191, b: 127, a: 70 } end # Button background def gray [190, 190, 190] end # These methods make the code more concise def grid state.grid end def buttons state.buttons end def slider state.slider end end def tick args # Pressing r resets the program if args.inputs.keyboard.key_down.r args.gtk.reset reset return end $detailed_breadth_first_search ||= DetailedBreadthFirstSearch.new(args) $detailed_breadth_first_search.args = args $detailed_breadth_first_search.tick end def reset $detailed_breadth_first_search = nil end
Path Finding Algorithms - Breadcrumbs - main.rb link
# ./samples/13_path_finding_algorithms/03_breadcrumbs/app/main.rb # Contributors outside of DragonRuby who also hold Copyright: # - Sujay Vadlakonda: https://github.com/sujayvadlakonda # This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html class Breadcrumbs attr_gtk # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and # The next step in the search is calculated def tick defaults # If the grid has not been searched if search.came_from.empty? calc # Calc Path end render input end def defaults # Variables to edit the size and appearance of the grid # Freely customizable to user's liking grid.width ||= 30 grid.height ||= 15 grid.cell_size ||= 40 grid.rect ||= [0, 0, grid.width, grid.height] # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search grid.star ||= [2, 8] grid.target ||= [10, 5] grid.walls ||= { [3, 3] => true, [3, 4] => true, [3, 5] => true, [3, 6] => true, [3, 7] => true, [3, 8] => true, [3, 9] => true, [3, 10] => true, [3, 11] => true, [4, 3] => true, [4, 4] => true, [4, 5] => true, [4, 6] => true, [4, 7] => true, [4, 8] => true, [4, 9] => true, [4, 10] => true, [4, 11] => true, [13, 0] => true, [13, 1] => true, [13, 2] => true, [13, 3] => true, [13, 4] => true, [13, 5] => true, [13, 6] => true, [13, 7] => true, [13, 8] => true, [13, 9] => true, [13, 10] => true, [14, 0] => true, [14, 1] => true, [14, 2] => true, [14, 3] => true, [14, 4] => true, [14, 5] => true, [14, 6] => true, [14, 7] => true, [14, 8] => true, [14, 9] => true, [14, 10] => true, [21, 8] => true, [21, 9] => true, [21, 10] => true, [21, 11] => true, [21, 12] => true, [21, 13] => true, [21, 14] => true, [22, 8] => true, [22, 9] => true, [22, 10] => true, [22, 11] => true, [22, 12] => true, [22, 13] => true, [22, 14] => true, [23, 8] => true, [23, 9] => true, [24, 8] => true, [24, 9] => true, [25, 8] => true, [25, 9] => true, } # Variables that are used by the breadth first search # Storing cells that the search has visited, prevents unnecessary steps # Expanding the frontier of the search in order makes the search expand # from the center outward # The cells from which the search is to expand search.frontier ||= [] # A hash of where each cell was expanded from # The key is a cell, and the value is the cell it came from search.came_from ||= {} # Cells that are part of the path from the target to the star search.path ||= {} # What the user is currently editing on the grid # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. state.current_input ||= :none end def calc # Setup the search to start from the star search.frontier << grid.star search.came_from[grid.star] = nil # Until there are no more cells to expand from until search.frontier.empty? # Takes the next frontier cell new_frontier = search.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless search.came_from.has_key?(neighbor) || grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited in the first grid # Unless the target has been visited # Add the neighbor to the frontier and remember which cell it came from search.frontier << neighbor search.came_from[neighbor] = new_frontier end end end end # Draws everything onto the screen def render render_background # render_heat_map render_walls # render_path # render_labels render_arrows render_star render_target unless grid.walls.has_key?(grid.target) render_trail end end def render_trail(current_cell=grid.target) return if current_cell == grid.star parent_cell = search.came_from[current_cell] if current_cell && parent_cell outputs.lines << [(current_cell.x + 0.5) * grid.cell_size, (current_cell.y + 0.5) * grid.cell_size, (parent_cell.x + 0.5) * grid.cell_size, (parent_cell.y + 0.5) * grid.cell_size, purple] end render_trail(parent_cell) end def render_arrows search.came_from.each do |child, parent| if parent && child arrow_cell = [(child.x + parent.x) / 2, (child.y + parent.y) / 2] if parent.x > child.x # If the parent cell is to the right of the child cell # Point arrow right outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 0}) elsif parent.x < child.x # If the parent cell is to the right of the child cell outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 180}) elsif parent.y > child.y # If the parent cell is to the right of the child cell outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 90}) elsif parent.y < child.y # If the parent cell is to the right of the child cell outputs.sprites << scale_up(arrow_cell).merge({ path: 'arrow.png', angle: 270}) end end end end # The methods below subdivide the task of drawing everything to the screen # Draws what the grid looks like with nothing on it def render_background render_unvisited render_grid_lines end # Draws both grids def render_unvisited outputs.solids << scale_up(grid.rect).merge(unvisited_color) end # Draws grid lines to show the division of the grid into cells def render_grid_lines outputs.lines << (0..grid.width).map { |x| vertical_line(x) } outputs.lines << (0..grid.height).map { |y| horizontal_line(y) } end # Easy way to draw vertical lines given an index def vertical_line x line = { x: x, y: 0, w: 0, h: grid.height } line.transform_values { |v| v * grid.cell_size } end # Easy way to draw horizontal lines given an index def horizontal_line y line = { x: 0, y: y, w: grid.width, h: 0 } line.transform_values { |v| v * grid.cell_size } end # Draws the walls on both grids def render_walls outputs.solids << grid.walls.map do |key, value| scale_up(key).merge(wall_color) end end # Renders the star on both grids def render_star outputs.sprites << scale_up(grid.star).merge({ path: 'star.png' }) end # Renders the target on both grids def render_target outputs.sprites << scale_up(grid.target).merge({ path: 'target.png'}) end # Labels the grids def render_labels outputs.labels << [200, 625, "Without early exit"] end # Renders the path based off of the search.path hash def render_path # If the star and target are disconnected there will only be one path # The path should not render in that case unless search.path.size == 1 search.path.each_key do | cell | # Renders path on both grids outputs.solids << [scale_up(cell), path_color] end end end # Calculates the path from the target to the star after the search is over # Relies on the came_from hash # Fills the search.path hash, which is later rendered on screen def calc_path endpoint = grid.target while endpoint search.path[endpoint] = true endpoint = search.came_from[endpoint] end end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid def scale_up(cell) x = cell.x * grid.cell_size y = cell.y * grid.cell_size w = cell.w.zero? ? grid.cell_size : cell.w * grid.cell_size h = cell.h.zero? ? grid.cell_size : cell.h * grid.cell_size { x: x, y: y, w: w, h: h } end # This method processes user input every tick # Any method with "1" is related to the first grid # Any method with "2" is related to the second grid def input # The program has to remember that the user is dragging an object # even when the mouse is no longer over that object # So detecting input and processing input is separate # detect_input # process_input if inputs.mouse.up state.current_input = :none elsif star_clicked? state.current_input = :star end if mouse_inside_grid? unless grid.target == cell_closest_to_mouse grid.target = cell_closest_to_mouse end if state.current_input == :star unless grid.star == cell_closest_to_mouse grid.star = cell_closest_to_mouse end end end end # Determines what the user is editing and stores the value # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def detect_input # When the mouse is up, nothing is being edited if inputs.mouse.up state.current_input = :none # When the star in the no second grid is clicked elsif star_clicked? state.current_input = :star # When the target in the no second grid is clicked elsif target_clicked? state.current_input = :target # When a wall in the first grid is clicked elsif wall_clicked? state.current_input = :remove_wall # When the first grid is clicked elsif grid_clicked? state.current_input = :add_wall end end # Processes click and drag based on what the user is currently dragging def process_input if state.current_input == :star input_star elsif state.current_input == :target